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a b s t r a c t

C-Mantec is a novel neural network constructive algorithm that combines competition between neurons
with a stable modified perceptron learning rule. The neuron learning is governed by the thermal
perceptron rule that ensures stability of the acquired knowledge while the architecture grows and while
the neurons compete for new incoming information. Competition makes it possible that even after new
units have been added to the network, existing neurons still can learn if the incoming information is
similar to their stored knowledge, and this constitutes a major difference with existing constructing
algorithms. The new algorithm is tested on two different sets of benchmark problems: a Boolean function
set used in logic circuit design and awell studied set of realworld problems. Both setswere used to analyze
the size of the constructed architectures and the generalization ability obtained and to compare the results
with those from other standard and well known classification algorithms. The problem of overfitting is
also analyzed, and a new built-in method to avoid its effects is devised and successfully applied within an
active learning paradigm that filter noisy examples. The results show that the new algorithm generates
very compact neural architectures with state-of-the-art generalization capabilities.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Choosing the proper neural network architecture for a given
classification problem remains a difficult issue (Baum & Haussler,
1989; Gómez, Franco, & Jerez, 2009; Lawrence, Giles, & Tsoi, 1996;
Rumelhart, Hinton, & Williams, 1986), and despite the existence
of several proposals to solve or alleviate this problem (Haykin,
1994), there is no general agreement on the strategy to follow
in order to select an optimal neural network architecture. The
computationally inefficient ‘‘trial and error’’ method is still much
used in applications using Artificial Neural Networks (ANNs), but
as an alternative different neural constructive algorithms have
been proposed in recent years (Andree, Barkema, Lourens, Taal, &
Vermeulen, 1993; Fahlman & Lebiere, 1990; Frean, 1990; García-
Pedrajas & Ortiz-Boyer, 2007; Keibek, Barkema, Andree, Savenlie,
& Taal, 1992; Mezard & Nadal, 1989; Nicoletti & Bertini, 2007;
Parekh, Yang, & Honavar, 2000; Subirats, Jerez, & Franco, 2008;
Utgoff & Stracuzzi, 2002). In general, constructive methods start
with a small network (normally a single neuron in a single
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hidden layer) to then add new units as needed until a stopping
criteria ismet. Themajority of the existing constructive algorithms
freeze the value of older weights as learning proceeds, and thus
what a neuron has learnt cannot be modified or improved in
further stages. In this work, the Competitive MAjority Network
Trained by Error Correction (C-Mantec) algorithm is introduced
and applied to different sets of benchmark problems. The main
novelty of the algorithm, in comparison to existing ones, is that
C-Mantec incorporates competition between neurons and thus all
neurons can learn at any stage of the procedure.

Competition among neurons has been much used in unsuper-
vised learning for several applications like dimensional reduction,
clustering, sparseness reduction, etc., both in artificial and biolog-
ical plausible modeling (Hertz, Krogh, & Palmer, 1991; Intrator &
Edelman, 1997; Piepenbrock & Obermayer, 1999; Rolls & Treves,
1998), but it has been less applied in supervised learning schemes
(Grossberg, 1987). The new C-Mantec algorithm makes use of the
thermal perceptron learning rule (Frean, 1992) that keeps the sta-
bility of the acquired knowledge permitting only modifications of
the synaptic weights that will not lead the neuron to forget much
ofwhat it has learnt thus far, as it may occurwith the standard per-
ceptron rulewhen learning a nonlinearly separable function. In the
C-Mantec algorithm neurons compete between them for learning
the incoming information. The neuron that may need the smaller
modification of its synaptic weight will learn according to the pre-
sented instance but only if the involved synaptic change is smaller
than a previously set up parameter, i.e., one neuron is selected to
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learn thepresented input but only if it is considered that the change
of its synaptic weights will not disrupt what the neuron has learnt
previously. If no such neuron is present in the actual architecture,
a new unit is added and the network grows.

A severe problem affecting almost any predictive learning
algorithms, and in particular neural network constructive ones,
is the problem of overfitting (Caruana, Lawrence, & Giles, 2001;
Geman, Bienenstock, & Doursat, 1992; Hawkins, 2004; Haykin,
1994). Models with fewer parameters are expected (following
Occam’s razor (Rodriguez-Fernandez, 1999)) to overfit less and
thus there exist a kind of implicit competition in the field toward
obtaining compact neural architectures. When the C-Mantec
algorithm was applied to a set of noise-free Boolean functions it
was observed that very compact architectures were generated and
no overfitting effect was noticed. On the contrary, when themodel
was applied to real world data sets, in general containing noisy
information, overfitting problems appeared. This is the standard
situation for most of the existing constructive algorithms as many
of them tries to achieve zero training error. To avoid overfitting
problems when using C-Mantec on noise-contaminated data, a
built-in method based on the analysis of the behavior of individual
neurons was implemented and successfully tested on benchmark
problems.

In this work, we introduce and analyze the C-Mantec algorithm
and apply it to a wide set of classification problems, being able
to show that the combination of competition, a stable learning
procedure and a built-in method that prevents overfitting, can
lead to the obtention of very compact neural architectures with
good generalization abilities. Furthermore, a deep analysis of the
behavior of the new algorithm was done as its parameters were
modified, showing that C-Mantec is very robust on a wide range of
their values and that they can very easily tuned.

2. The thermal perceptron learning rule

At the single neuron level the C-Mantec algorithm, to be
described in detail later in Section 3, uses the thermal perceptron
rule and thus we first give some details of this algorithm. The
thermal perceptron, introduced by Frean (1992), is a modification
of the original perceptron learning rule (Rosenhlatt, 1959) aimed
to obtain a rule that provides a successful and stable linearly
separable approximation to a non-linearly separable problem. The
standard perceptron learning rule needs to be modified because
it converges only when the problem is linearly separable and is
unstable when applied to non-linearly separable problems.

Consider a neuron, modeled as a threshold gate, having two
response states: ON = TRUE = 1 and OFF = FALSE = 0, receiving
input from N incoming continuous signals. The activation state
(S) of the perceptron depends on the N input signals, ψi, and on
the actual value of the N synaptic weights (wi) and the bias (b) as
follows:

S =


1 (ON) if φ ≥ 0
0 (OFF) otherwise, (1)

where φ is the synaptic potential of the neuron defined as:

φ =

N
i=1

wiψi − b. (2)

In the thermal perceptron rule, the modification of the synaptic
weights, 1wi, is done on-line (after the presentation of a single
input pattern) according to the following equation:

1wi = (t − S)ψiTfac, (3)

where t is the target value of the presented input, andψ represents
the value of input unit i connected to the output by weight wi.

The difference to the standard perceptron learning rule is that the
thermal perceptron incorporates the factor Tfac . This factor, whose
value is computed as shown in Eq. (4), depends on the value of the
synaptic potential and on an artificially introduced temperature
(T ) that is decreased as the learning process advances, in a way
that resembles the well known simulated annealing procedure
(Kirkpatrick, Gelatt, & Vecchi, 1983).

Tfac =
T
T0

exp

−

|φ|

T


. (4)

In Eq. (4), T0 is the initial temperature value set at the beginning
of the learning process, T is the actual temperature, and φ is the
synaptic potential defined in Eq. (2). The value of the Temperature,
T , is lowered steadily as the iterations (I) proceed, taking the value
T = 0 when the maximum number of iterations (Imax) is reached.
We observed that it was not necessary to use different values of T0
when the input dimension was fixed and thus all the experiments
in this work have been run with a value of T0 equals to the number
of input variables, N .

The behavior of the thermal perceptron for large values of T
(at the beginning of the learning process) is similar to the standard
perceptron learning rule (PLR), as the value of Tfac is very close
to 1. As the temperature gets reduced, the exponential factor in
Eq. (4) increases its influence, making synaptic changes smaller.
Synaptic weights are only modified when the perceptron output,
S, is different to the target value, t , and thus for these wrongly
classified inputs the absolute value of |φ| measures the distance
to the correct classification region. For a given value of T , if |φ| is
close to zero the exponential factor will be closer to 1, while it will
bemuch smaller for large values of |φ|. In this way, the exponential
factor in Eq. (4) affects changes to the synaptic weights such as not
to permit large changes if |φ| is large, and in thisway prevents from
forgetting the previous stored knowledge. The annealing schedule
for the temperature permits larger synaptic modifications at the
beginning of the process (exploration phase), while only minor
adjustments can be done near the end, when the value of T is close
to 0.

3. The C-Mantec algorithm

We introduce in this section the CompetitiveMAjority Network
Trained by Error Correction (C-Mantec) algorithm. The algorithm
constructs neural networks with a single hidden layer of neurons
with threshold activation functions and a single output neuron.
We consider first the case of single output functions, to later in
Section 5 treat the multi-class case. The output neuron computes
the majority function of the activation of the hidden units, as
previous experiments have shown that the majority function has
very good computational capabilities among the set of linearly
separable functions (Subirats, Franco, Gòmez, & Jerez, 2008). The
majority function, also called the median operator (Knuth, 2008),
is a logic function from N input bits to one output. The value of
the operation is false when less than half of the input bits are
true, and true when half or more of the input bits are true. A
further advantage of the majority function is that it can be easily
implemented with a single output threshold neuron connected by
unitary value weights to the hidden neurons and a threshold value
equals to Nh/2− 1/2 (Nh indicates the number of neurons present
in the hidden layer).

The procedure for constructing an architecture for a given
set of examples of dimension N starts by putting N inputs in
the initial layer with the function to introduce the information
into the network. Apart from these inputs, the initial architecture
includes a single neuron in the hidden layer and an output neuron
that will compute the majority function of the activation of the
neurons present in the hidden layer. The learning process starts
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Fig. 1. Pseudocode of the C-Mantec algorithm.

as usual with the presentation of randomly chosen patterns from
the training data set and the single present neuron in the hidden
layer tries to learns these patterns using the thermal perceptron
rule described in the previous section.

The C-Mantec algorithm has in principle 3 parameters to be
set at the time of starting the learning procedure. Two of them
are related to the thermal perceptron rule: the initial temperature
value, T0, and the maximum number of iterations allowed per
learning cycle, Imax, noting that each neuron in the hidden layer
has its internal counter value I that will determine its temperature
factor, Tfac . As we mentioned before, we have set the value of T0
equals toN in all experiments and thus, for practical purposes only
two parameters have to be adjusted. The third parameter is named
the growing factor, (gfac), as it determines when to stop a learning
cycle and include a new neuron in the hidden layer.

Thus, the single neuron so far present in the architecture learns
the input patterns according to Eq. (3) but only if the value of the
temperature factor, Tfac , is larger than the set value of gfac , one
of the parameters of the algorithm. The first time this previous
condition is notmet, a newneuron is added to the hidden layer, the
temperature of the two neurons set to T0, and a new learning cycle
starts with the iteration counter, I , set to 0. Thus, a learning cycle
is the process occurring using a fixed number of neurons; when a
new neuron is added a new cycle starts.

When more than one neuron is present in the architecture, the
whole process is similar to the previous description, except for
the fact that now competition arises between neurons: a random
pattern is presented to the network, the activation state of the
hidden neurons is computed, together with the whole network
output state, S. If the output value, S differs from the target value of
the input pattern, t , the algorithm then chooses among the neurons
in the hidden layer that have wrongly classified this input pattern,
selecting the onewith the largest value of Tfac . If the value of Tfac for
this selected neuron is larger than the set value of gfac , this neuron
modifies its synaptic weights according to the thermal perceptron
equation (Eq. (3)) and its internal temperature is lowered by
increasing its iteration counter. Note that each neuron has its own
internal temperature value and thus a neuron Tfac depends on
the value of the internal T and also on its actual value of φ. If
there is no a neuron present in the architecture for which its Tfac
is larger than the value of the gfac parameter, the learning cycle
is stopped, all neurons temperatures and iteration counters are
reset and a new neuron is included in the hidden layer. Further,
the new neuron tries to learn the lastly presented pattern helping
to achieve convergence of the learning process. The maximum
duration of a cycle is given by the value of Imax that determines the
number of learning iterations for each of the neurons, but noting

that in general the cycles are aborted and restarted whenever the
condition Tfac > gfac is not met for the selected neuron.

In Fig. 1(a) pseudocode of the algorithm is shown, summarizing
themost important steps of the C-Mantec algorithmand in Fig. 2(a)
flow diagram of the algorithm is shown. In Fig. 2(a) filtering stage
is included, showed at the lower right part of the figure (‘‘Eliminate
noisy examples’’), that will be described later on in Section 4, and
is indicated here to clarify at which point this filtering process is
applied. The training process ends when all input examples are
successfully classified, i.e., training is carried out until zero learning
error is achieved. (Note that for the case in which a single hidden
neuron is used, the output neuron can be eliminated and the final
architecture is a simple perceptron).

The C-Mantec algorithm has in principle 3 parameters to be
set at the time of starting the learning procedure. Two of them
are related to the thermal perceptron rule: the initial temperature
value, T0, and the maximum number of iterations allowed per
learning cycle, Imax, noting that each neuron in the hidden layer
has its internal counter value I that will determine its temperature
factor, Tfac . As we mentioned before, we have set the value of T0
equals to N in all experiments and thus, for practical purposes
only two parameters have to be adjusted. The third parameter is
named the growing factor, (gfac), as it determines when to stop a
learning cycle and include a new neuron in the hidden layer. From
a conceptual point of view the effect of gfac on the training process
is not very different from that of Tfac in the annealing procedure,
as both prevent learning wrongly classified patterns that are far
from the actual separating hyperplane of a neuron, impeding the
unlearning of the right classified patterns. We note that while Tfac
acts as a modulation factor to the learning modification rule (cf.
Eq. (3)), while gfac acts as a fixed threshold, preventing any change
on the synaptic values if there is no neuron for which Tfac is larger
than gfac . Having said that, from a practical and computational
perspective, the effect of gfac is quite important as directly controls
the point at which new neurons are added to the hidden layer,
affecting the final size of the architectures. This is, indeed, relevant
because we have observed that in several cases minimum size
architectures are not the best ones in term of the generalization
ability obtained, and gfac permits to control this directly. The other
important fact is that as gfac is independent of the temperature
(unlike Tfac), its introduction makes the algorithm very robust in
a wide range of values for the other two parameters of C-Mantec
(the initial temperature and the number of iterations per cycle).

We could not demonstrate mathematically the convergence of
the learning process for the C-Mantec algorithm as the use of a
majority function as output, the implementation of competition
between neurons, the possibility of modifying all synaptic weights
during the whole training process, and the use of a stochastic
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Fig. 2. Flow diagram of the C-Mantec constructive learning algorithm where competition between neurons is introduced.

learning rule at the neuronal level complicate the application
of the standard techniques normally used to prove convergence
in constructive algorithms. Nevertheless, a strong convergence
of the learning process has been observed in all analyzed cases
and this can be explained by the fact that at a given time of
the training process wrongly classified patterns can be learned
by the addition of new units, while the use of a very stable
learning procedure makes the neurons to learn only patterns close
to their actual classification region preventing the unlearning of
previous rightly classified patterns. Hypothetically, loopsmay arise
during training as it seems possible that learning new patterns
can cause unlearning previous ones and that the addition of new
units may not be sufficient to prevent this. The recommendation
in these eventual cases would be to check that the total error is
not diminishing as new neurons are added (in order to confirm
that a loop is occurring), and then modify the gfac parameter
toward larger values, as these changes will provide stability to the
existing neurons while facilitating the inclusion of new neurons
for learning the wrongly classified patterns. In combination to this,
the total number of iterations can be reduced in order to speed
up this phase. Once convergence is attained, we recommend to
readjust the gfac lowering its value to optimize the size of the
generated architectures and the generalization ability, together
with an increase on the number of iterations if necessary.

We refer also in this work to the Mantec algorithm, a
preliminary version created during the development of the C-
Mantec algorithm that corresponds to the algorithm operating
with no competition between neurons, i.e., only weights related
to the last introduced neuron can be modified during the learning
procedure while the rest of the weights are frozen, in a similar way
as most existing constructive neural networks algorithms works,
and that serves to analyze clearly the role of competition, that we
carry next.

3.1. The effect of competition

We run numerical simulations to test how the competition
implemented in the C-Mantec algorithm affects its performance,
measuring the size of the generated architectures and the
generalization ability obtained. We test the C-Mantec algorithm
against a version of the algorithm operating without competition,
a version that will be refereed as the Mantec algorithm and
also against the Upstart algorithm, introduced by Frean (1990),
because it uses as well the thermal perceptron rule and does
not implement competition. In a first experiment, we applied
the three algorithms (C-Mantec, Mantec and Upstart) to the
construction of neural architectures that implement a random
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Fig. 3. Comparison between C-Mantec, Mantec and Upstart algorithms. Top graph:
Number of neurons in the architectures generated by the three algorithms when
learning random Boolean functions with a number of inputs between 5 and 12.
Middle graph: Number of neurons of the generated architectures for the case of
the two-or-more clumps function with N = 25 as a function of the number of
patterns used for training. Bottom graph: Same as middle graph but results for the
generalization ability obtained tested with 1800 additional patterns. (See the text
for more details).

generated Boolean functions for different input size, N , between
5 and 12 using the whole set of available inputs (i.e., the network
is trained with 2N input–output pairings). The results are shown
in Fig. 3 top graph, where it can be appreciated that the C-Mantec
algorithm constructs more compact architectures than the other
two methods as the number of inputs grows. For N = 12 the
C-Mantec algorithm performs much better than the other two
algorithms needing approximately only 160 neurons, almost one
fourth of the approximately 600 neurons needed by the Upstart
and Mantec algorithms (note that a logarithmic scale is used for
the y-axis of the figure representing the number of neurons of the
constructed architectures). We have not tested the generalization
ability in this case as it has not much sense for totally random
functions.

In a second experiment we have analyzed both the gener-
alization ability and the size of the constructed architectures
using the two-or-more clumps problem, used as a test function
previously by several researchers (Denker et al., 1987; Frean, 1990;
Mezard & Nadal, 1989; Utgoff & Stracuzzi, 2002; Wann, Hediger, &

Greenbaum, 1990). This Boolean function outputs ‘‘1’’ for any input
pattern having at least two groups (‘‘clumps’’) of adjacent input
bits ON. It is a middle-complexity function, easy to defined but
relatively complex in the sense that N neurons are needed in the
hidden layer to implement it for the case of N input bits. The train-
ing procedure was repeated 25 times using patterns generated
through aMonte Carlo simulation in a similarway as used before in
Denker et al. (1987) and Frean (1990). The obtained results (mean
and standard deviation) are shown in Fig. 3 middle and bottom
graphs forN = 25. Fig. 3 (middle graph) shows the performance of
the three algorithms in terms of the size of the generated architec-
tures, showing clearly that the C-Mantec outperforms both other
algorithms. Regarding the generalization ability obtained, shown
in Fig. 3 (bottom graph) the difference is not as large, as very simi-
lar performances are obtained for the three algorithmswith a slight
advantage in favor of C-Mantec, achieving approximately 0.5% of
generalization above the results of Upstart, computed as an aver-
age across the different points shown as the number of patterns is
increased between 100 and 1800. In the graph, the x-axis shows
the number of training patterns usedwhile the number of test pat-
terns for computing the generalization ability was fixed and equal
to 1800.

3.2. The role of the parameters gfac and Imax on the size of the
generated architectures and on the generalization ability obtained

In this subsection we analyze the behavior of the C-Mantec
algorithm as the parameters gfac and Imax are modified, with the
aim of understand better the functioning of the algorithm and
optimize its performance.

We run numerical simulations using as test function the two-
or-more clumps function described in the previous subsection.
Simulations were run with a number of inputs equals to N =

8, 10, 12, with gfac taking the following values {0.05, 0.1, 0.2, 0.3,
0.4, 0.5, 0.55, 0.65, 0.7, 0.75} and with a number of maximum
iterations for learning cycle equals to the following values Imax =

1000 × {1, 3, 5, 10, 15, 20, 30, 50, 70, 100, 200}.
In Fig. 4 (top graph) three curves are plot showing the number

of neurons in the hidden layer of the obtained architectures as a
function of the gfac parameter for the caseN = 12. The three curves
shown are for the mean across all the Imax values considered and
for the minimum and maximum size networks found among all
analyzed Imax values for a given gfac value. As it can be seen the three
curves are quite similar indicating the robustness of the algorithm
regarding changes to Imax values. The behavior for the size of the
architectures against changes in gfac values is very clear, compact
architectures are obtained for values lower than 0.65, and from this
value on, the size of the architectures grows sharply. Fig. 4 (middle
graph) analyzes the behavior of the generalization ability as the gfac
values are increased, and in this case a peak in the generalization
ability for values between 0.55 and 0.7 is found. Values of gfac
larger than 0.7 produced a sharp decline of the generalization
ability (not shown). In this figure, three curves are also shown
for the mean, maximum and minimum value of generalization
ability found across the range of Imax values considered, and again
is possible to see a relative low spread between the curves. In
order to have amore precise idea about optimal parameter setting,
Fig. 4 bottom shows the optimal gfac value found as the maximum
number of iterations per cycle (Imax) is modified, for the cases of
achieving best generalization ability or minimum size networks.
It seems clear from this graph, that different gfac values might be
used depending on the application required, i.e., a low gfac is better
for obtaining compact architectures while larger values of gfac are
preferred if the generalization ability is the relevant feature. It is
an interesting result that smaller architectures does not lead to the
best results in terms of the generalization ability, as it is suggested
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Fig. 4. Analysis of the role of the parameters Imax and gfac on the generalization
and the size of the architectures generated. The analysis is done using the function
two-or-more clumps of 12 variables and averaging across 25 samples, using 75% of
the available examples for training and 25% for measuring generalization. (a) The
generalization ability obtained as a function of the temperature for the best gfac
value, for the mean of all values and for the worst values tested. (b) The number
of neurons in the generated architectures for the three cases mentioned before.
(c) The optimum gfac values found for maximum generalization and minimum size
as a function of the number of iterations.

by the Occam’s razor principle (Rodriguez-Fernandez, 1999) and
we will discuss this in the conclusions. The results for dimensions
8 and 10 were similar to those shown for the case N = 12.

Regarding the value of the parameters used for the rest of the
experiments in this work, we note that we found that even if for
low andmiddle complexity functions like the two-or-more clumps
recently analyzed it is convenient to use values of gfac ∼ 0.5, a
similar value was not a good choice for more complex functions as
the algorithm generates larger networks, takes longer times and
the generalization ability is not always optimized. For this reason
smaller gfac values between 0.05 and 0.1 were used (the exactly
used values are indicated in the corresponding experiments).

4. Learning in presence of noisy examples: avoiding overfitting

During the several tests carried out with the C-Mantec
algorithm, it was noted that when the algorithm was applied

Fig. 5. Schematic drawing of the ‘‘resonance effect’’ that happens when noisy
examples are present in the training set. The thermal perceptron will try several
times to learn the contradictory examples (at the right of the figure) and this will
produce an oscillation of the classification hyperplane. The number of times the
synaptic weights are adjusted upon presentation of an example can be used to
detect contradictory inputs.

to a set of logical ‘‘noise-free’’ functions (see Section 7.1) the
generalization ability obtained was quite good in comparison to
other algorithms, and this fact was taken as an indication that
as very compact architectures are generated the algorithm does
not suffer from overfitting (this type of overfitting is sometimes
referred as ‘‘model overfitting’’) (Caruana et al., 2001; Geman
et al., 1992; Hawkins, 2004; Haykin, 1994). Nevertheless, as the C-
Mantec algorithm produces architectures that lead to zero training
error, as most constructive algorithms do, it does overfit noisy
exampleswhen trainedwhen real-world sets of problems. In order
to avoid this ‘‘noise overfitting’’ effect, a procedure was introduced
that consisted on eliminating input examples considered noisy. In
general, a learning scheme in which there is some control over the
inputs is known as active learning and it has been shown that can
lead to an improved generalization ability (Angelova, Abu-Mostafa,
& Perona, 2005; Bramer, 2002; Cohn, Atlas, & Ladner, 1994; Franco
& Cannas, 2000).

The procedure to eliminate noisy inputs consists in analyze the
number of times an example has been presented to the network
and needed a synaptic weight correction (i.e., it was wrongly
classified by the network), to eliminate at the end of a learning
cycle those inputs that needed larger number of modifications in
comparison to the mean. We have observed that a typical case in
which the filtering scheme is needed is for the case of conflicting
patterns, where two examples have similar input values but a
different target value. In this case, a neuron trained by the thermal
perceptron oscillates around possible solutions and we called this
behavior the ‘‘resonant effect’’, that is illustrated schematically in
Fig. 5. In the figure, the correct (‘‘noise-free’’) set of examples is
located in the left part of the figure, and on the right part the
contradictory pair of inputs is shown. The ‘‘noise-free’’ set defines
a beam of hyperplanes that can classify correctly its patterns but
when the algorithm tries to learn the contradictory pair of inputs,
it fails iteratively with one of the patterns, producing an oscillation
of the proposed classification hyperplane. This oscillatory behavior
normally finishes at the end of the learning cycle when the
elimination process of ‘‘noisy’’ examples is carried out.

The implementation of the data pruning procedure is straight-
forward and consists in counting the number of times each indi-
vidual example was presented and misclassified by the network,
eliminating at the end of a cycle examples that have been pre-
sented the largest number of times. A parameter, nsig (for ‘‘noise
sigma’’), is introduced and patterns that were presented to the net-
work and wrongly classified a number of nsig standard deviations
larger than the mean are eliminated from the training set. The
mean value is computed across the observed presentations of all
training patterns. The parameter nsig has to be adjusted and its op-
timal valuewill depend on the level of noise present in the data set,
but several experimentswith realworld data indicated that a value
between 2 and 3 was adequate to provide good results in terms
of the generalization ability obtained. The experiments and results
related to ‘‘noisy’’ data sets are included in Sections 7.2 and 7.3.
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5. Extension of the C-Mantec algorithm to the treatment of
multi-class problems

The C-Mantec algorithm was originally designed for working
with binary classification problems and in order to extend its
use to multiclass cases, we apply in this section three well
known approaches normally used for tackling this problem. The
three different extensions analyzed treat K -classes problems using
a strategy that combines M binary neural networks using a
simple additional decision module (Ou & Murphey, 2007). The M
binary neural networks are trained separately using a common
training data set or a subset of the original data, and a decision
module is used to select the final classification results. The three
different well known approaches used are One-Against-All (OAA),
One-Against-One (OAO), and P-Against-Q (PAQ), that are briefly
described below.

5.1. One-Against-All (OAA) neural networks

This scheme utilizes aM = K binary neural networks, where K
is the number of classes of the original task. Each neural network is
trainedwith the same training data set but with different objective
values. For an input x belonging to class i the target value of the
neural network Mi is ‘‘1’’ for this input example and zero for all
other M − 1 binary neural networks. In this scheme, there are
three cases of possible outputs from the K binary networks to
be analyzed by the decision module. First, if only one of the K
neural networks showed ‘‘1’’ and all others output ‘‘0’’, the decision
is easily made. Second, if more than one of the binary network
output ‘‘1’’, the decisionmodule needs to decidewhether to output
a symbol to indicate a ‘‘tie’’, or employs a more sophisticated
scheme to force a classification decision. Third, if none of the
neural networks outputs a ‘‘1’’, then the decision module needs to
indicate that no classification ismade. For the second case, inwhich
more than one output module outputs a ‘‘1’’, our implementation
prioritizes the neural network with the better classification rate
obtained thus far, computed on-line. To resolve the third case, in
which no output is produced by the binary modules, we select
the class corresponding to the neural network with the worse
classification rate computed up to the point when the decision is
made.

5.2. One-Against-One (OAO) neural networks

This scheme transforms a K -Class pattern classification prob-
lem into M = K(K − 1)/2 binary sub-problems solved by binary
neural networks. Each neural network solves a classification of an
individual class against another individual class and is trained only
with a subset of the data in which these two classes are present.
The collective output from all M binary neural networks for an in-
put feature vector ‘x’ represents a combination of M votes for K
classes, and the decision module needs to decide the output class
of the scheme. A simple voting scheme can be used by the deci-
sion module. This module counts the votes for each class based on
the outputs from the M neural networks and the class with more
votes is assigned to the input feature vector ‘x’. The problem in
this case is how the decision module resolves ties (equal number
of votes for two or more classes). A tie can be broken by chosen
the class with higher prior-probability, weighting the votes by the
confidence value associated with each neural network output into
account. In our implementation, ties where solved by restricting
the data set to the classes involved and computing the voting only
from these restricted cases. In some cases the tie cannot even be
resolved and we just take in these cases a random choice between
the involved classes. The major advantage of OAO approaches is
that it provides some redundancy that can lead to a more robust
system; the disadvantage is that generates a large number of neu-
ral network modules, specially when K is large.

5.3. P-Against-Q (PAQ) neural networks

The P-Against-Q classification scheme can be considered as a
halfway approach between the other two mentioned previously.
In this approach, the original classes are grouped in two classes a
different number ofM times, in away that from the output of these
groups is possible to infer the individual class. The implementation
can be considered asM binary codes of length K , where each code
has P bits equal to one and Q = M − P bits equal to zero. One
type of P-against-Q encoding consists in using the shorter code that
specify all classes,M = log2 K bits. This dense encoding is efficient
in terms of the resulting size of the architecture, but it is not in
terms of the generalization ability obtained, as some redundancy
on the encoding is beneficial. In our implementation 2K modules
were used and the grouping of the classes was randomly chosen.

6. Experiments

We analyze the performance of the C-Mantec algorithm
through numerical simulations using two different sets of bench-
mark functions: a ‘‘noise-free’’ set of logical functions, frequently
used in circuit design and a large set of problems belonging to the
UCI repository coming from ‘‘real world’’ data. The analysis focuses
mainly on the size of the constructed networks and on the gener-
alization ability obtained.

7. Performance of the algorithm on obtaining compact archi-
tectures

We test in this section the capability of the C-Mantec algorithm
to produce compact neural architectures by using a set of widely
used circuit functions belonging to the MCNC benchmark. The set
of 14 multi-output test functions used contains a number of input
variables between 9 and 19 and were considered as 91 single
output functions. The comparison of the size of the architectures
produced by the C-Mantec algorithm is done against the results
obtained using the DASG algorithm (Subirats, Jerez et al., 2008),
as these constitute already a big improvement over previous
published results, and as far as we know were the best results
obtained at the time of its publication. The size of the architectures
produced by the C-Mantec algorithm is shown in Table 1 together
with the results produced by the DASG algorithm (Subirats, Jerez
et al., 2008). Also shown in the last column of the table is the
percentage of improvement of the C-Mantec algorithm over those
obtained using DASG. In the last row of the table, the average
results are shown. It can seen be that the C-Mantec algorithm
outperform the results of the DASG algorithm by an average
reduction of 39.08% in the total number of neurons included in the
architectures. This significant reduction in the number of gates also
implies a similar reduction in the fan-inmax,maximumnumber of
connections that a gate receives, that is a relevant factor at the time
of constructing logic circuits.

7.1. Learning noise-free Boolean functions

A set of 17 single output Boolean functions from the MCNC
benchmark was used to test the generalization ability of the
C-Mantec algorithm operating in a noise-free environment. For
this reason, the C-Mantec algorithm was executed without
the active learning paradigm implemented for noisy data and
described previously in Section 4. To compare the generalization
performance of the C-Mantec algorithm, we analyze also other
three well-known classification algorithms: the C4.5 decision tree
algorithm (Quinlan, 1992), feed-forward neural networks (FFNNs)
trained by backpropagation, and K-nearest neighbors algorithm
for generalization (K-NN-gen). All these three alternative methods



Author's personal copy

J.L. Subirats et al. / Neural Networks 26 (2012) 130–140 137

Table 1
Number of neurons in the single layer of the constructed architectures obtained using the DASG and C-Mantec algorithms (columns 2 and 3 respectively) for a set of 14
multi-output Boolean functions. The first column indicates the name of the analyzed function and the number of inputs and outputs of the function is indicated in the
second column. The last column shows in percentages the reduction in the number of neurons obtained by the C-Mantec algorithm in comparison to DASG.

Function name I/O Neurons DASG Neurons C-MANTEC Reduction (%)

9symml 9/1 21 3 85.71
alu2 10/6 96 51 46.88
x2 10/7 17 12 29.41
cm152a 11/1 9 8 11.11
cm85a 11/3 19 5 73.68
cm151a 12/2 18 6 66.67
alu4 14/8 279 150 46.24
cm162a 14/5 15 15 0.00
cu 14/11 22 18 18.18
cm163a 16/5 21 13 38.10
cmb 16/4 71 4 94.37
pm1 16/13 17 15 11.76
tcon 17/16 24 24 0.00
pcle 19/9 32 24 25.00

Average – 47.21 24.86 39.08

Table 2
Generalization ability obtained with the new introduced C-Mantec algorithm and with other three standard algorithms, C4.5 decision trees, feedforward neural networks
(FFNNs) trained with backpropagation and nearest neighbor for generalization K-NN-gen on a set of 17 Boolean functions. (See text for more details.)

Function # Inputs # Neur. C-Mantec Generalization ability
C-Mantec FFNN C4.5 KNN-Gen

cm82af 5 3.00 ± 0.00 93.33 ± 11.11 90.00 ± 31.62 60.83 ± 38.10 65.00 ± 35.53
cm82ag 5 3.00 ± 0.00 60.00 ± 37.27 75.00 ± 28.60 37.50 ± 11.95 34.17 ± 23.06
cm82ah 5 1.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 57.50 ± 22.38 65.83 ± 23.06
z4ml24 7 3.00 ± 0.00 98.33 ± 3.67 100.00 ± 0.00 78.21 ± 6.84 81.28 ± 6.37
z4ml25 7 3.13 ± 0.74 90.83 ± 12.34 91.35 ± 12.00 56.47 ± 17.42 46.15 ± 13.45
z4ml26 7 3.00 ± 0.00 96.67 ± 5.89 92.76 ± 13.68 78.78 ± 18.12 80.19 ± 17.11
z4ml27 7 3.00 ± 0.00 99.17 ± 2.78 100.00 ± 0.00 83.72 ± 21.89 78.27 ± 26.75
9symml 9 3.00 ± 0.00 99.41 ± 0.86 96.67 ± 5.47 76.76 ± 4.56 75.02 ± 6.24
alu2k 10 11.21 ± 0.92 97.36 ± 1.90 84.39 ± 5.28 94.43 ± 4.21 90.25 ± 7.73
alu2l 10 18.9 ± 1.45 79.22 ± 5.54 75.79 ± 5.18 82.33 ± 3.55 78.03 ± 4.88
alu2o 10 11.16 ± 0.91 90.24 ± 2.27 90.04 ± 2.54 89.46 ± 3.58 88.67 ± 4.78
cm85al 11 1.00 ± 0.00 99.95 ± 0.16 100.00 ± 0.00 98.19 ± 0.66 98.73 ± 0.62
cm85am 11 3.00 ± 0.00 99.76 ± 0.42 99.41 ± 1.24 96.88 ± 0.25 96.78 ± 1.36
cm85an 11 1.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 98.34 ± 0.70 99.07 ± 0.81
alu4q 14 45.8 ± 3.62 99.72 ± 0.14 86.72 ± 2.06 98.80 ± 0.64 99.07 ± 0.21
alu4r 14 75.7 ± 0.98 97.73 ± 0.47 88.93 ± 1.39 96.45 ± 0.73 94.90 ± 1.18
alu4u 14 27.4 ± 0.99 99.39 ± 0.27 95.94 ± 0.37 98.16 ± 0.24 97.11 ± 0.35
Average 9.2 12.66 ± 20.2 94.18 ± 10.33 92.18 ± 8.17 81.34±18.44 80.5 ± 18.97

were applied using the open source platform WEKA (Witten
& Frank, 2000), using in most cases the standard parameter
setting of WEKA, as this worked almost optimal in comparison
to some alternative adjustment tested. A ten-fold cross-validation
approach was used. The C-Mantec algorithm was run with
parameter values: gfac = 0.05 and Imax = 100,000.

In Table 2 the results obtained from all 4 methods are shown,
where it is possible to see that the best results where obtained by
the newC-Mantec algorithmwith an average generalization ability
of 94.18%, followed closely by FFNN (92.18%). The application
of the C4.5 decision tree algorithm leads to a generalization
ability of 81.34% and similar results 80.50% of generalization were
obtained with the K-NN-gen method. The difference between the
generalization ability of the C-Mantec and the C4.5 and K-NN-gen
methods was statistically significant at p = 0.002 and p = 0.001
respectively (paired t-test). For the comparison between C-Mantec
and FFNN, the differencewas not statistically significant (p = 0.21)
as the difference in the average generalization ability obtainedwas
much smaller.

7.2. Learning real world problems

We further test the performance of the C-Mantec algorithm on
a set of 17 real world data sets obtained from the UCI machine

learning repository (Blake & Merz, 1998). The set contains binary
and multi-class problems with a number of inputs between 4 and
125 and a number of outputs between 2 and 19, and the results are
shown in Table 3. The C-Mantec algorithm was used with values
of gfac = 0.1 and a number of iterations Imax equals to 100,000.
The procedure for the elimination of noisy examples was applied
in order to avoid overfitting problems using a value of 2.0 for the
parameter nsig . For the multi-output data sets analyzed, the C-
Mantec algorithm was run with the P-against-Q (PAQ) approach,
as this approach was shown to lead to the best generalization
accuracy.

The first five columns in Table 3 show the name of the problem,
the number of input and output variables, the number of neurons
generated in the single hidden layer of the architectures and
the generalization ability obtained with the C-Mantec algorithm.
The last two columns show the generalization ability obtained
from applying standard feed-forward neural networks (FFNNs)
trained by backpropagation and support vector machines (SVMs).
Both algorithms were run within the package WEKA using
parameter settings equal or very close to the standard setting
provided. The results shown in Table 3 come from a ten-fold
cross validation approach used, and thus we report the mean
and the standard deviation across the set of ten observed values.
Average generalization ability values computed across the data
set are shown in the last row of the table, where the standard
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Table 3
Generalization ability obtained with the new C-Mantec algorithm and with other three standard algorithms, on a set of 17 real world problems from the UCI data set. (See
text for more details.)

Function Inputs Classes Neurons C-Mantec Generalization C-Mantec Generalization FFNN Generalization SVM

Diab1 8 2 3.34 ± 1.11 76.62 ± 2.69 74.17 ± 0.56 76.80 ± 4.54
Cancer1 9 2 1 ± 0.0 96.86 ± 1.19 97.07 ± 0.18 96.68 ± 2.68
Ionosphere 34 2 2.00 ± 0.00 87.44 ± 0.06 91.06 ± 4.86 88.07 ± 5.32
Heart1 35 2 2.66 ± 0.74 82.63 ± 2.52 79.35 ± 0.31 83.86 ± 6.21
Heartc1 35 2 1.28 ± 0.57 82.48 ± 3.33 80.27 ± 0.56 84.80 ± 5.75
Kr-vs-Kp 40 2 3.00 ± 0.00 98.96 ± 0.62 99.34 ± 0.54 95.79 ± 1.34
Card1 51 2 1.78 ± 0.87 85.16 ± 2.48 86.63 ± 0.67 84.80 ± 5.75
Sonar 60 2 1.00 ± 0.00 75.00 ± 14.10 81.61 ± 8.66 73.61 ± 9.34
Mushroom 125 2 1.00 ± 0.00 99.98 ± 0.04 100.00 ± 0.0 100.00 ± 0.0
Iris 4 3 4.60 ± 0.80 96.00 ± 3.33 96.93 ± 4.07 96.27 ± 4.58
Bal-scale 4 3 12.40 ± 0.04 90.53 ± 3.74 90.69 ± 3.04 87.57 ± 2.49
Thyroid 21 3 5.00 ± 0.00 94.16 ± 0.51 96.85 ± 0.83 93.79 ± 0.31
Waveform 40 3 9.00 ± 0.00 86.50 ± 1.23 83.56 ± 1.66 86.68 ± 1.97
Horse1 58 3 9.40 ± 0.93 67.79 ± 5.71 66.79 ± 5.49 68.66 ± 5.16
Gene1 120 3 8.40 ± 2.70 86.24 ± 1.10 90.93 ± 1.80 90.96 ± 1.28
Glass 9 6 35.10 ± 3.50 67.00 ± 6.38 53.96 ± 2.21 57.36 ± 8.77
Soybean 82 19 24.00 ± 0.00 92.96 ± 2.68 90.53 ± 0.52 93.10 ± 2.76
Average 7.35 ± 9.25 86.25 ± 10.14 85.87 ± 12.41 85.81 ± 11.24

Table 4
Results for the number of neurons and generalization ability obtained with the C-Mantec algorithm using different multiclass schemes. (See text for more details.)

Function Inp. Cl. N. OAA N. OAO G. OAA G. OAO

Iris 4 3 6.60 ± 1.51 12.00 ± 0.00 95.33 ± 4.50 96.00 ± 7.16
Bal-scale 4 3 12.00 ± 0.00 12.40 ± 1.26 89.89 ± 4.67 91.72 ± 3.43
Thyroid 21 3 2.00 ± 0.00 3.00 ± 0.00 94.20 ± 0.60 94.20 ± 0.60
Waveform 40 3 14.90 ± 0.32 13.90 ± 1.28 85.22 ± 1.74 83.24 ± 1.35
Horse1 58 3 4.70 ± 0.70 3.00 ± 0.00 64.8 ± 6.40 66.20 ± 5.20
Gene1 120 3 5.20 ± 3.00 3.50 ± 1.10 84.00 ± 1.10 88.50 ± 1.00
Glass 9 6 11.40 ± 2.00 17.80 ± 1.70 58.40 ± 7.80 64.80 ± 6.30
Soybean 82 19 19.00 ± 0.00 171.00 ± 0.00 90.60 ± 3.20 92.60 ± 2.00
Average 9.48 ± 5.80 29.58 ± 57.42 82.81 ± 13.76 84.66 ± 12.45

deviation values indicated are computed from the values of
generalization ability obtained for the individual problems. It is
possible to see that the best results on average where obtained
by the new C-Mantec algorithm with an average generalization
ability of 86.24%, followed closely by FFNN (85.87%) and the
SVM with a generalization ability of (85.81%), noting that the
average difference between the three analyzed methods is not
statistical significant. Surprisingly, the C-Mantec algorithm, that
in average outperforms the other two methods, does not achieve
better results in most individual cases but more constant ones.
Regarding the computational times involved, we have measured
the CPU times needed by the C-Mantec algorithm to compute
two complex problems of the data set, the Waveform data set
for which the C-Mantec needed 4693 s to complete the ten fold
cross validation procedure applied, and the Kr-vs-Kp problem for
which the algorithm needed 906 CPU seconds. As a comparison,
a standard MLP needed 1766 and 632 CPU seconds respectively
using the WEKA framework. CPU times were computed on a PC
equipped with an Intel Core 2 2.13 GHz processor.

7.3. Multiclass approaches for the C-Mantec algorithm

We analyze in this subsection the performance of the C-Mantec
algorithm inmulti-class problems using three differentmulti-class
schemes described before in Section 5. The data set for the tests
consisted in 8 problems containing a number of classes between 3
and 19. The results obtained are shown in Table 4 for the OAA and
OAO approaches, as the results for the PAQ scheme correspond to
the ones already shown in the lasts rows of Table 3. For the set
of multi-output problems analyzed, the generalization ability for
the case of the PAQ approach was 85.11±11.48 and the number of
neurons in the hidden layer of the architectures was 13.49±10.64

(mean values computed from the last 8 rows from Table 3). Thus,
the PAQ approach leads to the best generalization ability (85.11%),
followed closely by the OAO approach (84.66%), while the OAA
approach leads to a much lower average value (82.81%). Regarding
the size of the generated architectures, the smaller networks were
obtained using the OAA approach as expected.

8. Discussion and conclusions

We have introduced in this work the C-Mantec constructive
neural network algorithm for its application in supervised
classification problems. The algorithm combines a local stable
learning rule with global competition between all neurons in the
hidden layer and thus it does not ‘‘freeze’’ weights connecting
‘‘old’’ introduced neurons, as it is the standard procedure in most
existing constructive algorithms. An analysis of the properties of
the algorithm has shown that it is very robust regarding changes
in its parameter values which can be adjusted straightforward.
We have further developed a built-in filtering paradigm that
works by eliminating examples considered noisy and helped to
overcome overfitting problems, permitting to obtain very good
generalization values with ‘‘real world’’ data.

The capability of the C-Mantec algorithm for creating com-
pact architectures was first thoroughly analyzed on the MCNC
benchmark data set, widely used to test algorithms on logic circuit
synthesis. The results presented in Table 1 clearly indicate an
impressive synthesis capability of C-Mantec, outperforming by
a 39.08% previously obtained results using the DASG algorithm
(Subirats, Jerez et al., 2008). It is worth noting that the results ob-
tained by the DASG algorithm were already an improvement on
the results obtained by Zhang, Gupta, Zhong, and Jha (2005), and
thus the present results constitute the best known ones obtained
on these benchmark functions.
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Regarding the prediction abilities of the newalgorithm,wehave
tested themon two different sets of benchmark problems. First, we
analyzed the prediction accuracy using 17 problems belonging to
the MCNC benchmark set of logical functions, obtaining a better
performance for C-Mantec in comparison to other three standard
classification methods (FFNN, C4.5 decision trees and K-nearest
neighbors). The average generalization ability obtained with C-
Mantec was the largest one, even if it was very close to the
value obtained with FFNN, but much larger that the obtained
with the C4.5 and K-NN methods. A second test done to analyze
the generalization ability of C-Mantec was carried out with ‘‘real
world’’ benchmark problems containing binary and multi-class
data. For this case, in order to avoid overfitting effects, the built-
in active learning paradigm for selecting and eliminating examples
considered as ‘‘noisy’’ was applied. The results confirmed that good
levels of generalization can be achieved with results slightly above
to those obtained with FFNN and SVM. Despite the fact that the
values of generalization ability were quite similar among the three
approaches, we note that the advantage of constructive algorithms
against standard FFNN is that the choice of the architecture and the
adjustment of the synaptic weights is automatically done during
the training process. Regarding the three different approaches
analyzed for the extension of the C-Mantec algorithm for the
treatment of multi-class problems, the best results in terms of the
generalization ability were obtained using the PAQ approach that
also resulted in reasonable size architectures.

The obtained results show that the effect of implementing
competition in the algorithm is beneficial and relevant for
constructing more compact architectures but also for obtaining
better generalization values. The rationale behind the fact of
obtaining smaller architectures might be that as all neurons
can learn at all times, they continue to incorporate knowledge
during an extended period of time, fact that might be relevant
also for dynamically changing data sets. In relationship to
the generalization capability of the algorithm, the fact that
all neurons can learn at all times makes the load of the
neurons highly distributed, a clear difference with most existing
constructive algorithms. In fact, Smieja (1993) highlighted the
loading distribution between neurons as a factor that degrades
the generalization ability of most constructive algorithms in
comparison to the standard multilayer perceptron approach, that
balances the learning among all neurons present in the hidden
layers, as C-Mantec does.

As a final conclusion, we believe that the new C-Mantec
algorithm not only is a useful and robust tool for constructing
compact neural network architectures with good generalization
abilities for classification problems, but also have been useful
for showing how competition can be utilized in a simple way
that might help in future practical and biologically motivated
developments.
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