
Parallel LAN/WAN Heuristics for Optimization

Enrique Alba Gabriel Luque
Departamento de Lenguajes y Ciencias de la Computación

E.T.S. Ingenieŕıa Informática
Campus Teatinos, 29071 Málaga (Espãna)

eat@lcc.uma.es gabriel@lcc.uma.es

Abstract

We present in this work a wide spectrum of results on ana-
lyzing the behavior of parallel heuristics for solving opti-
mization problems. We focus on evolutionary algorithms as
well as on simulated annealing. Our goal is to offer a first
study on the possible changes in the search mechanics when
shifting from a LAN distributed algorithm to a WAN envi-
ronment. We will address six optimization tasks of conside-
rable complexity. The results show that, despite the expected
slower execution time, the WAN versions of our algorithms
consistently solve the problems. We even report some in-
teresting results in which WAN algorithms outperform LAN
ones. We also extend the study to include hybrid versions to
check the scope of our conclusions.

1 Introduction

Solving complex problems means designing new algo-
rithms that improve in some manner the computational
effort and the waiting time for an acceptable solution. Ana-
lyzing and designing parallel algorithms is a healthy acti-
vity since it pursuits some of the most promising objectives
in optimization, namely reducing the computing time, allo-
wing cooperation of different algorithms (hybridization),
and even modifying the search pattern to yield new methods
for complex problems.

In this work, we study how a parallel algorithm changes
its behavior when executed in LAN with respect its execu-
tion in a WAN. Due to the growing park of available com-
puters in Internet, our aim is to study the new scenario of
WAN computing, in contrast of the more traditional LAN
analysis.

The MALLBA project [2] is an effort of research in this
direction. In the MALLBA project we intend to design and
analyze exact, heuristic and hybrid techniques in sequential,
LAN and WAN environments.

The contributions of this paper are manyfold. First, we
test the efficiency of some algorithms developed in the
MALLBA project, since such an ambitious goal must be
validated in practice. Second, we want to put aside the
expected and actual outcomes of computing in LAN and
WAN. Third, we are interested in showing really useful re-
sults, and this is why we check the algorithms on six quite
different problems, accounting for epistasis, multimodality,
continuous, and discrete optimization. Last, but not least,
our conclusions are somewhat expected and somewhat sur-
prising at the same time, since we do validate in practice
some theoretical thoughts on WAN overhead, but also re-
port competitive performance in WAN.

The organization of the paper is as follows. Next section
(Section 2) introduces the MALLBA project. Section 3 dis-
cusses the search model considered in our study. Section 4
presents the details on the problems being solved. We then
turn in Section 5 to comparatively analyze the LAN/WAN
behavior of the considered algorithms for all the problems.
Finally, we provide in Section 6 some concluding remarks,
and points out the future work we envision after our conclu-
sions.

2 The MALLBA Project

The MALLBA project is an effort to develop a library of
algorithms for optimization that can deal with parallelism
(LAN and WAN) in a user-friendly and, at the same time,
efficient manner. All the algorithms described in the next
section are implemented assoftware skeletons. Skeletons
are generic templates to be instantiated with the features
of the problem, by the user. All the knowledge related to
the resolution method (e.g. parallel considerations) and its
interactions with the problem are implemented by the skele-
ton. Skeletons are implemented by a set ofrequired and
providedC++ classes that represent an abstraction of the
entities participating in the resolution method:

1



• Provided Classes: They implement internal aspects
of the skeleton in a problem-independent way. The
most importantprovidedclasses areSolver (the al-
gorithm) andSetUpParams (setup parameters).

• Required Classes: They specify information related
to the problem. Each skeleton includes theProblem
andSolution required classes, that encapsulate the
problem-dependent entities needed by the resolution
method. Depending on the skeleton, other classes may
be required.

The infrastructure used in the MALLBA project is made
of communication networks and clusters of computers lo-
cated in Ḿalaga, La Laguna and Barcelona. These nodes
are interconnected by a chain of Fast Ethernet and ATM cir-
cuits. For the WAN experiments, we use one machine from
each site.

The MALLBA library is publicly available at
http://www.lsi.upc.es/˜mallba .

3 Algorithms

In this paper we deal with several evolutionary algo-
rithms, in particular with genetic algorithms (GAs), a CHC
algorithm and an evolution strategy (ES); also local search
methods are considered, like simulated annealing (SA) (see
a global description in [10]). All methods have been paral-
lelized for LAN and WAN platforms. Finally, we will in-
clude some hybrid algorithms in our LAN/WAN study.

Evolutionary algorithms (EAs) are stochastic search me-
thods that have been successfully applied in many real ap-
plications of high complexity. An EA is an iterative tech-
nique that applies stochastic operators on a pool of indi-
viduals (tentative solutions). An evaluation function asso-
ciates a value to every individual indicating its suitability to
the problem. For this work we implemented three parallel
distributed EAs, whose component sub-algorithm is a GA,
an ES or a CHC.

GAs are a very popular class of EAs. Traditionally, GAs
are associated to the use of a binary representation, but
nowadays you can find GAs that use other types of repre-
sentations. A GA usually applies a recombination operator
on two solutions, plus a mutation operator that randomly
modifies the individual contents to promote diversity.

A CHC [7] is a non-traditional GA which combines a
conservative selection strategy (that always preserves the
best individuals found so far) with a highly disruptive re-
combination (HUX). Certain highly disruptive crossover
operator provide more effective search in many problems,
which represents the core idea behind the CHC search
method. This algorithm introduce a bias against mating in-
dividuals who are too similar. Mutation is not performed,

instead, arestart process re-introduces diversity whenever
convergence is detected.

The last EA we include in our study is an evolution stra-
tegy. This algorithm is suited for continuous values, usually
with an elitist selection and a specific mutation (crossover
is used rarely). In ES, the individual is made of the ob-
jective variables plus some other parameters guiding the
search. Thus, an ES facilitates a kind ofself-adaptionby
evolving the problem variables as well as the strategy para-
meters at the same time. Hence, the parameterization of an
ES is highly customizable.

The simulated annealing algorithm (SA) was first pro-
posed in 1983. SA is a stochastic relaxation technique that
can be seen as a hill-climber with an internal mechanism
to escape local optima. To allow escaping from a local
optimum, moves that increase the energy function are ac-
cepted with a decreasing probabilityexp (−δ/T ), where
T is a parameter called the ”temperature”. Here, we are
using a proportional method for updating the temperature
(Tk = α · Tk−1).

In its broadest sense, hybridization refers to the inclu-
sion of problem-dependent knowledge in a general search
algorithm [6] in one of two ways:strong hybrids, where
problem-knowledge is included as problem-dependent re-
presentation and/or operators, andweak hybrids, where se-
veral algorithms are combined in some manner to yield the
new hybrid algorithm.

GENETIC ALGORITHM

HYBRID ALGORITHM

Initial
Population

Selection

SIMULATED
ANNEALING

Improve

Replace

Reproduction

Figure 1. Hybrid schema 1 (GASA1).

We define two main classes of hybrids in this work:
A first hybrid (GASA1/CHCES1) where a GA/CHC algo-
rithm uses the other algorithm (SA/ES) as an evolutionary
operator (see an example for GASA1 in Fig. 1). The ra-
tionale for this selection of algorithms is that, while the
GA/CHC locates ”good” regions of the search space (explo-
ration), the SA/ES allows for exploitation in the best regions
found by its partner. The second hybrid schema executes a

2



GA/CHC until the algorithm completely finishes. Then the
hybrid selects some individuals from the final population
and executes a SA/ES algorithm over them. Concretely, we
analyze a first version (GASA2/CHCES2) that uses a tour-
nament selection (model 2.1 of Fig. 2), and another ver-
sion (GASA3/CHCES3) that uses a random choice of in-
dividuals (model 2.2 of Fig. 2).

CHC

ES

ES

ES

ES

ES

T

O

U

R

N

A

M

E

N

T

2.1

CHC

ES

ES

ES

ES

ES

R

A

N

D

O

M

2.2

Figure 2. Hybrid schema 2 (CHCES2/3).

Since we want to conduct our research in LAN and WAN
platforms it seems natural to explore the behavior of paral-
lel heuristics. A parallel EA (PEA) is an algorithm having
multiple components EAs, regardless of their population
structure [3]. In this work, we have chosen adistributed
EA (dEA) because of its popularity and because it can be
readily implemented in clusters of machines. In distributed
EAs there exists a small number of islands performing se-
parate EAs, and periodically exchanging individuals after
a number of isolated steps (migration frequency). As mi-
gration policy we use a static ring topology, select random
migrants and include them in the target populations only if
they are better than the worst-existing solutions.

4 Problems

In this section we discuss the optimization tasks that will
be used to test our parallel heuristics. The first two problems
were chosen because their continuous nature makes them
adequate for testing the ES algorithm. The rest of problems
represent a broad spectrum of challenging intractable tasks
in the areas of scheduling, coding theory, graph theory and
transportation.

The generalized Rastrigin function (Eq. 1) is a problem
with a large search space and a very large number of local
optima [11]. This function is a non-epistatic function re-
presenting a typical test for EAs. For the experiments, we
have used a problem instance of 20 variables (optimum at
f∗ = 0).

Ras(xi|i=1..n) = 10 · n +

n∑
i=1

x2
i − 10 · cos (2 · πxi)

xi ∈ [−5.12, 5.12] (1)

The frequency modulation sounds [12] (or FMS) has
been proposed as a hard real task consisting in evolving six
parameters~x = (a1, w1, a2, w2, a3, w3) in ordery(t) to fit
the targety0(t). The goal function and the evolved and tar-
get models have the expressions shown in Eq. 2-4. For the
experiments, we consider as an optimum any solution with
fitness value below0.12.

FMS(~x) =

N∑
i=0

(y(t)− y0(t))
2 (2)

y(t) = a1 sin (w1tθ + a2 sin (w2tθ + a2 sin(w3tθ))) (3)

y0(t) = 1.0 sin (5.0tθ + 1.5 sin (4.8tθ + 2.0 sin(4.9tθ))) (4)

θ = 2π/100 ai, wi ∈ [−6.4, 6.35]

The maximum cut problem [1] (MaxCut) consists in par-
titioning the set of vertices of a weighted graph into two dis-
joint subsets, such that the sum of the weights of edges with
one endpoint in each subset is maximized. We use a binary
string where each digit corresponds to a vertex. If a digit is
1 then its corresponding vertex is in setV1, else the vertex
is in setV0. The function to be maximized is shown in Eq.
5. For the experiments, we use a scalable problem instance
[1] with a graph of sizen = 100, “cut100” (optimum at
f∗ = 1077).

F (~x) =

n−1∑
i=1

n∑
j=i+1

wij

(
xi(1− xj) + xj(1− xi)

)
(5)

The minimum tardy task problem is a task-scheduling
problem [8]. Each taski from the set of tasksT has an as-
sociated lengthli (its execution time), a deadlinedi and a
weightwi, which is a penalty indicating the importance that
a task remains unscheduled. Scheduling the tasks of a sub-
setS of T consists in finding the starting time of each task
in S, such that at most one task at a time is performed, and
such that each task finishes before its deadline. The optimal
solution is a feasible scheduleS with the minimum tardy
task weightW which is the sum of weights of unscheduled
tasks (Eq. 6). We use a scalable problem instance [8] of size
100 tasks, “mttp100” (optimum atf∗ = 20).

min W =
∑

i∈T−S

wi (6)

The error correcting code sign problem [1] (ECC) con-
sists in assigning codewords to an alphabet that mini-
mizes the length of transmitted messages, and that pro-
vides maximal correction of single uncorrelated bit errors.
This problem can be formally represented by a three-tuple
(n,M, d), wheren is the length of each codeword,M is
the number of codewords, andd is the minimum Hamming

3



distance between any pair of codewords. The function to be
maximized is:

f(C) =
1∑M

i=1

∑M
j=1,i 6=j

1
d2

ij

(7)

wheredij represents the Hamming distance between code-
wordsi andj. In this study, we consider a problem instance,
wheres = 12 andM = 24. The optimum solution is here
set to have a fitness value off∗ = 0.0674.

The vehicle routing problem [9] (VRP) consists in deter-
mining minimum cost routes for a fleet of vehicles origina-
ting and terminating in a depot. The fleet of vehicles gives
service to a set of customers with a known set of constrains.
All customers must be assigned to vehicles such that each
customer is serviced exactly once, taking account for the
limited capacity of each vehicle. The goal is to minimize
the sum of route costs given by:

min

K−1∑

k=0

α(Wk) (8)

Wk =
N∑

i=0

N∑

j=0

ci,j · xi,j,k (9)

In these equations,xi,j,k is a binary variable that is 1 if
routek has an arc between nodesi andj, ci,j is the cost to
go from nodei to nodej, α is the function that calculate the
route cost depending onWk, N is the number of clients (0
is the depot) andK is the number of routes.

For the experiments, we use the two first instances of
the classical benchmark after Christofides [5]. We consider
as an optimum any solution withf∗1 < 800 for the first
instance, andf∗2 < 1200 for the second one.

5 Analysis of the Results

In this section we report our results in studying our pa-
rallel heuristics in three phases. First, we analyze the beha-
vior of a genetic algorithm both in LAN and WAN environ-
ments. Then, since we face the parallel GA against combi-
natorial optimization problems, we include a second phase
of study that address the continuous optimization case. In
this second phase we analyze a parallel evolutionary stra-
tegy on our two continuous problems (RAS and FMS). In
our final third phase of analysis we try to validate our con-
clusions in the field of hybrid parallel algorithms, and go
forth to discuss the results when using CHCES variants on
RAS and GASA variants on MaxCut100.

The algorithm parameters used in the experiments are
described in Table 1.

We always report average values of 30 independent runs
for each of the parameters included in the tables of this sec-
tion. We show values for the average best solution found

(opt), average number of evaluations to get a solution
(#evals), average time (time, in seconds) and the percentage
of hits (hits) i.e. number of runs finding an optimal solution.

In Table 2 we include our results when using a parallel
GA on the four combinatorial problems of our benchmark
(for VRP we used two instances). We must notice that the
two instances of VRP are very difficult to solve without in-
cluding specific operations. If we compare LAN and WAN
executions of the parallel GA we can detect a clear trend of
the WAN execution to spend more time in finding a solution
for the three first problems.

An interesting detail is that MTTP and ECC got an in-
creased number of hits when executed in WAN, although,
as expected, the wall-clock time for a solution is higher
in WAN due to the communications overhead. Numerically
speaking this means that the WAN environment retards the
migrations, and this effect is somewhat perceptible in some
problems. Since larger isolation is not always appropriate,
we could think about a poorer WAN numerical results for
other problems, as it effectively happens for the MaxCut
problem, because its percentage of hits decays from 17% in
LAN to a smaller 10% in WAN.

However, in the case of VRP, we can see that similar
solutions are found during LAN and WAN executions in a
slightly lower runtime for the two instances in WAN. We
did check statistical significance for these results, what ef-
fectively make us to claim that the WAN execution is more
efficient than the LAN one in this case. This is a promising
result, that can be explained because of the considerably
larger grain of the VRP problem with respect to the other
problems, and due to the longer isolation provided by the
WAN for the parallel GA islands (which results advanta-
geous).

We now proceed to the second phase (continuous opti-
mization) in which we analyze the behavior of a ring of
evolution strategies running in parallel to solve RAS and
FMS. The results are shown in Table 3. We can see that
the conclusions we made for the parallel GA also hold in
the case of the parallel ES. We can notice the higher exe-
cution times of the WAN version of the algorithm for the
two problems, while the final fitness are approximately the
same. Besides, we show that the numerical effort is almost
the same in the LAN and WAN cases, what is a signal of
correct implementation.

Finally, we want to check our findings in a new arena,
i.e. on hybrid parallel algorithms. In Table 4 we include the
results for RAS (three first rows) and MaxCut (three lower
rows). We selected them as representatives of the class of
continuous and combinatorial problems. This is why we
use the CHCES hybrid for RAS and the GASA hybrid for
MaxCut. After these results the above conclusions we got
for PGA and parallel ES really hold. It seems that all the al-
gorithms present a clear higher time when running in WAN

4



Problem Popsize C. prob. M. prob. Others

MaxCut, VRP (GA) 100 0.8 0.01 -
MTTP, ECC (GA) 200 0.8 0.02 -

RAS, FMS (ES) 100 0.3 0.8 -
MaxCut (GASA) 100 0.8 0.01 SA operator applied with prob 0.1,

MarkovChainLen = 10, 100 iterations
RAS (CHCES) 100 0.8 - 35% population restart,

(1+10)-ES operator (prob 0.01)

Table 1. Parameters of algorithms.

LAN WAN p-value
opt #evals time hits opt #evals time hits eval time

MaxCut 1031 23580 49.1 17% 1014 14369 89.1 10% 0.906 8.13e-9
MTTP 201 40002 5.2 97% 200 32546 25.7 100% 0.091 3.74e-10

ECC 0.0642 18279 9.1 7% 0.0657 26041 238.4 10% 0.428 1.13e-14
VRP 1 696.15 12843 78.9 100% 690.693 7168 68.5 100% 0.917 4.78e-4
VRP 2 1080.67 5873 391.1 100% 1077.83 8104 358.7 100% 0.725 4.99e-6

Table 2. Average results for a parallel GA.

LAN WAN p-value
opt #evals time hits opt #evals time hits eval time

RAS 0 10763 5.7 97% 0 11546 67.5 93% 0.171 2.20e-16
FMS 0.099 10904 4.7 100% 0.093 11372 13.0 100% 0.450 3.26e-5

Table 3. Overall best results for a parallel ES Algorithm.

but needing a similar number of iterations to yield the opti-
mum. The LAN behavior can be assumed then to appear in
the WAN environment from a numerical point of view.

We conclude this section with a summary of the results.
We have shown that, whatever the basic search method
is used (GA, ES or hybrids) an execution in a WAN en-
vironment presents an equivalent numerical result, while
showing a natural larger time to achieve a solution with res-
pect its LAN execution. Of course, in case of really high
number of processes this could not hold; this question re-
mains open, and has a wide relevance in the case of grid
computing platforms, but not for a moderate or low number
of sub-algorithms.

The surprising result appears when analyzing the VRP
problem, because the WAN execution reduces the search
time with respect to the LAN execution, what seems a
counter-intuitive conclusion. We explain this scenario be-
cause of the considerable computation time needed by the
fitness function (which makes more similar the LAN and
WAN search), and also because of the larger isolation time
induced in practice in the WAN platform that, for this pro-
blem, represents a more efficient parameterization.

We are conducting additional tests to validate the as-
sumption that a given migration frequency in an asyn-

chronous parallel algorithm in LAN produces, when used in
WAN, an implicit lower frequency of migrations. We should
be able of validating this by running a LAN version of the
algorithm with such a lower frequency of migration in order
to find whether the results are similar to the WANde facto
frequency.

6 Concluding Remarks and Future Work

In this work we have provided an important evidence to
create a body of knowledge that will lead us from our un-
derstanding of LAN parallel optimization heuristics to their
WAN execution. Our aim is to point out the important facts
and to try to explain them. We have selected a non-trivial
benchmark for which a WAN execution comes as a natural
research scenario.

The conclusions of this work can be summarized atten-
ding to different criteria. With respect the numerical beha-
vior, LAN and WAN results seem very similar, and this si-
milarity seems to be readily stable. This is very interesting
since this allow us to reduce our discussion to another cri-
teria: real time execution. With this goal in mind, we have
found that WAN versions are consistently slower than LAN

5



LAN WAN p-value
opt #evals time hits opt #evals time hits eval time

CHCES1 0 13048 3.7 100% 0 13681 10.0 100% 0.091 8.62e-6
CHCES2 0 8093 3.4 100% 0 8593 7.2 100% 0.849 3.97e-5
CHCES3 0 8182 3.4 100% 0 9635 7.9 100% 0.127 7.89e-11
GASA1 1038 40682 89.6 17% 1031 28956 298.5 10% 0.529 2.97e-5
GASA2 1031 19477 45.7 7% 1024 17412 123.5 8% 0.220 0.0029
GASA3 1038 21651 43.8 8% 1021 12162 202.9 7% 0.755 0.0344

Table 4. Overall best results of all experimental runs performed for Hybrid Algorithms.

ones, as one could expect. However, the harder the problem
becomes the more similar LAN and WAN algorithms are.

In the limit (i.e., in our harder instances) we have found
that WAN executions are even more efficient than LAN
ones. This is by no means a question of faster execution,
since WAN has always higher latencies and delays, but it
is an effect of isolation. We hypothesize that running these
algorithms in WAN is somewhat similar to running them
in a LAN cluster but with higher isolation times among the
sub-algorithm components. We confirmed this hypothesis
on some problem instances. For some complex problems,
large isolation times promote alternating phases of explo-
ration and exploitation in a natural manner, which yield an
algorithm of higher efficiency, since isolation time is a well-
known influent parameter in distributed parallel algorithms
(e.g. see [4] for dGAs).

We have also extended the whole study to hybrid al-
gorithms. Hybridization is a natural way of enhancing the
search algorithm itself.

As a future work we plan to quantify the relationship
between the isolation time imposed by the WAN network
and the isolation time in a LAN cluster, and to check this
result on additional problems and algorithms.

Acknowledgments

This work has been partially funded by the Ministry
of Science and Technology and FEDER under contract
TIC2002-04498-C05-02 (the TRACER project).

References

[1] E. Alba and S. Khuri. Applying evolutionary algorithms
to combinatorial optimization problems. InProceedings
of the International Conference on Computational Science,
volume 2074 (Part II) ofLNCS, pages 689–700. Springer-
Verlag, 2001.

[2] E. Alba and the MALLBA Group. MALLBA: A li-
brary of skeletons for combinatorial optimisation. In R. F.
B. Monien, editor,Proceedings of the Euro-Par, volume
2400 of LNCS, pages 927–932, Paderborn (GE), 2002.
Springer-Verlag.

[3] E. Alba and M. Tomassini. Parallelism and evolutionary al-
gorithms.IEEE Transactions on Evolutionary Computation,
6(5):443–462, October 2002.

[4] E. Alba and J. M. Troya. Influence of the migration policy
in parallel distributed GAs with structured and panmictic po-
pulations.Applied Intelligence, 12(3):163–181, 2000.

[5] N. Christofides, A. Mingozzi, and P. Toth.Combinatorial
optimization, chapter 11. John Wiley, 1979.

[6] L. Davis, editor.Handbook of Genetic Algorithms. Van Nos-
trand Reinhold, 1991.

[7] L. Eshelman. The CHC adaptive search algorithm: How to
have safe search when engaging in nontraditional genetic re-
combination. InFoundations of Genetic Algorithms, pages
265–283. Morgan Kaufmann, 1991.

[8] S. Khuri, T. B̈ack, and J. Heitk̈otter. An evolutionary ap-
proach to combinatorial optimization problems. InPro-
ceedings of the 22nd ACM Computer Science Conference,
pages 66–73, Phoenix, Arizona, 1994. ACM Press.

[9] G. Laporte, M. G. J.-Y. Potvin, and F. Semet. Classical
and modern heuristics for the vehicle routing problem.Les
Cahiers du GERAD, 1999.

[10] Z. Michalewicz and D. B. Fogel, editors.How to Solve It:
Modern Hueristics. Springer, 2000.

[11] A. Töorn andŽ. Antanas.Global Optimization, volume 350
of Lecture Notes in Computer Science. Springer, Berlin,
Germany, 1989.

[12] S. Tsutsui, A. Ghosh, D. Corne, and Y. Fujimoto. A real
coded genetic algorithm with an explorer and an exploiter
populations. In T. B. et al., editor,Proceeding of the
Seventh International Conference on Genetic Algorithms,
pages 238–245. Morgan Kaufmann, 1997.

6


