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Abstract. This paper deals with the generation of balanced incomplete
block designs (BIBD), a hard constrained combinatorial problem with
multiple applications. This problem is here formulated as a combinato-
rial optimization problem (COP) whose solutions are binary matrices.
Two different neighborhood structures are defined, based on bit-flipping
and position-swapping. These are used within three metaheuristics, i.e.,
hill climbing, tabu search, and genetic algorithms. An extensive empir-
ical evaluation is done using 86 different instances of the problem. The
results indicate the superiority of the swap-based neighborhood, and the
impressive performance of tabu search. This latter approach is capable
of outperforming two techniques that had reported the best results in
the literature (namely, a neural network with simulated annealing and a
constraint local search algorithm).

1 Introduction

The generation of block designs is a well-known combinatorial problem, which
is very hard to solve [1]. The problem has a number of variants, among which
a popular one is the so-called Balanced Incomplete Block Designs (BIBDs).
Basically, a BIBD is defined as an arrangement of v distinct objects into b blocks
such that each block contains exactly k distinct objects, each object occurs in
exactly r different blocks, and every two distinct objects occur together in exactly
A blocks (for k,r, A > 0). The construction of BIBDs was initially attacked in
the area of experiment design [2, 3]; however, nowadays BIBD can be applied to
a variety of fields such as cryptography [4] and coding theory [5], among others.

BIBD generation is a NP-hard problem [6] that provides an excellent bench-
mark since it is scalable and has a wide variety of problem instances, ranging
from easy instances to very difficult ones. The scalability of the problem as well
as its difficulty make it an adequate setting to test the behavior of different
techniques/algorithms. As it will be discussed in Sect. 2.2, complete methods
(including exhaustive search) have been applied to the problem although this
remains intractable even for designs of relatively small size [7]. As a proof of
the difficulty of the problem, there currently exist a number of open instances



that have not been solved yet (of course, it might be the case that there is no
solution for them; then again, insolvability could not be established by complete
methods). The fact that, in the general case, the algorithmic generation of block
designs is an NP-hard problem [6] makes complete methods be inherently lim-
ited by the size of the problem instances. The application of metaheuristics thus
seems to be more appropriate to attack larger problem instances. This paper
provides some steps in this direction and demonstrates empirically that these
approaches (particularly, local search techniques) are effective methods in the
design of balanced incomplete blocks. More specifically, the paper describes two
local searchers —i.e., a steepest descent hill climbing (HC) algorithm and a tabu
search (TS)— and a genetic algorithm (GA), each of them with two variants. A
wide range of problem instances have been tackled by these metaheuristics, and
the results have been compared with two techniques found in the literature that
reported the best results [8,9]. In the following we will show that a particular
TS algorithm outperforms the remaining approaches and even can find solutions
to instances that the other methods could not solve.

2 Background

This section provides a brief overview of the problem, presents its classical for-
mulation, and discusses how it has been tackled in the literature.

2.1 Formulation

A standard way of representing a BIBD is in terms of its incidence matrix M =
{m;j}uxb, which is a v x b binary matrix with exactly r ones per row, k ones
per column, a scalar product of A between any pair of distinct rows, and where
m;; € {0,1} is equal to 1 if the ith object is contained in the jth block, and 0
otherwise; in this context, m;; represents the incidence of object ¢ in block j of
M. A BIBD is then specified by five parameters (v, b, 7, k, A}, i.e., a (v,b,r, k, A)-
BIBD consists of a set of v points that is divided into b subsets in such a way
that each point in v is contained in r different subsets and any couple of points
in v is contained in A < b subsets with k < v points in each subset.

The five parameters defining a (v, b, r, k, \) —BIBD are related and satisfy the
following two relations: bk = vr and A(v—1) = r(k—1). In fact, the corresponding
instance can be defined by just three parameters (v, k, A) since b and r are given
in terms of the other parameters:

b:v(v—l))\ 74:(1)—1))\ ()
k(k—1) k—1

Clearly, these relations restrict the set of admissible parameters for a BIBD;
however, the parameter admissibility is a necessary condition but it is not suf-
ficient to guarantee the existence of a BIBD [10,11]. According to the Fisher’s
inequality theorem [12], b > v in any block design; the case b = v represents
an special design called symmetric design. A direct consequence of a symmetric
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Fig. 1. (Left) a (8,14, 7,4, 3)—BIBD; (Right) a (7,7, 3,3, 1)—symmetric BIBD.

design is that r = k. This kind of blocks are usually used with a maximum
order of v = b = 7, although this is not a strict requirement. Figure 1 shows
configurations of the incidence matrix M representing possible solutions to a
(8,14,7,4,3)—BIBD and a symmetric (7,7,3,3,1)—BIBD, respectively.

2.2 Related work

The BIBD problem has been tackled by a number of different techniques in the
literature, with different success. Traditionally, the problem was dealt via deter-
ministic, constructive and/or complete methods. For instance John et al. [13,
14] used mathematical programming methods to look for an optimal incomplete
block design. Also, Zergaw [15] considered the error correlation, and presented
a sequential algorithm for constructing optimal block designs. Following this
line of work, Tjur [16] incorporated interchange mechanisms via the addition of
experimental units (blocks) one by one. Flener et al. [17] proposed a matricial
model based on ECLIPSE to solve the problem of block generation. Also, con-
straint programming techniques have been used; this way, Puget [18] formulated
the problem as a constraint satisfaction problem (CSP) where each instance was
represented by a classical binary matrix of size v x b. Puget proposed to combine
methods for symmetry breaking via dominance detection and symmetry breaking
using stabilizers in order to solve the problem. Also, [19] explored two strategies
(namely, a heuristic for variable selection and a domain pruning procedure) for
exploiting the symmetry of the problem. The underlying idea in this work was
to use symmetries to guide the search for a solution. The objective of this work
was not solving specific instances but being effective in reducing search effort.
Be as it may, although all these methods can be used to design BIBDs, their
applicability is limited by the size of the problem instances. A survey of known
results can be found in [1].

Stochastic methods were also applied to the problem. For example, the gen-
eration of BIBDs is formulated in [8] as a COP tackled with a neural network.
Several optimization strategies were considered as relaxation strategies for com-
parative purposes. A simulated annealing algorithm endowed with this neural
network (NN-SA) was shown to offer better performance than an analogous hy-
bridization with mean field annealing. These results were further improved by
Prestwich [20, 9], that considered different schemes for adding symmetry break-
ing constraints inside a constrained local search (CLS).



In general, most of the proposals to generate BIBDs are focused in unsolved
problems and consider a small number of instances, and only a small number of
papers provide an extensive experimentation on a large set of instances. Among
these papers, the most interesting ones are [8,9,19]. To the best of our knowl-
edge, [9] provides the best results published in many instances of the problem
and therefore, represents the state-of-the-art in the generation of BIBDs. For
these reasons the NN-SA and CLS proposals will be later considered in the
experimental section of this paper for comparative purposes with the methods
described in this paper.

Let us finally mention that there exist other variants of the BIBD problem,
e.g., partially BIBDs, randomized block designs, pairwise balanced designs, reg-
ular graph designs, and maximally balanced maximally uniform designs, among
others [21-24]. Although in some cases metaheuristic approaches have been used
on some of them [25-27], to the best of our knowledge there exists no previous
literature on this line of attack for the BIBD problem we consider in this work
(save the SA approach mentioned before).

3 Solving the (v, b, r, k, \)-BIBD problem

The BIBD problem exhibits a clear combinatorial structure, and can be read-
ily transformed in an optimization task. We have approached this challenging
resolution via two local search techniques (HC and TS) and a population-based
technique (GA), which will be described below. To this end, let us firstly define
the objective function, and possible neighborhood structures.

3.1 Objective function

The generation of BIBDs is a CSP posed here as a COP. This is done by relaxing
the problem (allowing the violation of constraints) and defining an objective
function that accounts for the number and degree of violation of them. More
precisely, for the general case of the instance (v, b, r, k, \), the following objective
function is defined:
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Observe that, for a given incidence matrix M, the value returned by the objec-
tive function sums up all discrepancies with respect to the expected values of the
row constraints, column constraints and scalar product constraints. Obviously,
the aim is to minimize the value of the objective function. If the instance is sat-
isfiable, a global optimum is a configuration M* such that f{*®mkX) (A1) = 0.
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3.2 Neighborhood Structures

Two neighborhood structures are considered. The first one arises naturally from
the binary representation of solutions as the incidence matrix M. This neigh-
borhood is based on the Hamming distance, and will be denoted as bit-flip. Let
H (M, Ms) be the Hamming distance between two incidence matrices M; and
My; the bit-flip neighborhood is defined as Nyis— f1ip(M) = {M' | H(M,M') =
1}. Clearly the size of this neighborhood is |[Nyis— fiip(M)| = vb, and the evalu-
ation of any M’ € Nyt f1ip(M) requires the incremental re-computation (with
respect to the evaluation of M) of v 4+ 1 constraints (i.e., 1 row constraint +
1 column constraint + v — 1 scalar products). Observe that evaluating a solu-
tion from scratch requires to compute exactly v + b + v(v — 1)/2 constraints,
and thus the complete exploration of the neighborhood can be assimilated to
% full evaluations. This consideration will be useful in order
to provide a fair basis for comparing local search and population-based tech-
niques later on, i.e., by taking constraint checks as a measure of computational
effort. While this measure can admit several nuances, it is more informative than
the number of solutions generated, and more hardware-independent than, e.g.,
running time.

A second neighborhood structure —which we denote as swap— can be con-
sidered as well. The underlying idea here is to take an object from one block,
and move it to a different one. This can be formulated in binary terms as per-
muting a 0 and a 1 within the same row. Notice that by doing so, if a config-
uration holds the row constraint for a specific row, then all its neighbors will
also hold it. The swap neighborhood is defined as Ngyqp(M) = {M’ | 3,4,k :
mi; = my, = 0,mj; = my = 1}. Clearly, the size of this neighborhood is
[Nswap(M)| = vr(b —r), from which the number of evaluations to explore the
complete neighborhood can be directly inferred. Note that row constraints do
not have to be re-evaluated as the number of 1’s per row remains constant. In
any case, the impact of this consideration is minimal since the computing effort
is dominated by the quadratic term in the denominator. Let us note as a final
consideration that a symmetrical version of this latter neighborhood could be
defined, substituting an object by another different one within a block. Notice
however that the objective function is not symmetrical in this sense, and the
cost of exploring this neighborhood is higher (and it exhibits other difficulties
when deployed on a GA, as Nswap will be in Sect. 3.4). For this reason, it has
not been considered in this work.

TLeq =

3.3 Local search techniques

Two different versions of a hill climbing (HC) approach and a tabu search (TS)
algorithm were defined on the basis of the two neighborhood structures. These
are denoted as HCyy, HCyy, TSyy and TS, respectively. Besides the obvious
differences in algorithmic aspects and neighborhood computation, there is an
additional consideration regarding the choice of neighborhood: since the swap
neighborhood does not alter the number of 1’s per row, if the initial solution



does not fulfill all row constraints no feasible solution will be ever found. Hence,
it is mandatory to enforce these constraints when generating the starting point
for a swap-based local search algorithm. Their bit-flip-based counterparts do not
require this, and can take a fully random solution as initial point for the search.
Nevertheless, the effect that such a guided initialization can have on these latter
algorithms has been empirically studied as well in Sect. 4.

The HC algorithms follow a steepest-descent procedure: the neighborhood
of the current solution is completely explored, and the best solution is chosen
unless this is worse than the current one; if this is the case, the current solution is
a local optimum, and the process is re-started from a different point (randomly
chosen) until the computational budget allocated is exhausted. Regarding the
TS algorithms, they also conduct a full-exploration of the current neighborhood,
moving to the best non-tabu neighbor even if it is worse than the current solution.
In the case of TSy, a move is tabu if it modifies a specific bit m;; stored in the
tabu list. Similarly, in the case of T'S,,,, a move is tabu if it attempts to reverse
a previous swap m;; <> m;; stored in the tabu list. To prevent cycling, the
tabu tenure —i.e., the number of iterations tabu move stays in the list— is chosen
randomly in the range [3/2,35/2], where 8 = vb in TSy and 8 = vbr in TS,,.
The tabu status of a move can be overridden if the aspiration criteria is fulfilled,
namely, finding a solution better than the current best solution found so far.
After a number of n, evaluations (a parameter that we will set as a function of
the total number of evaluations) with no improvement, the search is intensified,
by returning to the best solution found so far.

3.4 Genetic algorithm

Two versions of a steady state GA have been considered. Both of them use binary
tournament selection and replacement of the worst individual in the population.
They differ in the reproductive stage though. The first one, which we denote as
GAyuy, is related to the bit-flip neighborhood, since it uses uniform crossover and
bit-flip mutation. The second one is denoted as GAg,,, and is more related to
the swap neighborhood. To be precise, this latter algorithm performs uniform
crossover at row level (that is, it randomly selects entire rows from either of
the parents), and uses swap mutation. Obviously, this implies that the unitation
of each row is never changed, and therefore the initialization of the population
has to be done with solutions fulfilling all row constraints, as it was the case
with HCy,, and TSg,. Again, this guided initialization can be optionally done
in GApy, although it is not mandatory.

To keep diversity in the population, both GA variants ban duplicated solu-
tions, i.e., if an offspring is a copy of an existing solution it is discarded. Further-
more, a re-starting mechanism is introduced to re-activate the search whenever
stagnation takes place. This is done by keeping a fraction fo of the top individ-
uals in the current population, and refreshing the rest of the population with
random individuals. This procedure is triggered after a number of n, evaluations
with no improvement of the current best solution.



Table 1. BIBD instances considered in this work, and their solvability status with
respect to the simulated annealing/neural network hybrid algorithm (NN-SA) in [8],
and the constrained local search algorithm (CLS) in [9].

ID v b r k X vb NN-SA CLS 1D v b r k X vb NN-SA CLS
1 814 7 4 3 112 yes yes 44 2525 9 9 3 625 no no
2 1111 5 5 2 121 yes yes 45 15 42 14 5 4 630 no yes
3 1015 6 4 2 150 yes yes 46 21 30 10 7 3 630 no no
4 918 8 4 3 162 yes yes 47 16 40 10 4 2 640 no yes
5 1313 4 4 1 169 yes yes 48 16 40 15 6 5 640 no no
6 1018 9 5 4 180 yes yes 49 9 72 32 412 648 no yes
7 828 14 4 6 224 yes yes 50 154521 7 9 675 no no
8 1515 7 7 3 225 yes yes 51 13 52 16 4 4 676 no yes
9 11 2210 5 4 242 yes yes 52 13 52 24 6 10 676 no yes
10 16 16 6 6 2 256 yes yes 53 10 72 36 5 16 720 no yes
11 12 2211 6 5 264 no yes 54 19 38 18 9 8 722 no no
12 10 30 12 4 4 300 yes yes 55 11 66 30 5 12 726 no yes
13 16 20 5 4 1 320 yes yes 56 22 3312 8 4 726 no no
14 93616 4 6 324 yes yes 57 15 52 26 7 12 780 no no
15 84221 4 9 336 no yes 58 27 27 13 13 6 729 no no
16 1326 8 4 2 338 yes yes 59 21 3515 9 6 735 no no
17 13 26 12 6 5 338 no yes 60 10 75 30 4 10 750 no yes
18 10 36 18 5 8 360 no yes 61 2530 6 5 1 750 no yes
19 1919 9 9 4 361 no yes 62 20 38 19 10 9 760 no no
20 113315 5 6 363 no yes 63 16 48 15 5 4 768 no yes
21 14 26 13 7 6 364 no no 64 16 48 18 6 6 768 no no
22 1624 9 6 3 384 no yes 65 12 66 22 4 6 792 no yes
23 12 33 11 4 3 396 yes yes 66 12 66 33 6 15 792 no yes
24 2121 5 5 1 441 yes yes 67 9 90 40 4 15 810 no yes
25 8 56 28 4 12 448 no yes 68 13 65 20 4 5 845 no yes
26 10 45 18 4 6 450 no yes 69 11 77 35 5 14 847 no yes
27 153014 7 6 450 no no 70 21 42 10 5 2 882 no no
28 16 30 15 8 7 480 no no 71 21 42 12 6 3 882 no no
29 11 44 20 5 8 484 no yes 72 21 42 20 10 9 882 no no
30 95424 4 9 486  no yes 73 16 56 21 6 7 896 no no
31 13 39 12 4 3 507 no yes 74 10 90 36 4 12 900 no yes
32 133915 5 5 507 no yes 75 15 60 28 7 12 900 no no
33 16 32 12 6 4 512 no no 76 18 51 17 6 5 918 no no
34 15 35 14 6 5 525 no no 77 22 42 21 11 10 924 no no
35 12 44 22 6 10 528 no yes 78 1563 21 5 6 945 no yes
36 23 23 11 11 5 529 no no 79 16 60 15 4 3 960 no yes
37 10 54 27 5 12 540 no yes 80 16 60 30 8 14 960 no no
38 8 70 35 4 15 560 no yes 81 3131 6 6 1 961 no yes
39 17 3416 8 7 578 no no 82 31 31 10 10 3 961 no no
40 10 60 24 4 8 600 no yes 83 31 31 15 15 7 961 no no
41 11 5520 4 6 605 no yes 84 11 88 40 5 16 968 no yes
42 11 55 25 5 10 605 no yes 85 22 44 14 7 4 968 no no
43 18 34 17 9 8 612 no no 86 25 40 16 10 6 1000 no no

4 Experimental results

The experiments have been done on 86 instances taken from [8,9] where vb <
1000 and k£ # 3. This corresponds to the hardest instances reported therein,
since the cases where k = 3 were easily solvable. Table 1 shows the particular
instances considered, along with an identification label, and their solvability sta-
tus regarding the NN-SA [8] and CLS [9] algorithm. Although the data reported
in [9] is limited to the best result out of 3 runs of CLS per instance, it must be
noted that the number of instances solved by the latter algorithm is more than
3 times that of NN-SA.

All algorithms have been run 30 times per problem instance. To make the
comparison with CLS as fair as possible, all runs of local search techniques are
limited to explore n, = 2 - 10% neighbors. This number correspond to the maxi-
mum number of backtrack steps (fixing one entry of the incidence matrix) per-
formed by CLS in [9]. The GAs consider the equivalent number of full evaluations
in each case (see Sect. 3.2). The number of evaluations without improvement to
trigger intensification in TS or re-starting in GA is n, = n,/10. Other param-
eters of the GA are population size= 100, crossover and mutation probabilities



Table 2. Results of HC algorithms (30 runs per instance). T, o, B and S denote,
respectively, the fitness average value, the standard deviation, the best obtained result,
and the number of times that a problem instance solution is obtained.

HCy s HC g HCy ¢ HCsq

1D T To B S T To B S 1D EEa B S EE B S

T 350 £ 1.12 0 2 0.00 £ 0.00 0 30 44 139.67 F 3.80 130 0 100.40 £ 3.08 95 0

2 5.13 + 4.62 0 13 0.00 + 0.00 0 30 45 35.33 +3.17 29 0 15.00 £ 2.14 11 0
3 5.83 4+ 1.24 4 0 0.00 4+ 0.00 0 30 46 84.60 + 3.53 78 0 50.63 £ 3.22 45 0
4 573+ 1.44 0 1 0.00 £ 0.00 0 30 47  29.63 + 2.74 23 0 13.10 £2.41 8 0

5 3.13 £ 4.15 0 19 0.00 £ 0.00 0 30 48  47.57 £2.63 43 0 20.47 £ 2.60 11 0
6 11.27 £ 1.63 7 0 1.47 4+ 1.93 0 19 49 25.93 £3.80 13 0 2.00 £ 2.00 0 15

7 7.80 £ 1.19 5 0 0.00 + 0.00 0 30 50 54.90 £ 4.43 41 0 17.60 & 2.09 13 0
8 36.60 £ 2.68 30 0 4.33 &+ 5.17 0 17 51 24.67 +2.44 16 0 7.63 £ 162 4 0
9 14.67 £ 1.70 10 0 3.97 £0.84 0 1 52 42,20 £ 3.00 36 0 10.03 £2.76 4 0
10 37.23 £ 1.67 33 0 4.47 £ 5.67 0 18 53 38.87 £4.54 29 0 3.17£2.18 0 9
11 22.27 4 2.14 16 0 6.13 +1.26 4 0 54 96.27 + 4.14 88 0 42.00 £ 3.75 33 0
12 11.30 £ 1.35 9 0 2.53 +£1.93 0 11 55 31.93 +3.45 21 0 5.87 +£217 0 2
13 20.67 + 2.07 16 0 8.40 + 4.12 0 5 56 104.97 + 5.44 94 0 61.43 £ 4.26 50 0
14 11.20 £ 1.66 7 0 0.27 + 1.00 0 28 57 72.53 + 4.81 59 0 44.57 £ 1.65 41 0
15 12.07 £ 2.03 8 0 0.00 4 0.00 0 30 58 214.20 £ 4.93 200 0 137.03 £ 6.52 111 0
16 16.17 £ 2.08 12 0 6.13 &£ 1.06 4 0 59 110.00 + 4.82 102 0 58.27 £ 3.85 51 0
17 28.53 £ 2.20 22 0 9.63 £ 1.58 6 0 60 25.50 +3.51 17 0 3.43+£1.84 0 6
18 19.67 £ 1.96 14 0 2.67 & 1.89 0 10 61 73.53 £ 4.81 63 0 49.53 &+ 4.11 41 0
19 78.00 + 2.49 73 0 45.50 £ 3.38 35 0 62 116.73 £ 5.07 102 0 48.60 & 3.42 42 0
20 19.17 £ 2.18 15 0 4.10 &£ 1.35 0 2 63 41.77 £ 3.29 35 0 18.47 £ 2.92 13 0
21 38.77 £ 3.09 33 0 13.37 £2.26 6 0 64 50.37 + 4.20 40 0 20.63 £ 3.01 13 0
22 40.47 £ 2.05 35 0 19.80 £ 2.17 15 0 65 24.13 £ 2.46 20 0 6.97 £251 4 0
23 16.30 + 1.62 13 0 5.00 & 1.18 4 0 66 51.70 + 4.18 43 0 7.40 £2.56 0 1
24 48.87 + 4.57 34 023.30 £7.20 0 1 67 33.90+6.15 15 0 3.33+£236 0 9
25 19.20 £ 3.52 12 0 0.00 & 0.00 0 30 68 26.67 +£3.62 17 0 9.73 £235 4 0
26 15.37 £ 1.80 9 0 2.00 & 2.00 0 15 69 38.47 £3.39 31 0 543 4206 0 1
27 46.27 £ 3.00 41 0 17.00 & 2.42 11 0 70  64.90 + 3.83 56 0 36.90 £ 3.16 29 0
28 59.83 + 3.88 52 0 22.70 £ 2.52 16 0 71 76.73 £ 3.92 69 0 44.70 £ 3.28 37 0
29 24.00 £ 2.52 19 0 3.87 £1.73 0 4 72 125.93 + 6.71 106 0 59.17 £ 5.88 46 0
30 17.63 £ 2.51 13 0 0.67 & 1.49 0 25 73 53.83 £ 3.85 43 0 22.50 £ 3.28 17 0
31 20.63 & 2.37 16 0 6.37 £ 1.94 4 0 74 28.00 &£ 6.10 14 0 5.70+2.58 0 3
32 26.97 + 2.47 20 0 863 4+ 174 5 0 75 66.43 & 4.98 53 0 19.10 £ 2.75 13 0
33 43.53 + 2.28 37 0 20.67 £ 2.56 15 0 76 60.73 4+ 4.05 48 0 30.60 + 4.57 21 0
34 40.87 + 2.60 35 0 16.43 + 2.68 10 0 77 153.00 4+ 6.62 131 0 67.27 + 5.53 54 0
35 36.20 +£ 3.91 28 0 6.13 +£ 1.67 4 0 78 43.30 4+ 3.57 35 0 16.37 £+ 3.02 11 0
36 135.73 £ 3.86 128 0 84.43 &+ 4.10 72 0 79 39.20 4+ 4.46 27 0 14.60 £ 353 9 0
37 27.83 £ 3.61 20 0 3.53 + 143 0 4 80 83.07 £ 6.50 70 0 24.83 £ 3.22 17 0
38 29.00 £ 4.93 16 0 0.13 £ 0.72 0 29 81 134.73 4+ 5.88 122 0 100.77 £ 5.04 87 0
39 67.13 £ 4.35 57 0 28.17 &+ 2.00 23 0 82 231.17 £ 5.85 219 0 175.60 & 6.37 160 0
40 19.40 £ 3.02 11 0 2.67 & 1.89 0 10 83 312.40 £ 6.15 300 0 206.10 & 6.14 194 0
41 19.23 4+ 2.43 14 0 4.10 &£ 1.60 0 3 84 42,53 £ 5.08 34 0 7.70+£ 264 0 1
42 26.90 & 3.22 20 0 4.53 £ 1.67 0 2 85 102.07 + 4.68 94 0 57.73 £ 4.63 44 0
43 85.57 £ 3.60 79 0 34.93 + 3.22 28 0 86 167.60 + 6.52 150 0 98.57 £ 5.78 88 0

px = .9 and pyr = 1/¢ (where £ = vb is the size of individuals) respectively, and
for, = 10%.

Tables 2-4 show all results. Regarding the initialization procedure, bit-flip-
based algorithms have been tested both with purely random initialization and
guided initialization (i.e., enforcing row constraints). The guided initialization
resulted in worse results for HC, indistinguishable results for TS, and better
results for GA in most instances (in all cases with statistical significance at the
standard 0.05 level according to a Wilcoxon ranksum test). This can be explained
by the inferior exploration capabilities of HCy; when starting from a solution
satisfying row constraints (the search will be confined to a narrow path uphill).
This consideration is unimportant for TSy, since it can easily make downhill
moves to keep on exploring. The GAy; benefits however from having a diverse
population of higher quality than random. We have therefore opted for reporting
the results of HCyy and T'Syy with random initialization, and the results of GAyy
with guided initialization.

A summary of performance is provided in Table 5, showing the number of
problem instances (out of 86) that were solved in at least one run by each



Table 3. Results of TS algorithms (30 runs per instance). Z, o, B and S denote,
respectively, the fitness average value, the standard deviation, the best obtained result,
and the number of times that a problem instance solution is obtained.

TSy TSsw TSy TSsw
D EEXS B S EEX B S D T Eo B S EENS B S
T 3.30 £ 2.62 0 10 0.00 £ 0.00 0 30 14 108.80 £ 6.48 96 0 6670 £ 9.48 22 0
2 6.93 £ 6.06 0 12 0.00 + 0.00 0 30 45 1753 £264 9 0 430+ 144 0 2
3 6.17 £2.40 0 2 0.00 + 0.00 0 30 46 58.37 + 4.32 50 0 32.37 + 1.74 29 0
4 430 £ 1.68 0 3 0.00 + 0.00 0 30 47 16.87 £ 4.13 8 0 243 4 1.99 0 12
5 3.67 £ 481 0 18 0.00 + 0.00 0 30 48 2423 £350 18 0 8704 1.72 4 0
6 7.33 £ 253 4 0 0.00 £ 0.00 0 30 49 1.50 £ 2.01 0 19 0.00 + 0.00 0 30
7 1.67 &£ 2.10 0 18 0.00 + 0.00 0 30 50  23.43 £3.96 16 0 6.034 1.35 4 0
8 28.60 £ 5.37 15 0  0.00 = 0.00 0 30 51 8.70 +£ 242 0 1 0.00 £ 0.00 0 30
9 9.27 £ 2.86 4 0 0.00 + 0.00 0 30 52  14.37 £ 295 10 0 0.40 + 1.20 0 27
10 2713 £7.10 0 1 0.00 + 0.00 0 30 53 6.20 +£ 326 0 3 0.00 £ 0.00 0 30
11 13.50 £ 3.39 5 0 0.00 + 0.00 0 30 54  50.77 + 5.97 39 0 24.53 + 2.05 20 0
12 3.93£273 0 8 0.00+ 0.00 0 30 55 6.83 +£2.19 4 0 0.00 £ 0.00 0 30
13 16.60 £ 4.10 8 0 0.00 + 0.00 0 30 56  68.33 4+ 4.83 51 0 40.47 &+ 2.68 35 0
14 3.13 £2.05 0 8 0.00 4 0.00 0 30 57  43.17 4+ 2.57 38 0 40.13 4+ 0.43 40 0
15 1.60 &£ 2.39 0 19 0.00 + 0.00 0 30 58 160.80 + 8.58 145 0 100.43 + 3.85 91 0
16 10.60 + 2.24 4 0 0.00 + 0.00 0 30 59  66.53 + 4.08 56 0 35.90 + 2.53 30 0
17 16.33 £ 3.25 8 0 293+ 1.77 0 8 60 2.47 £ 2.12 0 12  0.00 £ 0.00 0 30
18 7.27 £ 279 0 1 0.00 £ 0.00 0 30 61  54.60 + 5.22 43 0 14.40 + 11.64 0 10
19 59.27 + 5.28 50 0 0.37 + 1.97 0 29 62  65.37 £ 6.74 54 0 29.77 + 1.80 26 0
20 8.37 £2.44 4 0 0.00 + 0.00 0 30 63 2073 +£3.59 13 0 5174+ 1.44 0 1
21 2270 £ 39415 0 577 +0.88 4 0 64 2353 +270 19 0 813+ 1.69 4 0
22 27.43 £ 3.23 23 0 4.70 + 4.41 0 12 65 5.50 £ 2.03 0 1 0.00 £ 0.00 0 30
23 8.33 £2.29 4 0 0.00+ 0.00 0 30 66 1257 £4.11 5 0 0.00 & 0.00 0 30
24 33.33 4+ 12.10 0 2 0.00 £ 0.00 0 30 67 2.23 + 2.56 0 16 0.00 £ 0.00 0 30
25 1.43 £ 1.99 0 19 0.00 £ 0.00 0 30 68 7.37 £ 211 4 0 0.00 £ 0.00 0 30
26 377 £2.35 0 7 0.00 4 0.00 0 30 69 7274254 0 1 0.13+0.72 0 29
27 26.10 + 4.04 18 0 8.13 + 1.82 4 0 70  40.53 4+ 3.87 32 0 18.23 4+ 1.84 14 0
28 34.70 + 3.91 27 0 11.70 £ 1.51 9 0 71 47.37 + 4.42 38 0 24.17 £ 2.60 17 0
29 8.57 £ 2.67 4 0 0.00 + 0.00 0 30 72 70.63 £ 5.49 61 0 36.77 £ 2.60 32 0
30 2.67 + 2.34 0 12 0.00 £ 0.00 0 30 73 21.90 £ 3.18 17 0 830+ 1.73 4 0
31 8.47 £2.40 4 0 0.00 + 0.00 0 30 74 2.20 +£ 270 0 17 0.00 £ 0.00 0 30
32 12.93 £ 2.05 9 0 0.27 + 1.00 0 28 75  24.90 £ 4.72 15 0 5.63 + 2.33 2
33 25.63 £ 3.40 20 0 9.37 + 1.87 4 0 76 32.00 £ 3.53 24 0 14.13 £253 9 0
34 22.67 £ 2.66 18 0 6.70 + 1.39 4 0 77 84.23 +£ 8.92 68 0 43.87 £ 2.20 41 0
35 12.70 £ 3.25 6 0 0.00 + 0.00 0 30 78  16.47 £2.80 11 0 3.17 £207 0 8
36 100.07 + 6.39 85 0 49.47 + 18.59 0 3 79 15.00 £ 3.17 10 0 1.43 £ 2.06 0 20
37 6.13 £263 0 2 0.00+ 0.00 0 30 80  32.00 £ 5.14 22 0 10.23 +2.01 6 0
38 2.33 + 2.83 0 17 0.00 £ 0.00 0 30 81 109.23 + 7.99 89 0 22.90 + 18.70 0 12
39 36.27 + 3.98 29 0 15.47 4+ 1.78 12 0 82 184.40 + 6.34 173 0 134.13 + 5.08 124 0
40 3.30 £ 2.69 0 11  0.00 + 0.00 0 30 83 230.37 + 10.02 207 0 159.63 + 5.92 148 0
41 5.47 +£1.65 4 0 0.00 & 0.00 0 30 84 7.60 + 3. 0 1 050+ 1.28 0 26
42 7.47 £3.31 4 0 0.00 =+ 0.00 0 30 85  61.90 + 4.47 54 0 34.80 + 2.56 31 0
43 48.80 + 5.53 39 0 20.47 + 1.87 16 0 86  107.70 + 5. 99 0 65.70 + 3.64 56 0

of the algorithms, and the corresponding success percentage. As expected, TS
variants outperform their HC counterparts. Note also that results of local search
algorithms are considerably improved when considering the swap neighborhood.
The difference is not so marked in the case of GAs, although GAg,, still manages
to solve more instances than GAyy. In global terms, TS, outperforms the rest
of techniques, including NN-SA and CLS. In fact, TS, can solve every instance
solved by CLS (i.e., the technique that had reported the best results on the
problem), as well as instances (23,23,11,11,5) and (15,60, 28,7,12).

A more fine-grained comparison of the algorithms considered is provided in
Table 6. This table shows the percentage of instances in which a certain algorithm
performs better (again, with statistical significance at the 0.05 level according
to a Wilcoxon ranksum test) than another certain one (note that entries (4, j)
and (7,4) in this table do not necessarily sum 100%, since there are instances on
which there is no significant difference between the algorithms compared). As
it can be seen, swap-based algorithms are consistently better than bit-flip-based
algorithms (above 75% in almost all cases). Regarding the GAs, note GAg,, is
better than GA;f in about 78% of the runs, a larger difference than the number



GAsw

GAys

GASU}

fitness average value, the standard deviation, the best obtained result, and the number
GAyg

Table 4. Results of GAs (30 runs per instance). T, o, B and S denote, respectively, the
of times that a problem instance solution is obtained.
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1
2
3
4
5
6
7
8
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12
13
14
15
16
17
18
19
20

37

GAsw
35

GAbf

57

TSS’LU
(18.60%) (63.95%) (4.65%) (40.70%) (31.40%) (66.28%) (40.70%) (43.02%)

HCyy HC.. TSy,
55 35 27

CLS

16

NN-SA

of solved instances. Finally, TS, is the clear winner, beating the remaining

algorithms in 78%-100% of instances.
three different techniques (i.e., a hill climbing method, a tabu search algorithm,

Table 5. Number and percentage of solved instances for each algorithm on the 86
The application of metaheuristics to the design of balanced incomplete blocks
has resulted in very encouraging and positive results. An empirical evaluation of
and a genetic algorithm), with two variants each, has shown that highly com-
petitive results can be achieved. Furthermore, a TS algorithm working on the

instances considered.

5 Conclusions and Future Work



Table 6. Summary of statistical significance results. Each entry in the table indicates
the percentage of instances in which the algorithm labelled in the row outperforms the
algorithm labelled in the column, with a statistically significant difference according to
a Wilcoxon ranksum test.

HCy,;  HCaw  TSiy  TSww  GAy;  GAu,

HCyy - 0.00% 0.00%  0.00% 0.00% 0.00%
HCsw 100% — 76.64% 0.00% 61.63% 12.79%
TSey  95.35%  12.79% - 0.00% 2791% 11.63%
TSsw 100%  97.67% 100.00% - 86.05% 77.91%
GAyy 100% 10.47% 43.02% 11.63% - 5.81%

GAgw 100%  47.67% 81.40% 17.44% 77.91% —

swap neighborhood has been shown to be competitive to an ad-hoc constrained
local search (CLS) method, the current incumbent for this problem.

In addition, our analysis also indicates the relevance of the neighborhood
structure chosen. The swap neighborhood provides better navigational capabili-
ties than the bit-flip neighborhood, regardless how initial solutions are chosen in
the latter. However, this does not imply the bit-flip neighborhood is not appro-
priate for this problem. For example, we believe a hybrid approach that combine
both neighborhoods —e.g., in a variable neighborhood search framework— would
be of the foremost interest. Work is in progress in this line. This hybridization
can be also done from the algorithmic point of view, i.e., a memetic combination
of TS and GAs. The form of this combination is an issue of further work.
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