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SUMMARY

Survival time prediction is important in many applications, particularly for patients diagnosed with
terminal diseases. A measure of prediction error taken from the medical literature is advocated as a
practicable method of quantifying reliability of point predictions. Optimum predictions are derived for
familiar survival models and the accuracy of these predictions is investigated. We argue that poor
predictive capability is inherent to standard survival models with realistic parameter values. A lung
cancer example is used to illustrate difficulties in prediction in practice. Copyright © 2001 John Wiley
& Sons, Ltd.

1. INTRODUCTION

Following a recent prospective cohort study, Christakis and Lamont [1] concluded that doc-
tors are inaccurate in their prognoses for terminally ill patients, with only 20 per cent of
predictions accurate to within 33 per cent of survival time. This is disappointing given that
the ability to predict future survival times is often of considerable importance. For cancer
patients, for example, MacKillop and Quirt [2] state there are three reasons why accurate pre-
diction is required. First, prognostic judgement can influence choice of treatment, especially
in the terminal stages of a disease in deciding what palliative treatment is offered. Many such
treatments have significant side-effects which may only be considered acceptable if the patient
is likely to live long enough to experience any subsequent benefit. Second, accurate prediction
can be important in the effective use of limited health care resources, since treating patients
with expensive regimens without benefit not only subjects patients to unnecessary toxicity,
but also wastes valuable resources. Finally, accurate prediction may help patients and their
families come to terms with impending death and make suitable plans for their remaining
lifespan.

There are also specific pressures on clinicians to make accurate predictions of survival in
order that a patient may qualify for certain financial benefits. In the U.K. for instance, a patient
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can claim additional financial support without the usual waiting time if a doctor certifies that
the patient has ‘progressive disease’ and is not expected to live longer than six months’.
Another occasion is when a patient with a terminal disease is discharged from hospital where,
again in the U.K., responsibility for paying for continuing care falls on either the local Health
Authority or the Department of Social Security. In 1995 the Department of Health issued
guidelines for continuing care responsibilities [3]: each local Health Authority is required to
clarify when it will pay for continuing care, generally requiring a doctor to certify that the
patient has less than a certain time to live. In the Leeds area, for example, the time span is
six weeks. Thus the accuracy of survival predictions has financial implications for the Health
Authority and for the Department of Social Security.

In the U.S.A. similar pressure was brought to bear on doctors when in 1982 the Medi-
care insurance programme introduced hospice care for its beneficiaries. Kinzbrunner [4] states
that Medicare benefit will apply if the patient is ‘terminally ill, with a life expectancy of
six months or less, as certified by two physicians, the patient’s attending physician and the
hospice medical director’. He cites the ability to predict patient survival with sufficient ac-
curacy as a major issue adversely affecting the referrals of patients to hospice. Christakis
and Escarce [5] found the actual survival of Medicare patients enrolled in a hospice to have
median 36 days, with 16 per cent dying within 7 days and 15 per cent surviving to at least
6 months. These authors suggest that the short survival of patients in hospice may mean
they have made an inadequate use of a desirable type of care, and may have undergone un-
necessary and costly aggressive treatment for an unduly long period before enrolment into a
hospice.

Given the importance of accurate prediction, an interesting question arises as to whether the
use of objective methods based on statistical models and with the attachment of probability
statements can replace or inform subjective clinical judgement. In discussion of reference [1],
Parkes suggests clinicians should ‘stop guessing’ and make more use of model-based methods.
Several attempts have been made to compare subjective and objective methods (for example,
references [6—9]) but no clear and consistent conclusion has emerged. Thus, almost always in
practice, survival prediction remains as a subjective assessment made by the patient’s doctor.
The validity of such assessments has been investigated in a number of studies covering a
variety of situations (for example, references [1, 2] and [10—13]) with a common finding
being that predictive accuracy is poor.

Why then are formal statistical models not used more often in practice in survival time
prediction? Survival analysis is of course in widespread use to determine covariate effects, to
compare different groups, and to form prognostic indices. None the less, in our experience it
is rare for these models and results to be translated into individual point or interval lifetime
predictions, even given a prognostic index. Presumably the answer is that statistical methods
have not convincingly been demonstrated to lead to accurate and thus helpful prediction.
In this paper we discuss why this might be the case and attempt to demonstrate that poor
predictive accuracy is inherent for commonly used survival models in realistic situations. This
is evinced in two ways:

1. Poor point estimates. Accuracy of point predictions can be measured by an appropriate
loss function. In this work we advocate a particularly simple and easily interpreted loss,
due to Parkes [10], which essentially classifies a prediction as seriously in error or
otherwise. We show that the probability of serious error in practice is high.
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2. Low explained variation unless hazard ratios are extremely large. Covariate knowledge,
even if statistically highly significant, rarely improves predictive capability by a practi-
cally useful amount.

In Section 2 we introduce the example which originally motivated our interest in this topic.
In Section 3 we describe Parkes’ definition of serious error and show that its probability is
high for a variety of statistical models. The common two-group treatment/control situation
is considered in some detail in Section 4, with point predictions, predictive intervals and
explained variation all investigated under accelerated failure and proportional hazards models.
We return to the motivating example in Section 5 with some final remarks in Section 6
completing the paper.

Throughout, the focus is on model properties, not issues of sampling, estimation or model
validity.

2. EXAMPLE: LUNG CANCER PREDICTION

This work was motivated by a study into the accuracy of survival time prediction for patients
diagnosed with non-small-cell lung cancer, described by Muers et al. [14] and also discussed
by Henderson [15] and Henderson and Jones [16]. Non-small-cell lung cancer is usually
terminal and provides a good illustration of the type of situation where there is a genuine
need for survival time predictions. Hence one purpose of the original study was to obtain
subjective point predictions made at diagnosis by experienced clinicians, and compare these
with objective predictions obtained from a proportional hazards model. The overall finding
was that both forms of prediction were in general poor, worse than anticipated, leading to
our investigation into why this might be the case, and whether improved prediction might be
obtained under alternative statistical models.

Survival data are available for 272 patients together with the values of six covariates: age;
sex (0=F, 1=M), activity score (0—4), and presence/absence of anorexia, hoarseness and
metastases. Median survival time was 6 months and 17 per cent of patients had censored
responses within the approximate three year follow-up. We concentrate on prediction given
fitted models and omit other detail of data analysis other than to report high statistical sig-
nificance for most covariate effects (z-statistics 1.24, —3.81, 4.21, 2.16, 3.24 and 1.89 for
age, sex, activity score, anorexia, hoarseness and metastases, respectively), with an overall
likelihood ratio test 64.4 on 6d.f. under a Cox model.

Figure 1 shows Kaplan—Meier plots for patients categorized into roughly equally sized
high, medium and low risk groups according to prognostic index as determined by fit of the
following four models:

(i) Cox proportional hazards

S(t]x) = Sy(0)P
(i1) Weibull

S(t|x)=e o®lA7}"
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Figure 1. Observed (steps) and fitted (smooth) lung cancer survival by prognostic index group.
(ii1) Log-normal

o

S(t]x)=1- <1°gt‘ﬁx*>

(iv) Aalen semi-parametric linear [17]

S(t|x)=exp {—Ao(f) - i:lAj(f)Xi}
=

In the above x* is the covariate vector x augmented by 1 for an intercept term, and x;
represents the jth of the six elements of x. There is no unique prognostic index for the Aalen
model since covariate effects change over time: Figure 1(d) is based on prognostic index at
median survival time six months.

Superimposed on the observed survival curves in Figure 1 are fitted curves at the mean
covariate values for each group, after smoothing for the Cox and Aalen semi-parametric
models. The fit seems good on the basis of this plot for all four models and there seems to
be little advantage to any one over the others.

Predictive accuracy under each of these models is discussed in Section 5, after consideration
of some more general issues in the following two sections.
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3. ACCURACY OF POINT PREDICTIONS: PARKES’ DEFINITION
OF SERIOUS ERROR

Accuracy of point survival time predictions can be assessed through expected loss if some
suitable function L(t, p) is available to compare outcome ¢ with prediction p. For patient
survival, however, it is very difficult to quantify loss associated with inaccurate prediction,
given that costs cannot and should not be exclusively expressed financially. We have exper-
imented with various types of loss function which might be of quite general use, consulted
with clinicians, and eventually concluded that a very simple assessment of ‘serious error’ due
to Parkes [10] provides a realistic method of measuring prediction accuracy which can be ac-
ceptable in a wide variety of circumstances. Parkes’ definition is that a prediction is in serious
error if it differs from outcome by a multiplicative factor of two, that is, if #>2p or #<0.5p.
This is equivalent to additive error of +log(2) on a log scale, and to a binary loss with
L(t,p)=0 if 0.5p<t<2p and L(t, p)=1 otherwise. Such a definition might be considered
naive; the factor two is arbitrary, the function is not continuous so a small change in ¢ near
the boundaries of (0.5p,2p) can have a dramatic effect, and there is no continued increase
in loss as ¢t moves away from p by large amounts. None the less, the definition is simple,
very easy to use, straightforward to explain to collaborators, allows for increasing uncertainty
as the prediction horizon increases, and most of all is eminently sensible. Most people for
example would accept that a lifetime prediction of, say, 2 months, was reasonably accurate
if death occurs between about 1 and 4 months.

Taken together, the advantages of Parkes’ definition outweigh the disadvantages and we
recommend its use in practice in assessing predictive accuracy. Actually we might go a little
further and replace the factor two by some other value «k, referring to a ‘factor x multiplicative
error’ E, if t< p/k or t>xp. Usually k=2 seems a good choice however.

Having decided upon a measure of prediction accuracy, a natural next step is to consider
the optimum point prediction, say p,, for any given k. This is the value of p which minimizes
the probability of factor x prediction error

P(E.| p)=P(T < p/x)+ P(T >xp)
=1-58(p/x)+ S(xp)

and hence solves

f(p/x)=1f(kp)

Explicit expressions for p, can be derived along with the corresponding values of P(Ey | px)
for a variety of commonly used statistical models, as the following examples illustrate.

3.1. Example I: accelerated failure, symmetric on log scale
Suppose survival time 7 can be represented as
logT =u—+e¢ (1)

where ¢ is a random variable, independent of the scale parameter p, with distribution which
is symmetric about zero. Then for all k the optimum prediction is the median survival time,
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Figure 2. Probability of prediction error for log-normal, Weibull and Weibull/gamma frailty

models, standardized to common standard deviation for log(survival time). The lower group

of lines shows the probability of Parkes’ error, and the upper group shows the probability of
prediction not being within 33 per cent of outcome.

m=¢". The probability of serious error does of course depend on the chosen value of x but
is independent of y. For instance, if 7 has log-normal distribution with log T ~ N(u, ¢?) then

P(E.| p)=1+® <-1ng> —® (k’g")

[

The probability of Parkes’ error, with x =2, is shown in Figure 2 for a range of values of o.
If the standard deviation is small then clearly there is little variability in response and good
prediction is possible, whereas there is a high probability of serious error when ¢ is large. In
practice values of ¢ around one are not unusual, in which case E, is expected to occur for
almost 50 per cent of patients.

The probability of predictions not being within 33 per cent of actual survival, the accuracy
measure selected by Christakis and Lamont [1], is also shown in Figure 2. With this stricter
measure of accuracy the probability of error is necessarily greater, now over 70 per cent at
o=1.

3.2. Example 2: Weibull

Whilst the Weibull distribution can be expressed in accelerated failure form, the random term
¢ has extreme value distribution, which is not symmetric about zero, and so the previous
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results do not apply. Instead, with the survivor function parameterized as
S(t)= exp{—At"}

we can show that the optimum prediction is

[ 2ylog(x) 1
Pe= e — k)

no longer the median, and depending now upon the choice of k, though difference from the
median is slight.

The probabilities of Parkes’ error and of predictions not being within 33 per cent of outcome
are shown in Figure 2. This plot is based on the optimum predictions above. If the median
is used for prediction the Weibull error probabilities are only slightly higher and there is
very little loss in using this simpler value in practice. In both cases the error probabilities
do not depend on the scale parameter A. For comparability with log-normal we selected the
shape parameter ) to give specified standard deviations for log(7), and with this scaling
we see close similarity between the models. For reference, shape parameters of 0.75, 1 and
1.25 correspond to standard deviations of 2.92, 1.65 and 1.05, respectively, for log(7T). At
shape 1 the probability of Parkes’ error is 0.528 if the optimum prediction is used, 0.543
if median survival time is used. Thus even without the additional complication of sampling
and estimation error, if one accepts that survival times in practice can be approximately
exponentially distributed then Parkes’ error will occur for at least 50 per cent of cases, even
with optimal point prediction.

3.3. Example 3: gamma frailty mixture of Weibulls

Now suppose that subject-specific unobserved frailty terms act multiplicatively on the hazard
functions, and take the common assumption that frailties have gamma distribution of unit
mean but variance & [18, 19]. Assume that, conditional upon the frailty, survival times have
Weibull distribution parameterized as in the previous example. The unconditional, marginal
survival distribution is then

1

S(t)= (%) :

and optimal point predictions can again be obtained. The exact expressions are not given here
because, just as for Weibull, there is little difference from the median survival time, which is
simple to use and is independent of the choice of k. Once more the probability of error is
independent of the scale parameter 4, whether median or optimal prediction is used.

Error probabilities are shown in Figure 2, with ¢ chosen so that half of the variance in
log(T) is due to frailty, that is, the conditional variance given frailty is half the overall vari-
ance. Use of medians rather than optimal predictions makes very little difference and in both
cases the values are very close to those given for Weibull, with the same comments applying.
Clearly the error probability depends on the standard deviation of log(7"), but conditional on
that it seems to be fairly insensitive to choice of model.

Copyright © 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:3083-3096
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4. TREATMENT/CONTROL STUDIES: COMPARISON OF PROPORTIONAL
HAZARDS AND ACCELERATED FAILURE MODELS

In the previous section we considered prediction for individuals given a correctly specified
statistical model, incorporating covariate information if required into subject-specific parameter
choices. We turn now to the important situation of a two-group clinical trial and compare
predictive accuracy under two alternative models for the treatment effect: proportional hazards
(PH) and accelerated failure (AF). Given any functional form for survival in the control group
we assume an additive effect on the log scale for an AF treatment model, or a multiplicative
effect on the hazard for a PH treatment model. More specifically we consider the following
parametric models:

(i) control group — log(7) ~N(0,0?), that is
So()=1—® (k’gt)

00
(i1) treatment model 1 — proportional hazards
Si(t)=So()""

(iii) treatment model 2 — accelerated failure, log(7) ~N(u, 63) with

S()=1—d (logé—“>

0

For given relative risk (hazard ratio) » under treatment model 1, PH, for comparability
we select (log) location parameter p to give the same median survival time in treatment
model 2, AF.

First we consider accuracy of point predictions. Table I illustrates P(E;| p;) as relative
risk changes from one to five for three choices of standard deviation ¢y for log(7) in the
control group. Since the AF treatment model is log-normal, example 1 above shows p, =m
and Par(E, |m) depends only on oy, not location change on the log scale, and hence not
relative risk 7 in this illustration. Optimal prediction p, is tabulated for the PH treatment
model 1, together with Ppy(E; | p2) and for reference Ppy(E,|m). Note that for r>1 the
optimum prediction p, is smaller than m but Peu(E> | p2) and Ppy(E, | m) are close.

The central part of Table I has gy =1, which is reasonably realistic for practical applications.
Error probabilities are near 50 per cent for both the control group and the treatment group
under the AF model. If the PH treatment model is assumed, the probability of F, increases
with » to almost 70 per cent at relative risk five. Clearly the chance of serious error will
be reduced if there is less variability in response, as illustrated by the first part of the table
with gy =0.5. Control and AF error probability is now reasonable at under 20 per cent, but
note that under the PH treatment model Ppy(E; | p2) can still be over 40 per cent at r=>5.
In practice there is usually (perhaps always) relatively large variability between individuals
and small oy is unlikely. The final section of Table I with oo = 1.5 is included for reference,
to illustrate how high the probability of Parkes’ error can quickly become if the survival
distribution in the control group itself is long tailed.

Second, we consider predictive intervals. In our opinion P(E) | p) gives a practically useful
measure of confidence one might have in point prediction p, but obviously another method

Copyright © 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:3083-3096
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Table I. Prediction error probabilities for accelerated failure (AF) and proportional hazards
(PH) treatment group models: gy =standard deviation of log(7") in log-normal control group;
r =relative risk; m =median survival = optimal AF prediction; p, =optimal PH prediction.

00 r m Pap(E> | m) P2 Pou(Ez | p2) Pou(E> | m)
0.5 1 1.00 0.166 1.00 0.166 0.166
2 1.40 0.166 1.38 0.267 0.267
3 1.78 0.166 1.72 0.337 0.337
4 2.15 0.166 2.05 0.389 0.389
5 2.54 0.166 2.37 0.429 0.431
1 1 1.00 0.488 1.00 0.488 0.488
2 1.96 0.488 1.86 0.580 0.580
3 3.16 0.488 2.86 0.632 0.633
4 4.64 0.488 4.01 0.667 0.669
5 6.44 0.488 5.35 0.693 0.695
1.5 1 1.00 0.644 1.00 0.644 0.644
2 2.75 0.644 2.52 0.712 0.713
3 5.62 0.644 4.77 0.750 0.750
4 9.99 0.644 7.94 0.775 0.776
5 16.35 0.644 12.22 0.793 0.794

Table II. Eighty per cent prediction intervals and ratio of limits for two-group scenario
(as Table I).

00 r Accelerated failure Proportional hazards
qo.1 qos q09/q0.1 qo.1 qos qo9/q0.1
0.5 1 0.53 1.90 3.6 0.53 1.90 3.6
2 0.74 2.66 3.6 0.64 3.20 5.0
3 0.94 3.37 3.6 0.74 4.69 6.4
4 1.13 4.09 3.6 0.82 6.42 7.9
5 1.34 4.82 3.6 0.89 8.44 9.5
1 1 0.28 3.60 13.0 0.28 3.60 13.0
2 0.54 7.07 13.0 0.42 10.24 24.6
3 0.88 11.38 13.0 0.54 21.98 40.5
4 1.29 16.70 13.0 0.67 41.22 61.6
5 1.79 23.20 13.0 0.80 71.16 89.5
1.5 1 0.15 6.84 46.7 0.15 6.84 46.7
2 0.40 18.80 46.7 0.27 32.77 122.3
3 0.82 38.39 46.7 0.40 103.06 257.3
4 1.46 68.27 46.7 0.55 264.68 483.6
5 2.39 111.77 46.7 0.71 600.24 846.0

is to consider the width of predictive intervals (PI). For completeness Table II shows 80 per
cent PlIs, providing 10 per cent and 90 per cent quantiles and their ratio for the PH and AF
treatment models, the ratio being independent of » for the AF model. The combination of high
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Figure 3. Explained variation under accelerated failure (dotted) and proportional hazards
(solid) treatment/control models.

ao and high » and hence extremely wide PI is unlikely to occur in practice, but even at more
moderate values of gy the PI width quickly becomes large as » and hence variance increases.
Note that given common median survival time the PH model for treatment effect leads to
much wider predictive intervals than AF, assuming the same log-normal control (baseline)
distribution.

Finally we consider the relative increase in predictive capability obtained through knowledge
of treatment group. This can be assessed by a measure of explained variation (EV) akin to
R? for linear regression, used to assess the relative increase in predictive accuracy (in some
respect) due to covariate information. Unfortunately, although a variety of EV measures have
been suggested for survival analysis [20], no single proposal has yet been widely accepted
and therefore we shall consider two alternatives:

1. The Korn and Simon measure based on expected loss [21]. Suppose L(z, p) is the loss
associated with point prediction p and actual outcome ¢. The Korn and Simon explained
variation measure compares minimum expected loss with and without covariate informa-
tion. For this illustration we will select quadratic loss L(t, p)=(t — p)*.

2. O’Quigley and Flandre’s R? [22], based on the variability of Schoenfeld residuals at each
observed failure time with and without covariate information.

Our purpose is not to compare performance of these measures, but rather to investigate
how quickly explained variation increases with relative risk for the different survival models.

Figure 3 illustrates how EV increases with relative risk for the two selected measures. Val-
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ues shown are expected (population) quantities as sample size increases indefinitely, and two
features are common to both plots:

(1) EV is low unless relative risk is very large (for example, » =2 or 3 would be considered
effective in practice);

(i1) given the same log-normal baseline group and equal medians in the control group, EV
is lower for PH than AF.

Qualitatively similar findings are obtained with other suggested measures of explained vari-
ation, including the Korn and Simon measure with alternative loss functions, Schemper’s V
measures [23] and an information gain statistic proposed by Kent and O’Quigley [24]. The
reason for low EV is readily explained. Essentially, EV can only be expected to be high if
the between density variation is high in comparison with the within density variation [16].
Even when the separation between control and treatment group survival curves is high, in
practice there is often relatively little difference between the locations of the treatment and
control group densities, for proportional hazards models in particular. The main difference is
an increase in variance in the treatment group in comparison with control, and thus low EV
should be expected. Survival analysts usually work with hazards and survival functions and
there is rarely any need to consider density functions explicitly. Hence the effect of AF and
PH model assumptions on densities is not always considered.

5. LUNG CANCER EXAMPLE CONTINUED

We now return to the lung cancer example introduced in Section 2. Covariate effects are
highly statistically significant, as stated earlier, but explained variation is low in agreement
with the findings above: the Korn and Simon measure with quadratic loss is 0.21, O’Quigley
and Flandre’s statistic is 0.23, Schemper’s V1 is 0.13, and Kent and O’Quigley’s information
gain is 0.22, all under a Cox PH model.

Figure 4 shows the median predicted lifetime m under each model for 17 individuals, at
the 10,15,20,...,90 per cent points of prognostic index as obtained under the Cox model,
with points joined for clarity. The same individuals are considered in all four plots for com-
parability. Median survival time is selected as it is optimum prediction under log-normal,
close to optimum under Weibull, and because no explicit expression for optimum prediction
is available under Cox and Aalen models. The outcome interval (0.5m,2m) within which m
would be considered an acceptable prediction under Parkes’ definition is indicated, and where
possible an 80 per cent predictive interval is shown. These intervals are not available under
the semi-parametric Cox and Aalen models when estimated survival probability at the max-
imum observed death time does not fall below 0.1, without further untested assumptions at
least.

Median predictions are generally quite similar under all four models, as are Pls for high
risk patients. There are differences between the two parametric models for low risk individuals
however, with the log-normal model yielding wider intervals than Weibull.

Taking prediction m, estimated Parkes’ error probabilities P(F, |m) depend on covariates
for the Cox and Aalen models but not for Weibull and log-normal. For the 17 individuals
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Figure 4. Point prediction (solid), 80 per cent intervals (short dashed) and E, bounds

(dotted) for lung cancer patients at 10, 15,...,90 per cent points of prognostic index under

Cox model. Upper limit to 80 per cent interval not available for semi-parametric models
((a),(d)) if in excess of maximum observed death time (long dashed line).

considered in Figure 4, estimated values are:

Model P(Ey | m)
Cox 0.48-0.59
Weibull 0.53
Log-normal 0.56
Aalen 0.48-0.59

For reference, if optimal prediction p, is used for the Weibull model in place of m, error
probability is only slightly lower at P(E, | p,) = 0.52. Hence for all models and all individuals
there is a substantial probability of predictions being in ‘serious error’ according to Parkes’
definition. This is also true for subjective clinicians’ predictions, which are available for these
data. After omission of 36 cases which could not be classified because of censoring, 52
per cent of the remaining predictions were in Parkes’ error, with 37 per cent of predictions
seriously high and 15 per cent seriously low.

6. DISCUSSION

Christakis and Lamont [1] found that doctors’ predictions of survival times were accurate to
within 33 per cent of the outcome for only 20 per cent of terminally ill patients, and were
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subject to Parkes’ factor two error for 67 per cent of patients. These values are broadly similar
to those seen in this paper for statistical models with realistic parameter values. It seems that
Parkes’ suggestion [1] that clinicians should stop guessing and make more use of statistical
models is unlikely to lead to much improvement in accuracy in point predictions.

One can argue, and given the results above perhaps should argue, that prediction on the
time axis is unnecessary, and it is preferable to consider the probability axis and the full
predicted survival distribution for any individual. In practice, however, the time axis remains
the most natural measure for many people. Thus it is usually easier to elicit expected patient
survival time from experienced clinicians rather than a subjective assessment of probability
of survival to a certain time point; and to many patients the natural question remains ‘How
long have I got Doctor?” [25].

Clearly point predictions alone are inadequate and some type of reliability measure should
be attached. A prediction interval is of course one option, but another is to quote the associated
probability of error by a practically important amount. We suspect that such a method of
qualifying predictions may be easily understood by patients. Consider for instance the PH
results in the central rows of Tables I and II (op=1,r=3), and assume the time unit is
months. The information from clinician to patient might be paraphrased as ‘my best guess
is that you will live 3 months but there is a 60 per cent chance I will be seriously wrong’
or ‘my best guess is that you will live 3 months but there is an 80 per cent chance of you
dying sometime between two weeks and two years’. In either case in this example the point
of qualifying the point prediction is to indicate its unreliability, and it may be that the more
direct first statement is clearer. In the absence of other information as to what constitutes a
practically important prediction error, we recommend use of the Parkes definition as serious
error if prediction and outcome differ by a multiplicative factor of two or more. As discussed
above, this measure can be criticized but in our view its advantages outweigh its disadvantages.

Whatever measure or method is selected, it is clear from the results in the previous sections
that poor predictive capability should be expected for the well known and much used survival
models considered, however much effort is spent on data collection and analysis. Models are
of course useful for the identification of risk factors and for group comparisons, but at the
individual level even if complete covariate information is available and all parameters are fully
known we should anticipate poor point predictions and wide predictive intervals. Perhaps this
is an unavoidable consequence of real survival data.
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