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Abstract

Mobile Ad Hoc Networks (MANETs) are composed of a set of communicating devices which are able to spontaneously interconnect
without any pre-existing infrastructure. In such kind of networks, broadcasting becomes an operation of capital importance for the own
existence and operation of the network. Optimizing a broadcasting strategy in MANETs is a multi-objective problem targeting three
goals: reaching as many devices as possible, minimizing the network utilization, and reducing the duration time of the broadcasting pro-
cess. In this paper, we study the fine-tuning of broadcasting strategies by using a cellular multi-objective genetic algorithm (cMOGA)
which computes a Pareto front of solutions to empower a human designer with the ability of choosing the preferred configuration
for the network. We define two formulations of the problem, one with three objectives and another one with two objectives plus a con-
straint. For our tests, a benchmark of three realistic environments for metropolitan MANETs has been defined. Our experiments using a
complex and realistic MANET simulator reveal that cMOGA is a promising approach to solve the optimum broadcasting problem.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Mobile Ad Hoc Networks (MANETs) are fluctuating
networks populated by a set of communicating devices
called nodes (or devices) which can spontaneously inter-
connect each other without any pre-existing infrastruc-
ture. This means that no organization is present in
such networks as it is usual in communication networks.
The most popular wireless networking technologies avail-
able nowadays for building MANETs are Bluetooth and
IEEE802.11 (WiFi). This implies that (a) devices commu-
nicate within a limited range, and (b) devices may move
while communicating. A consequence of mobility is that
the topology of such networks may change quickly and
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in unpredictable ways. This dynamical behavior consti-
tutes one of the main obstacles for performing efficient
communications.

In this paper, we are considering the problem of
broadcasting on a particular subclass of MANETs called
Metropolitan MANETs, which have some specific prop-
erties: the density in the network is heterogeneous and
dynamic (particularly, high density regions do not remain
active full time). The broadcasting strategy we are con-
sidering in this work is the so called Delayed Flooding

with Cumulative Neighborhood protocol (DCFN) [1].
Three real world examples of such networks, a shopping
mall, a metropolitan area, and a highway environment,
have been taken into account so that, instead of
providing a multi-purpose protocol, the originality of
our proposal lies in tuning the broadcasting service for
each particular network. Optimizing a broadcasting strat-
egy implies multiple goals to be satisfied at the same
time, such as maximizing the number of devices reached
(coverage), minimizing the network use (bandwidth),
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and/or minimizing the duration of the process. Thus,
what we are facing is known as a multi-objective optimi-
zation problem [2,3].

The main feature of multi-objective optimization is that
it is not restricted to find a unique solution as in single-ob-
jective optimization but a set of solutions known as the
Pareto optimal set. The reason is that, taking as an exam-
ple the problem we are dealing with, one solution can rep-
resent the best result concerning the number of reached
devices, while another solution could be the best concern-
ing the duration of the broadcasting process. These solu-
tions are said to be non-dominated. The result provided
by a multi-objective optimization algorithm is therefore a
set of non-dominated solutions (the Pareto optimal set)
which, when plotted in the objective space, is collectively
known as the Pareto front. The mission of the decision
maker is to choose the most adequate solution from the
Pareto front. Here, we study the use of a cellular multi-ob-
jective evolutionary algorithm (cMOGA) for solving the
multi-objective problem of tuning a particular broadcast-
ing strategy for metropolitan MANETs.

Many popular algorithms for solving multi-objective
optimization problems are evolutionary algorithms (EAs)
[2,3]. However, few works use genetic algorithms based
on cellular models [4–6], even though cellular genetic algo-
rithms (cGAs) have proved in the past very high efficiency
and accuracy in single-objective optimization [7–10]; the
algorithm we propose, cMOGA, is a contribution to this
field. Furthermore, to the best of our knowledge, our work
is the first attempt to solve the broadcasting problem on
MANETs using a multi-objective EA.

The rest of the paper is organized as follows. In the next
section, we present a brief survey on multi-objective optimi-
zation. Section 3 describes the problem we address, the
proposed benchmark, and the broadcasting strategy we
intend to optimize. We detail the proposed approach based
on a cellular multi-objective genetic algorithm in Section 4.
Section 5 presents a set of experiments and analyzes the
results. The paper ends with some conclusions and future
research lines.
2. Multi-objective optimization background

In this section, we include some background on multi-
objective optimization. In concrete, we define the concepts
of multi-objective optimization problem, Pareto optimality,
Pareto dominance, Pareto optimal set, and Pareto front.

A general multi-objective optimization problem (MOP)
can be formally defined as follows (we assume the minimi-
zation of all the objectives without loss of generality):

Definition 1. (MOP) Find a vector ~x� ¼ ½x�1; x�2; . . . ; x�n�
which satisfies the m inequality constraints
gið~xÞP 0; i ¼ 1; 2; . . . ; m, the p equality constraints
hið~xÞ ¼ 0; i ¼ 1; 2; . . . ; p, and minimizes the vector function
~f ð~xÞ ¼ ½f1ð~xÞ; f2ð~xÞ; . . . ; f kð~xÞ�

T , where ~x ¼ ½x1; x2; . . . ; xn�T
is the vector of decision variables.
The set of all values satisfying the constraints defines the
feasible region X and any point~x 2 X is a feasible solution.
As mentioned before, we seek for the Pareto optima. Its
formal definition is provided next:

Definition 2 (Pareto optimality). A point ~x� 2 X is Pareto
Optimal if for every ~x 2 X and I = {1, 2, . . .,k} either
8i2Iðfið~xÞ ¼ fið~x�ÞÞ or there is at least one i 2 I such that
fið~xÞ > fið~x�Þ.

This definition states that~x� is Pareto optimal if no fea-
sible vector ~x exists which would decrease some criterion
without causing a simultaneous increment in at least one
other criterion. Other important definitions associated with
Pareto optimality are the following:

Definition 3 (Pareto dominance). A vector~u ¼ ðu1; . . . ; ukÞ
is said to dominate ~v ¼ ðv1; . . . ; vkÞ (denoted by ~u ~̂v) if
and only if ~u is partially less than ~v, i.e.,
"i 2 {1, . . .,k},ui 6 vi � $i 2 {1, . . .,k}:ui < vi.
Definition 4 (Pareto optimal set). For a given MOP ~f ð~xÞ,
the Pareto optimal set is defined as P� ¼
f~x 2 Xj:9~x0 2 X;~f ð~x0Þ^~f ð~xÞg.

Definition 5 (Pareto front). For a given MOP ~f ð~xÞ and its
Pareto optimal set P�, the Pareto front is defined as
PF� ¼ f~f ð~xÞ;~x 2 P�g.

Obtaining the Pareto front of a given MOP is the main
goal of multi-objective optimization. However, given that a
Pareto front can contain a large number of points, a good
solution must contain a limited number of them, which
should be as close as possible to the Pareto optimal set,
as well as they should be uniformly spread. Otherwise,
the decision maker could miss important information.

3. The problem

The problem we study in this paper consists of, given
an input metropolitan MANET network, determining the
most adequate parameters for a broadcasting strategy.
We first describe in Section 3.1 the target networks we
use. Section 3.2 is devoted to the presentation of DFCN
[1], the broadcasting strategy to be tuned. Finally, the
MOPs we define for this work are presented in Section
3.3.

3.1. Metropolitan mobile ad hoc networks

Metropolitan mobile ad hoc networks are MANETs
with some particular properties. First, they have one or
more areas where the node density is higher than the aver-
age. They are called high density areas, and they can be sta-
tistically detected. A high density area may be, for example,
a supermarket, an airport, or an office. Second, high densi-
ty areas do not remain active full time, i.e., they can appear
and disappear from the network (e.g., a supermarket is
open, roughly, from 9 a.m. to 10 p.m., and outside this
period of time, the node density within the corresponding



Fig. 1. An example metropolitan MANET.
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area is close to zero). An example of 4 km2, 2000 devices
metropolitan network is displayed in Fig. 1.

To deal with such kind of networks, there is no solution
other than resorting to software simulations. In this work,
we have used Madhoc [11], a metropolitan MANET simu-
lator.1 It aims at providing a tool for simulating different
level services based on distinct technologies on MANETs
for different environments.

In the context of metropolitan MANETs, various topo-
logical configurations are very usually found. Some exam-
ples are networks built on-the-fly by people moving in
concert places, market places, train stations, shopping
centers, and city centers. All these scenarios have a number
of different characteristics, such as the mobility and density
of devices, the size of the area, and the presence or not of
walls (which are obstacles for mobility and attenuate the
signal strength), among others. Hence, three very different
realistic scenarios, implemented by Madhoc, are used in
this paper. These scenarios correspond to real world envi-
ronments, and they aim at modelling a shopping mall, a
metropolitan area, and a highway scenario:

• Mall environment. The mall environment is proposed for
emulating MANETs in commercial shopping centers, in
which stores are usually located together one each other
in corridors. People go from one store to another
through these corridors, occasionally stopping for look-
ing some shopwindows. These shopping centers are usu-
ally very crowded (high density of devices), and people
behave differently (in terms of mobility) when they are
in or out of the stores. Additionally, a high density of
1 The MANET simulator is freely available at http://www-lih.

univ-lehavre.fr/~hogie/madhoc/
shops can be found in this kind of scenario. Finally, in
the mall environment both the mobility of devices and
their signal propagation are restricted by the walls of
the building.

• Metropolitan environment. The second realistic scenario
we propose is the metropolitan environment. We have
modelled it as an attempt for simulating the behavior
of a MANET in a metropolitan area. For that, we locate
a set of spots (crossroads) in the simulated surface, and
link them with streets. In this case, both pedestrians and
vehicles are modelled, and they are continuously moving
from one crossroad to another. Like in the real world,
devices must reduce their speed when they approach a
crossroad. In this scenario, the obstruction of the walls
in the signal strength will be stronger than in the case
of the mall environment.

• Highway environment. We use this environment for sim-
ulating the behavior of MANETs out of cities. As an
example, think on a large surface with roads, and people
travelling by car. In this context, there should be a very
low density of devices per square kilometer (all the
devices are located on the roads), moving all of them
in a fast manner. Additionally, there should not exist
obstacles that attenuate the signal strength in
communications.

In order to make our studies more realistic, an observa-

tion window has been included in the simulations, so that
only the devices located into this window are taken into
account for measurements. This makes possible the simula-
tion of nodes exiting and joining the network by entering
or leaving the observation window, respectively. Therefore,
we are allowing the existence of a changing number of
devices in the network, as it is the case in real MANETs.
In all our tests in this work, this observation window covers
the 70% of the whole area. As an example, in Fig. 2 we can
see a MANET simulating a mall environment (left), and
the observation window we study (right); supposing the
70% of the whole network. The circles represent the shops,
while the points stand for the devices (those outside the
observation window are grey colored, meaning that they
are not considered for measurements).

3.2. Delayed flooding with cumulative neighborhood

Williams and Camp [12] and, more recently, Stojmenovic
and Wu [13] proposed two of the most frequently refer-
enced analysis of broadcasting protocols. In their proposal,
Stojmenovic and Wu [13] state that protocols can be clas-
sified according to their algorithmic nature – determinism
(no use of randomness), reliability (guarantee of full cover-
age) – or the information required by their execution (net-
work information, ‘‘hello’’ messages content, broadcast
messages content). Similarly, Wu and Lou [14] categorized
protocols as centralized [15] and localized ones. Centralized
protocols require a global or quasi-global knowledge of the
network. They are hence not scalable. Localized protocols

http://www-lih.univ-lehavre.fr/~hogie/madhoc/
http://www-lih.univ-lehavre.fr/~hogie/madhoc/
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Fig. 2. The effects of introducing an observation window on the studied MANET.
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are those which require some knowledge of the network at
only 1- or 2-hops.

Using the classifications presented hereinbefore, DFCN
[1] is a deterministic algorithm. It does not consist of a
new approach for calculating dominating sets. Instead, it
is a fully localized protocol which defines heuristics based
on 1-hop information. This permits DFCN to achieve great
scalability. The ‘‘hello’’ messages interchanged by the nodes
do not carry any additional information. Only broadcast
messages must embed the list of node’s neighbors.

For being able to run the DFCN protocol, the following
assumptions must be met:

• Like many other neighbor-knowledge-based broadcast-
ing protocols (FWSP, SBA, etc.) [16,17], DFCN
requires the knowledge of 1-hop neighborhood. This is
obtained by the use of ‘‘hello’’ packets at a lower net-
work layer. The set of neighbors of the device s is named
N(s).

• Each message m carries – embedded in its header – the
set of IDs of the 1-hop neighbors of its most recent
sender.

• Each device maintains local information about all mes-
sages received. Each instance of this local information
consists of the following items:
– the ID of the message received;
– the set of IDs of the devices that are known to have

received the message;
– the decision of whether the message should be for-

warded or not.

• DFCN requires the use of a random delay before

possibly re-emitting a broadcast message m. This
delay, called Random Assessment Delay (RAD), is
intended to prevent collisions. More precisely, when
a device s emits a message m, all the devices in
N(s) receive it at the same time. It is then likely
that all of them forward m simultaneously, and this
simultaneity entails network collisions. The RAD
aims at randomly delaying the retransmission of m.
As every device in N(s) waits for the expiration of
a different RAD before forwarding m, the risk of
collisions is hugely reduced.

DFCN is an event driven algorithm which can be divid-
ed into three main parts: the two first ones deal with the
handling of outcoming events, which are (1) new message
reception and (2) detection of a new neighbor. The third
part (3) consists of the decision making for emission as a
follow-up of one of the two previous events. The behavior
resulting from a message reception is referred to as reactive

behavior; when a new neighbor is discovered, the behavior
is referred as proactive behavior.

Let s1 and s2 be two devices in the neighborhood of one
another. When s1 sends a packet to s2, it attaches to the
packet the set N(s1). At reception, s2 hence knows that each
device in N(s1) has received the packet. The set of devices
which has potentially not yet received the packet is then
N(s2) � N(s1). If s2 re-emits the packet, the effective number
of devices newly reached is maximized by the heuristic
function: h(s2,s1) = jN(s2) � N(s1)j.

In order to minimize the network use caused by a pos-
sible packet re-emission, a message is forwarded only if
the number of newly reached devices is greater than a giv-
en threshold. This threshold is a function of the number
of devices in the neighborhood (the local network density)
of the recipient device s2. It is written ‘‘threshold(jN(s)j)’’.
The decision made by s2 to re-emit the packet received
from s1 is defined by the boolean function:
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Bðs2; s1Þ ¼
true hðs2; s1ÞP thresholdðjNðs2ÞjÞ
false otherwise

�

If the threshold is exceeded, the recipient device s2 becomes
an emitter in turn. The message is effectively sent when the
random delay (defined by the RAD) expires. The threshold
function, which allows DFCN to facilitate the message re-
broadcasting when the connectivity is low, depends on the
size of the neighborhood n, as given by:

thresholdðnÞ ¼
1 n 6 safeDensity

minGain � n otherwise;

�

where safeDensity is the maximum safe density below
DFCN always rebroadcasts and minGain is a parameter
of DFCN used for computing the minimum threshold for
forwarding a message, i.e., the ratio between the number
of neighbors which have not received the message and
the total number of neighbors.

Each time a device s discovers a new neighbor, the RAD
for all messages is set to zero and, therefore, the messages
are immediately candidate to emission. If N(s) is greater
than a given threshold, which we have called proD, this
behavior is disabled, so no action is undertaken on new
neighbor discovery.

3.3. MOPs definition

From the description of DFCN in the previous section,
the following parameters are to be tuned:

• minGain is the minimum gain for rebroadcasting. This is
the most important parameter for tuning DFCN, since
minimizing the bandwidth should be highly dependent
on the network density. It ranges from 0.0 to 1.0.

• lowerBoundRAD,upperBoundRAD define the RAD val-
ue (random delay for rebroadcasting in milliseconds).
The two parameters take values in the interval
[0.0,10.0] ms.

• proD is the maximal density (proD 2 [0,100]) for which it
is still needed using proactive behavior (i.e., reacting on
new neighbors) for complementing the reactive
behavior.

• safeDensity defines a maximum safe density of the
threshold which ranges from 0 to 100 devices.
a b

Fig. 3. Panmictic (a), distribute
These five parameters, i.e., five decision variables which
correspond to a DFCN configuration, characterize the
search space. We have set wide enough intervals for the
values of these parameters in order to include all the
reasonable possibilities we can find in a real scenario.
The objectives to optimize are: minimizing the duration
of the broadcasting process, maximizing the network
coverage, and minimizing the number of transmissions.
Thus, we have defined a triple objective MOP, which is
called DFCNT (which stands for DFCN Tuning). As we
stated before, this problem is defined by a given target
network in which the DFCN broadcasting strategy is used.
Since three different real world metropolitan MANETs
have been considered, three instances of DFCNT are to
be solved: DFCNT.Mall, DFCNT.Metropolitan, and
DFCNT.Highway.

Additionally, it is also interesting to consider the
network coverage as a constraint instead of a goal
for practical purposes. This way, we can define that
the coverage must be, for example, over 90%, and then
to find the best tradeoff between bandwidth and dura-
tion. The resulting problem, which is named cDFCNT
(constrained DFCNT), is a bi-objective MOP with
one constraint. Analogously, three different target
networks here bring three different instances of
cDFCNT: cDFCNT.Mall, cDFCNT.Metropolitan, and
DFCNT.Highway.
4. The algorithm

The application of evolutionary algorithms (EAs) to
complex optimization problems has been very intense
during the last decade [18]. These algorithms work on
a set (population) of potential solutions (individuals)
by applying some stochastic operators to them in order
to search for the best solutions. Most EAs use a single
population (panmixia) of individuals and apply opera-
tors to them as a whole (see Fig. 3a). In contrast,
there exists also some tradition in using structured
EAs, where the population is decentralized somehow.
Among the many types of structured EAs, distributed

and cellular algorithms are two popular optimization
variants [19,20] (see Figs. 3b and c). In many cases
c

d (b), and cellular (c) EAs.
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[21], these decentralized algorithms provide a better
sampling of the search space resulting in improved
numerical behavior with respect to an equivalent algo-
rithm in panmixia.
Algorithm 1 Pseudocode for a Canonical cGA

1: proc Steps_p(cga) //Algorithm parameters in ‘cga’
2: while not Termination_Condition() do

3: for individual ‹ 1 to cga.popSize do

4: n_list ‹ Get_Neighborhood(cga,position(individual));
5: parents ‹ Selection(n_list);
6: offspring ‹ Recombination(cga.Pc,parents);
7: offspring ‹ Mutation(cga.Pm,offspring);
8: Evaluate_Fitness(offspring);
9: Insert(position(individual),offspring,cga,aux_pop);

10: end for

11: cga.pop ‹ aux_pop;
12: end while

13: end_proc Steps_Up;
In this work, we focus on Cellular Genetic Algo-
rithms (cGAs). In cGAs, the concept of (small) neigh-

borhood is intensively used; this means that an
individual may only interact with its nearby neighbors
in the breeding loop [22]. The overlapped small neigh-
borhoods of cGAs help in exploring the search space
because the induced slow diffusion of solutions through
the population provides a kind of exploration (diversifi-
cation), while exploitation (intensification) takes place
inside each neighborhood by genetic operations. These
cGAs were initially designed for working in massively
parallel machines, although the model itself has been
adopted recently also for mono-processor machines,
with no relation to parallelism at all. Besides, the neigh-
borhood is defined among tentative solutions in the
algorithm, with no relation to the geographical neigh-
borhood definition in the problem space.

4.1. Cellular genetic algorithms

In this section, a detailed description of a canonical
cGA is presented (we include a pseudo-code in Algo-
rithm 1). In this basic cGA, the population is usually
structured in a regular grid of d dimensions (d = 1,
2, 3), and a neighborhood is defined on it. The algo-
rithm iteratively considers as current each individual
in the grid (line 3). An individual may only interact
with individuals belonging to its neighborhood (line
4), so the parents are chosen among its neighbors (line
5) with a given criterion. Crossover and mutation
genetic operators are applied to the individuals in lines
6 and 7, with probabilities Pc and Pm, respectively.
After applying these operators, the algorithm computes
the fitness value of the new offspring individual (or
individuals) (line 8), and inserts it (or one of them)
into the equivalent place of the current individual in
the new (auxiliary) population (line 9) following a
given replacement policy.
Algorithm 2 Pseudocode of cMOGA

1: proc Steps_Up(cmoga) //Algorithm parameters in ‘cmoga’
2: Pareto_front = Create_Front() //Creates an empty Pareto front
3: while ! TerminationCondition() do

4: for individual ‹ 1 to cmoga.popSize do

5: n_list ‹ Get_Neighborhood(cmoga,position(individual));
6: parents ‹ Selection(n_list);
7: offspring ‹ Recombination(cmoga.Pc,parents);
8: offspring ‹ Mutation(cmoga.Pm,offspring);
9: Evaluate_Fitness(offspring);

10: if Non-Dominated(offspring, position(individual)) then

11: Insert(position(individual),offspring,cmoga,aux_pop);
12: Insert_Pareto_Front(individual);
13: end if

14: end for

15: cmoga.pop ‹ aux_pop;
16: end while

17: end_proc Steps_Up;

After applying this reproductive cycle to all the individ-
uals in the population, the newly auxiliary population is
assumed to be the new population for the next generation
(line 11). This loop is repeated until a termination condi-
tion is met (line 2). The most usual termination conditions
are to reach the optimal value, to perform a maximum
number of fitness function evaluations, or a combination
of they two.

4.2. A multi-objective cGA: cMOGA

In this section, we present a multi-objective algorithm
based on a cGA model. Although other cellular-like
genetic approaches exist in the literature, to the best of
our knowledge, none of them follows the canonical
cGA model (Algorithm 1). In [4], a multi-objective evo-
lution strategy following a predator-prey model is pre-
sented. This is a model similar to the cGA, because
solutions (preys) are placed on the vertices of an undi-
rected connected graph, thus defining neighborhoods,
where they are ‘caught’ by predators. Murata and Gen
presented in [5] a cellular algorithm in which, for an
n-objective MOP, the population is structured in an n-di-
mensional weight space, and the location of individuals
(called cells) depends on their weight vector. Thus, the
information given by the weight vector assigned to indi-
viduals is used for guiding the search. Finally, in [6] a
metapopulation evolutionary algorithm (called MEA) is
presented. This algorithm is a cellular model with the
peculiarity that disasters can occasionally happen in
the population, thus dying all the individuals located
in the disaster area (extinction). Additionally, these emp-
ty areas can also be occupied by individuals (coloniza-
tion). Thus, this model allows a flexible population
size, combining the ideas of cellular and spatially distrib-
uted populations.

A pseudo-code of our cMOGA is given in Algorithm 2.
We can observe that Algorithms 1 and 2 are very similar.
One of the main differences between the two algorithms



Table 1
Parameterization used in cMOGA

Population size 100 Individuals (10 · 10)
Stopping condition 25,000 Function evaluations
Neighborhood NEWS
Selection of parents Current individual + Binary tournament
Recombination Simulated binary, pc = 1.0
Mutation Polynomial, pm = 1.0/L

(L = individual length)
Replacement Rep_if_Non_Dominated
Archive size 100 Individuals
Crowding procedure Adaptive grid
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is the existence of a Pareto front (Definition 5) in the multi-
objective case. The Pareto front is just an additional popu-
lation composed of the non-dominated solutions found so
far, which has a maximum size. In order to manage the
insertion of solutions in the Pareto front with the goal of
obtaining a diverse set, a crowding procedure has been
used.

cMOGA starts by creating an empty Pareto front (line 2
in Algorithm 2). Individuals are arranged in a two-dimen-
sional toroidal grid, and the genetic operators are succes-
sively applied to them (lines 7 and 8) until the
termination condition is met (line 3). Hence, for each indi-
vidual, the algorithm consists of selecting two parents from
its neighborhood, recombining them in order to obtain an
offspring, mutating it, evaluating the resulting individual,
and inserting it if it is not dominated by the current individ-
ual in both the auxiliary population and the Pareto front
(following a crowding procedure) – lines 10 to 13. Finally,
after each generation, the old population is replaced by the
auxiliary one.

4.3. Dealing with constraints

To deal with constrained MOPs, cMOGA uses a sim-
ple approach also encountered in other multi-objective
evolutionary algorithms, like NSGA-II [23] and microGA
[24]. Whenever two individuals are compared, their con-
straints are checked. If both are feasible, a Pareto dom-
inance test (Definition 3) is directly applied. If one is
feasible and the other is infeasible, the former dominates.
In other case, if the two individuals are infeasible, then
the one with the lowest amount of constraint violation
dominates the other.

5. Experiments

In this section, we first describe the parameterization
used by cMOGA. Next, the configurations of the network
simulator for the three defined environments are described.
Finally, we analyze the obtained results for both DFCNT

and cDFCNT and compare them.
cMOGA has been implemented in Java and tested on a

PC with a 2.8 GHz Pentium IV processor with 512 MB of
RAM memory, and running SuSE Linux 8.1 (kernel 2.4.19-
4 GB). The Java version used is 1.5.0_05.

5.1. cMOGA Parameterization

In Table 1 we show the parameters used by cMOGA.
A square toroidal grid of 100 individuals has been cho-
sen for structuring the population. The neighborhood
used is composed of 5 individuals: the considered one
plus those located at its North, East, West, and South
(called NEWS, Linear5 or Von Neumann neighbor-
hood). Due to the stochastic nature of the Madhoc sim-
ulator, five simulations per function evaluation are
performed and the fitness values of the functions are
computed as the average of the values obtained in each
of these simulations. This important detail has a consid-
erable influence in the running time to solve the prob-
lem, and explains why reporting 30 independent runs
of the algorithm in our tests represents a high effort
in studying this problem, since we want to ensure statis-
tical confidence on the results.

We use the simulated binary recombination operator
(SBX) [25] with probability Pc = 1.0. As its name suggests,
SBX simulates the working principle of the single-point
crossover on binary genotypes. The mutation operator
used is the so called polynomial [25], and it is applied to
every allele of the individuals with probability Pm = 1.0/
L. The resulting offspring replaces the individual at the cur-
rent position if the latter does not dominate the former.
For inserting the individuals in the Pareto front, an adap-
tive grid algorithm [26] is used. It consists of dividing up
the objective space in hypercubes with the goal of balanc-
ing the density of non-dominated solutions in the hyper-
cubes. Then, when inserting a non-dominated solution in
the Pareto front, its grid location in the solution space is
determined. If the Pareto front is already full and the grid
location of the new solution does not match with the most
crowded hypercube, a solution belonging to that most
crowded hypercube is removed before inserting the new
one.

5.2. Madhoc configuration

As we stated in Section 3.1, we have defined three dif-
ferent environments for MANETs modelling three possi-
ble scenarios that can be found in real world. Their main
features are explained in Sections 5.2.1 to 5.2.3, and they
are summarized in Table 2. We show in Fig. 4 example
MANETs for each of the studied scenarios. These exam-
ple networks were obtained by using the graphical inter-
face of Madhoc with exactly the same parameterization
suggested in our proposed benchmark. We consider that
the broadcasting is completed when either the coverage
reaches 100% or it does not vary in a reasonable period
of time (set to 1.5 s after some preliminary experimenta-
tion). This point is important since an improper termina-
tion condition will lead us to bad results or slow
simulations.



Table 2
Main features of the proposed environments

Mall Metropolitan Highway

Surface (m2) 40,000 160,000 1,000,000
Density of spots 800 (shops/km2) 50 (crossroads/km2) 3 (joints/km2)

Speed out of spots (m/s) 0.3–1 1–25 30–50
Devices Speed in spots (m/s) 0.3–0.8 0.3–10 20–30

Density (dev./km2) 2000 500 50
Wall obstruction (%) 70 90 0

Mall Metropolitan Area Highway

Fig. 4. The three studied scenarios for MANETs.
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5.2.1. The mall environment

In this section, we proceed to explain the parameteriza-
tion we used for modelling the mall environment. In malls,
the density of both shops (spots) and devices is usually very
high. Additionally, there exist walls which attenuate the
signal and limit the movements of devices, and these move-
ments are usually very slow, since we are modelling people
walking. We have defined for this work a shopping center
of 200 · 200 square meters of surface with densities of
800 stores and 2000 devices per square kilometer. Stores
are circles of radius between 1 and 10 m, and the obstruc-
tion of the walls is computed with a penalty of the 70% in
the signal strength. Finally, devices travel with a speed
ranging between 0.3 and 1 m/s in the corridors and between
0.3 and 0.8 m/s when they are inside the stores.

Regarding the mall environment, it is worth noting that
the resulting connection graph is quite dense (see Fig. 4).
The reason for that is that the coverage of mobile devices
ranges between 40 and 80 m (randomly selected value),
and the simulation area is small. Hence, the problems
DFCNT.Mall and cDFCNT.Mall are more difficult to solve
due to the broadcast storm problem [27]. This problem
consists of severe network congestions provoked by packet
re-emissions due to frequent packet collisions.

5.2.2. The metropolitan environment

In this second environment, we study the behavior of
DFCN in a metropolitan MANET. For modelling this
environment we set a surface of 400 · 400 square meters,
with a density of 50 spots (standing for crossroads) per
square kilometer having a circle surface of radius between
3 and 15 m. The wall obstruction is in this case higher than
for the mall environment (up to 90%), and the density of
devices is 500 elements per square kilometer. When setting
the speed of devices, the cases when people move on foot or
by car must be taken into account, so its value ranges
between 0.3 and 10 m/s when they are in a crossroad,
and between 1 and 25 m/s in other case (streets).

In Fig. 4, it can be seen that the resulting network in a
metropolitan area is not as dense as that of the mall envi-
ronment. Generally speaking, this kind of network is com-
posed of a few number of subnetworks, which are usually
connected one each other by only a few links, typically
one or two, or even zero (unconnected subnetworks). Addi-
tionally, some devices could not be part of any subnetwork
(isolated nodes). The topology of this network can change
in a fast manner, since some of the devices are travelling in
vehicles at high speeds. All these features difficult the
broadcasting task, and that makes interesting the study
of this kind of networks for us.

5.2.3. The highway environment

As we previously commented in Section 3.1, this envi-
ronment is composed of a few number of devices, travelling
at high speeds. Thus, we used the human environment sce-
nario provided by Madhoc for modelling the network with
the peculiarity of setting the wall obstruction to 0%. The
simulated surface was set to 1000 · 1000 square meters
with a density of only 50 devices per square kilometer.
These devices travel at random speeds between 30 and
50 m/s. We define the roads as the straight lines connecting
two spots, and we establish a density of only 3 spots (high-
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way entrances and/or exits) for modelling the scenario. The
speed of devices in the spots must be reduced to the range
between 20 and 30 m/s. The size of each spot (length of the
entrance/exit) is set to a random value between 50 and
200 m (spots radius 2[25,100] m).

It can be seen in Fig. 4 how the resulting network using
this parameterization is composed of a set of multiple (usu-
ally disconnected) sub-networks involving a small number
of devices (even only one). The existence of these small
and unconnected networks supposes a hard obstacle for
the task of the broadcasting protocol. Additionally, the
topology of the network changes very fast due to the high
speed on the devices movement. Hence, as a consequence
of these high speeds, new subnetworks are continuously
being made and disappearing, what hinders the broadcast-
ing process even more.

5.3. DFCNT results

We now turn to present and analyze the obtained results
for the DFCNT problem (Section 3.3) with the three envi-
ronments. Let us remind that this problem is composed of
five decision variables and three objective functions. All the
values presented are the average over 30 independent runs
of cMOGA.

In Table 3 we show the mean and the standard deviation
of the execution time (in hours) and the number of non-
dominated solutions found by cMOGA for the three
DFCNT instances: DFCNT.Mall, DFCNT.Metropolitan

and DFCNT.Highway. As it can be seen, the execution time
of a single run is very long, since it ranges from 1.98 days
for the highway scenario, up to 4.51 days in the case of
DFCNT.Metropolitan. The reason is the high cost of com-
puting the fitness function, since we launch five simulations
per evaluation, and each run of the simulator requires
between 1 and 4 s. Regarding the number of solutions
found, the obtained results are highly satisfactory in the
three DFCNT instances, since the number of different solu-
tions found is 97.77, 93.40, and 52.27 on average (the max-
imum is 100) for DFCNT.Mall, DFCNT.Metropolitan and
DFCNT.Highway, respectively. Thus, we allow the decision
maker to choose from a wide range of possibilities. Notice
that the number of solutions composing the Pareto front
decreases when decreasing the device density of the net-
work (i.e., increasing the surface and decreasing the num-
ber of devices). This is because we stick to just one single
criterion for considering that the broadcasting process is
done in three very different environments. As a future
work, we plan to customize this criterion for each environ-
Table 3
Results of cMOGA for the three DFCNT instances

Environmment Time (h) Number of Pareto optima

DFCNT.Mall 66.12 ± 7.94 97.77 ± 3.20
DFCNT.Metropolitan 108.21 ± 8.41 93.40 ± 18.02
DFCNT.Highway 47.57 ± 0.42 52.27 ± 10.99
ment, what hopefully will lead us to obtain still better
results.

As an example of the diverse and wide set of solutions
reported by the multi-objective optimizer, we plot in
Fig. 5 an example Pareto front obtained with cMOGA
for the three studied environments. Best solutions are those
implying (i) high coverage, (ii) low bandwidth, and (iii) a
short duration of the broadcasting process, (i) and (ii)
being the most important parameters. In fact, Pareto opti-
ma in these fronts reaching a coverage over 95% need on
average 3.77 seconds and 17.25 messages for mall, and
13.78 s and 75.71 messages (i.e., intense bandwidth usage)
in the case of the metropolitan area. In contrast, in the case
of the highway environment only 5 solutions of the Pareto
front have a coverage over 95% (38 for DFCNT.Mall and
16 for DFCNT.Metropolitan), achieving an average of
74.88 messages sent in 13.37 s, which are values similar to
those of the metropolitan area. Finally, notice that if cov-
erage were not a hard constraint in our network, we could
use very cheap solutions in terms of time and bandwidth
for the two environments.

Comparing the three graphics, it is possible to observe
that the broadcasting is more efficient in the mall environ-
ment than in the other two cases, since it takes less than 8 s
(duration), transmitting always less than 23 messages
(bandwidth), and reaching more than 40% of the devices
(coverage). However, in the metropolitan and highway
environments the broadcasting process is usually longer,
with a larger number of transmitted messages, and the cov-
erage is in some cases less than 10%. Finally, although the
front obtained for the highway environment has similar
bounding values as those observed in the case of the metro-
politan area, the diversity is much lower in the highway
scenario.

The difference on the coverage of solutions found in the
three environments is a common sense result, since the
probability of having isolated subnetworks (composed of
one or more devices) grows when increasing the simulation
surface and decreasing the number of devices. Hence, the
difference in the quality of the solutions is a consequence
of the different topology of the networks, since the high
connectivity of the devices in the mall environment allows
one message to reach many more devices than in the case of
the other two studied environments. Conversely, this high
connectivity increases the risk of a broadcast storm, mak-
ing DFCNT.Mall very difficult to solve. From our results
we can conclude that cMOGA has dealt with the problem
successfully.

The Pareto fronts on Fig. 5 fulfill the design objectives
of the DFCN protocol: most of the plots (in the center of
the clouds) provide sets of parameters which make DFCN
achieving a coverage rate close to 100%, keeping the net-
work throughput very low. What makes the DFCNT prob-
lem particularly interesting from an applicative point of
view is that it permits the decision maker to discard this
default behavior by setting a degree of coverage for the
broadcasting application. Indeed not all applications
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Fig. 5. Pareto fronts for the three environments and the DFCNT problem.

Table 4
Results of cMOGA for the three cDFCNT instances

Environment Time (h) Number of Pareto optima

Mall 56.53 ± 10.56 13.47 ± 2.70
Metropolitan 106.15 ± 9.11 5.57 ± 1.98
Highway 46.99 ± 4.32 3.40 ± 1.76
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require the maximization of the coverage rate. For exam-
ple, local advertising – which consists in spreading adver-
tisement messages to devices a few hops away from the
source – needs the broadcasting process to cease after a
while. Sometimes high coverage is even to be avoided.
For example, trying to achieve a high coverage on metro-
politan MANETs (which may realistically be made of
thousands devices) is harmful, since it is likely to lead to
severe network congestions.

5.4. cDFCNT results

Now, we analyze the results of the cDFCNT problem,
where the coverage has become a constraint: at least,
90% of the devices must receive the broadcasting message.
This way, cMOGA has to find solutions with a tradeoff
between bandwidth and duration of the broadcasting pro-
cess. Just like for DFCNT, Table 4 presents the average
time and the number of Pareto optima that cMOGA is able
to find over 30 independent runs when solving cDFCNT for
the three instances: cDFCNT.Mall, cDFCNT.Metropolitan,
and cDFCNT.Highway.

Regarding the execution time, cDFCNT can be solved
a bit faster than its unconstrained counterpart for the
mall environment (56.53 against 66.12 h), although the
difference is smaller (about 2%) in the cases of the metro-
politan area (106.15 against 108.21 h) and the highway
environment (46.99 versus 47.57 h). Two reasons can
explain this behavior. First, dominance tests are less cost-
ly due to the lower number of objectives, thus reducing
the time needed to check whether a new solution is dom-
inated or not by the current front. Second, since a lower
number of points is found for the constrained MOP, this
previous test is still less costly, because of the lower num-
ber of comparisons. As it was stated before, if we analyze
the non-dominated solutions found, results show that the
number of points has been drastically reduced in the three
studied environments with respect to the unconstrained
instances. This indicates that the coverage constraint
made the problem very difficult to solve (specially for
the metropolitan and highway environments), maybe
excessively hard if the designer is satisfied with the
DFCNT scenario.
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Fig. 6 depicts three typical Pareto fronts corresponding
to the three proposed instances of cDFCNT. The relation-
ship between the two objective functions is clear in the
three cases: if a message has to be rapidly broadcasted, it
involves using a high bandwidth. Otherwise, cheap solu-
tions in terms of bandwidth could be obtained by consider-
ing long duration times. Once more, one can see that the
solutions for the metropolitan and highway environments
are more expensive than in the case of the mall environ-
ment (in terms of time and bandwidth used). The low num-
ber of points found for the metropolitan and highway
environments with respect to the mall environment can
be explained by the lower final coverage found in the solu-
tions due to the network topology, as we previously com-
mented in the case of DFCNT problem.

As suggested before, all broadcasting protocols follow
the next rule: the more opportunistic they are the faster
they proceed (by not considering the impact of packet col-
lisions), but the higher bandwidth they use. DFCN has
been designed with this in mind: its behavior – when used
with appropriate parameters – is an exception to this rule.
However, we have a different objective in this study, since
we are seeking for Pareto optimal set of parameters. Con-
sequently, a diverse subset of the behavior exhibited by all
broadcasting protocols is reported on the Pareto fronts. In
these Pareto fronts we can see that achieving very short
duration times entails high bandwidth and that very low
bandwidth is only achievable by using slow forwarding pol-
icies. Aside to this asymptotic behaviors, the Pareto fronts
also show that DFCN can be tuned in such a way that it
permits to obtain a reasonably short duration of the broad-
casting process while keeping the network throughput (e.g.,
the number of packet emission) low. Since good coverage is
guaranteed, these settings are appropriate to most broad-
casting applications.

5.5. Comparing DFCNT and cDFCNT

In this section, we compare the complexity of the
proposed unconstrained problems versus their constrained
versions. For that, a summary of the results reported in
Tables 3 and 4 is given in Table 5. As we stated before,
two facts can be deduced from these results: first, solving
DFCNT instances are more costly than cDFCNT in terms
of the computational effort (the difference becomes more
important as the number of devices grows) and, second,
cMOGA is able to find a higher number of Pareto optima
for DFCNT than for cDFCNT.



Table 5
Comparison of the results for DFCNT and cDFCNT

DFCNT cDFCNT

Mall Time (h) 66.12 ± 7.94 56.53 ± 10.56
Pareto optima 97.77 ± 3.20 93.40 ± 18.02

Metropolitan Time (h) 108.21 ± 8.41 106.15 ± 9.11
Pareto optima 93.40 ± 18.02 5.57 ± 1.98

Highway Time (h) 47.57 ± 0.42 46.99 ± 4.32
Pareto optima 52.27 ± 10.99 3.40 ± 1.76
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In order to provide confidence from the statistical point
of view, we have performed several statistical tests (t-tests)
at the 95% significance level. These t-tests have been per-
formed after ensuring that data follow a normal distribu-
tion (by using the Kolmogorov–Smirnov test). These tests
report statistically significant differences for all the results
in Table 5, except when comparing the Metropolitan and
Highway instances in terms of run time. Thus, if we pay
attention to the average number of solutions found in the
Pareto fronts, cMOGA finds more difficulties for solving
cDFCNT than in the case of DFCNT, with statistical con-
fidence in all the studied cases. Hence, we can conclude that
cDFCNT is a more complex problem since, although the
unconstrained problems (DFCNT) require higher compu-
tational effort (longer execution times) than the constrained
ones, we only found statistically significant differences in
the case of the mall environment.

6. Conclusions and further work

This paper presents a first approximation to the problem
of optimally tuning DFCN, a broadcasting protocol for
MANETs, using cMOGA, a new cellular multi-objective
genetic algorithm. cMOGA has been used to solve two for-
mulations of the problem; the first one, named DFCNT, is
defined as a three-objective MOP, with the goals of mini-
mizing the duration of the broadcasting process, maximiz-
ing network coverage, and minimizing the network usage;
the second one, cDFCNT, is a two-objective MOP, consid-
ering the coverage objective as a constraint.

Three different realistic scenarios were used. We are then
solving three different instances of each MOP. They corre-
spond to a shopping center (DFCNT.Mall and
cDFCNT.Mall), the streets in a city (DFCNT.Metropolitan

and cDFCNT.Metropolitan), and a wide non-metropolitan
area wherein several roads exist (DFCNT.Highway and
cDFCNT.Highway). Our experiments reveal that solving
DFCNT instances provides a populated Pareto front com-
posed of more than 50 points for DFCNT.Highway, and
more than 95 points (more than 95 different DFCN config-
urations) in the case of the other two environments, all this
at the expense of a considerable amount of time. However,
for a network designer, this time can be affordable depend-
ing on the target of the study. Conversely, if time is a crit-
ical issue, cDFCNT represents an interesting alternative
that is a bit faster, ensuring coverage losses below 10%.
The solved problem however admits a very reduced Pareto
front for the three instances (i.e., a smaller number of
design options), indicating that the coverage constraint
makes the problem very hard.

As a future work, we plan to perform a more in-depth
analysis on the cMOGA search model by itself. We also
intend to parallelize cMOGA for reducing the execution
times down to affordable values. Hence, we will hopefully
be able to enlarge the simulation area to still larger mall or
metropolitan networks. Finally, another interesting and
immediate next step consists in the design and study of new
different environments simulating other real world scenarios.
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Bernabé Dorronsoro received the degree in Com-
puter Science from the University of Málaga,
Spain in 2002. At present he is a Ph.D. student
working in the design of new evolutionary algo-
rithms, specifically on structured algorithms, and
their application to complex problems in the
domains of logistics, telecommunications, com-
binatorial, and multi-objective optimization.
Francisco Luna received the Engineering degree
in Computer Science from the University of

Málaga, Málaga, Spain, in 2002. He is working
towards the Ph.D. degree in the design of parallel
heterogeneous metaheuristics and their applica-
tion to solve complex problems in the domain of
telecommunications and combinatorial
optimization.

nications 30 (2007) 685–697 697
Antonio J. Nebro received his M.S. and Ph.D.
degrees in Computer Science from the University
of Malaga, Spain, in 1992 and 1999, respectively.
He is currently an Associate Professor of Com-
puter Science at the University of Malaga, Spain.
He has coauthored several book chapters, and
over 20 papers. His current research interests
include the design and implementation of parallel
evolutionary algorithms, multi-objective optimi-
zation, grid computing applied to meta-heuristic
techniques, and applications to telecommunica-
tions and bioinformatics.
Pascal Bouvry earned his Ph.D. degree (’94) in
computer science at the University of Grenoble,
France. He is now Professor at the Faculty of
Sciences, Technology and Communication of the
University of Luxembourg and heading the
Computer Science and Communication research
unit (http://www.uni.lu). Pascal Bouvry is spe-
cialized in parallel and evolutionary computing.
His current interest concerns the application of
nature-inspired computing for solving security
issues.
Luc Hogie earned both Research and Profes-
sional Master degrees at the University of Le
Havre (FR) in 2001. He then worked for the
CRS4 (IT) as a research engineer. After a short
stay in the software development industry
(SOGET, FR), he began in 2003 a Ph.D. of le
Havre, advsived by Profs. Frédéric Guinand (Le
Havre, FR) and Pascal Bouvry (Luxembourg).
Meanwhile, he is working as a teaching assistant
at Luxembourg University. His main concerns
are simulation of large mobile ad hoc networks as
well as network broadcasting.

http://www.uni.lu

	A cellular multi-objective genetic algorithm for optimal  broadcasting strategy in metropolitan MANETs
	Introduction
	Multi-objective optimization background
	The problem
	Metropolitan mobile ad hoc networks
	Delayed flooding with cumulative neighborhood
	MOPs definition

	The algorithm
	Cellular genetic algorithms
	A multi-objective cGA: cMOGA
	Dealing with constraints

	Experiments
	cMOGA Parameterization
	Madhoc configuration
	The mall environment
	The metropolitan environment
	The highway environment

	DFCNT results
	cDFCNT results
	Comparing DFCNT and cDFCNT

	Conclusions and further work
	Acknowledgements
	References


