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Abstract. Terrain generation algorithms have an important role in video
games: they can provide a realistic scenario for the game experience, or
can help keep the user interested in playing by providing new landscapes
each time he plays. Nowadays there are a wide range of techniques for
terrain generation, but all of them are focused on providing realistic ter-
rains, often neglecting other aspects (e.g., aesthetic appeal or presence
of desired features). This paper proposes a new technique, Genetic Ter-
rain Programming, based on evolutionary design with GP to allow game
designers to evolve terrains accordingly to their aesthetic feelings or de-
sired features. The developed application produces Terrains Programs
(TPs) that will always generate different terrains, but consistently with
the same features (e.g. valleys, lakes). This characteristic will allow game
designers to endow games with programs capable of generating different
coherent landscapes each time users run the game.

Key words: terrain generation, video games, evolutionary art, genetic
programming

1 Introduction

Video games constitute a crucial area of the entertainment industry, with impres-
sive financial investments to make them more appealing and interesting. Game
players seek continually for more enjoyable games as they spent 3.7 days per
week playing an average of 2.01 hours per day [1]. Entertainment industry wants
to maintain or increase this user’s interest. In order to achieve richer human-
machine interaction video games must be dynamic, they need to present game
players with novel plots, intelligent artificial opponents, different goals and even
scenario changes. Artificial terrain generation algorithms have an important role
in the video games’ dynamics. They help keep the user interested in playing by
providing new landscapes each time he plays.
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Nowadays there are a wide range of techniques for terrain generation, which
are presented in Sect. 2.1, but all of them have key constrains. More elaborated
methods depend highly upon designer’s skills, time and effort to obtain accept-
able results, and can not be used to automatically generate terrains in real time.
The simpler methods allow only a narrow variety of terrain types and usually
require a second algorithm (e.g. erosion algorithms) to provide a more natural
looking result. Another key limitation of most techniques is the lack of control
over localised terrain features.

A common feature with current techniques is that they all try to generate
realistic terrains. Although this is an important aspect, imagine the possibil-
ity of a game designer to evolve their own terrain accordingly to his aesthetic
feelings. This can lead to the generation of more exotic terrains at the cost of
realism, but might also give players an awe reaction and increase their interest
in playing. This paper presents a new technique, that we designated as Genetic
Terrain Programming, that allows the generation of terrains based on aesthetic
evolutionary design with Genetic Programming (GP).

Sect. 2 presents some background on the current terrain generation tech-
niques, their main constrains and an overview of evolutionary systems, applied
to terrain generation, and on similar domains. The details of the Genetic Terrain
Programming technique and the developed application are described in Sect. 3.
Some results and considerations are presented in Sect. 4. Finally, Sect. 5 presents
the conclusions and possible future directions.

2 Background

A digital ground surface topography, or terrain, can be represented in many ways,
but the most common representation is the height map. A height map is a scalar
function of two variables, such that every coordinate pair (x, y) corresponds to
an elevation value h, as shown in Eq. (1).

h = f (x, y) . (1)

A height map is normally implemented as a two-dimensional, rectangular grid
of height values, and is equivalent to a grayscale image. Height maps have the
limitation that they cannot represent structures where there are multiple heights
for the same (x, y) coordinates (such as caves), but are sufficient for most uses
and can be highly optimised for rendering and object collision detection [2].

2.1 Terrain Generation Techniques

Current terrain generation techniques can be divided in three main categories:
measuring, modeling and procedural.

In the measuring techniques elevation data is derived from real-world mea-
surements to produce Digital Elevation Models (DEM), commonly built using
remote sensing techniques such as satellite imagery and land surveys [3]. This
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is the most common basis for digitally-produced relief maps. Measuring has the
advantage of producing highly realistic terrains with very little human effort,
but at the expense of designer control. If the designer has specific goals for the
the terrain’s design and features (e.g. mountains, valleys, lakes) this approach
may be very time-consuming, as the designer might have to search extensively
to find real-world data that meets his specific criteria.

Modeling is by far the most flexible technique for terrain generation. A human
artist models or sculpts the terrain morphology manually using a 3D modeling
program (e.g. Maya4, 3D Studio4, or Blender5), or a specialised terrain editor
program (e.g. the editors that ship with video games like Unreal Tournament6 or
SimCity 47). The way the terrain is built is different depending on the features
provided by the chosen editor, but the general principle is the same. With this
approach the designer has unlimited control over the terrain design and features,
but this might be also a disadvantage. By delegating most or all of the detail
up to the designer, these technique imposes high requirements on the designer
in terms of time and effort. Also the realism of the resulting terrain is fully
dependent on the designer’s skills.

Procedural techniques are those in which the terrains are generated pro-
grammatically. These category can be divided into physical, fractal and spectral
synthesis techniques. Physically-based techniques simulate the real phenomena
of terrain evolution trough effects of physical processes such as erosion by wind
[4], water [5], thermal [6], or plate tectonics. These techniques generate highly
realistic terrains, but require an in-depth knowledge of the physical laws to im-
plement and use them effectively.

Another procedural approach is the spectral synthesis. This technique is
based on the observation that fractional Brownian motion (fBm) noise has a
well defined power spectrum. So random frequency components can be easily
calculated and then the inverse Fast Fourier Transform (FFT) can be computed
to convert the frequency components into altitudes [6]. This technique does not
allow the designer much control on the outcome of terrains features.

Self-similarity is the key concept behind any fractal technique. An object
is said to be self-similar when magnified subsets of the object look like the
whole and to each other [7]. Terrain falls into this category. The jagged edge
of a broken rock has the same irregularities as a ridgeline on a distant horizon.
This allows the use of fractals to generate terrain which still looks like terrain,
regardless of the scale in which it is displayed [8]. Every time these algorithms are
executed they generate a different terrain due to the incorporated randomness.
This class of algorithms is the favourite one by game’s designers, mainly due to
their speed and simplicity of implementation. There are several tools available
that are predominantly based on fractal algorithms, such as Terragen8 (which

4 http://www.autodesk.com/fo-products
5 http://www.blender.org
6 http://www.mobygames.com/game/unreal-tournament-2004
7 http://simcity.ea.com/about/simcity4/overview.php
8 http://www.planetside.co.uk/terragen



4

is a fractal/modeling tool) and GenSurf9 (a mapping tool for Quake 3 Arena
video game). However, generated terrains by this techniques are easily recognised
because of the self-similarity characteristic of fractal algorithms. Although these
algorithms present some parameters that can be tweaked to control, e.g the
roughness, the designer does not have control on the resulting terrain features.

2.2 Evolutionary Design

Teong Ong et al. proposed an evolutionary design optimisation technique to
generate terrains [9]. They applied genetic algorithms to transform height maps
in order to conform them to the required features. Their approach breaks down
the terrain generation process into two stages: the terrain silhouette generation
phase, and the terrain height map generation phase. The input to the first phase
is a rough, 2D map laying out the geography of the desired terrain that can be
randomly generated or specified by the designer. This map is processed by the
first phase to remove any unnaturally straight edges and then fed to the second
phase, along with a database of pre-selected height map samples representative of
the different terrain types. The second phase searches for an optimal arrangement
of elevation data from the database that approximates the map generated in the
first phase. Since the height map generation algorithm is inherently random, the
terrains generated from two separate runs of the algorithm will not be the same,
even if they use the same map. While this has the benefit of allowing an infinite
number of variations to be created. To control this, the seed for the random
number generator can be kept the same across separate runs of the algorithm,
allowing the same terrain to be regenerated as many times as desired.

Like the techniques described in Sect. 2.1, the solution proposed in [9] is
focused only on generating realistic terrains. It is based on a database of real
terrain samples and cannot generate terrains accordingly to the designer’s aes-
thetic appeal, or terrains that look “out of this world”. On the opposite side
there are artists. They have used evolutionary art systems, for many years, to
generate aesthetically pleasing forms rather than realistic ones.

Evolutionary art systems are similar in many ways, but they differ on their
phenotype representations [10]. Because of the equivalence between height maps
and grayscale images, it is possible to apply the same principle of evolutionary art
to terrain generation. However, the phenotype will be a terrain surface instead
of an image.

GP has been the most fruitful evolutionary algorithm applied to evolve im-
ages interactively. Karl Sims used GP to create and evolve computer graphics
by mathematical equations. The equations are used to calculate each pixel [11],
or create graphic movies by adding a time variable to the dynamic differen-
tial equations [12]. He created several graphic art pieces including Panspermia
and Primordial Dance and also allowed visitors interact with his interactive art
system at art shows and exhibitions. His Galapagos10 is an L-system based In-

9 http://tarot.telefragged.com/gensurf
10 http://www.genarts.com/galapagos
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teractive Evolutionary Computation (IEC) system that allows visitors to create
their own graphic art through their interaction.

Tatsuo Unemi developed SBART (Simulated Breeding ART) [13,14], an IEC
graphics system open to public. SBART uses GP to create mathematical equa-
tions for calculating each pixel value and its (x, y) coordinates. As GP nodes
SBART assigns the four arithmetic fundamental operators (+, −, × and ÷),
power, sqrt, sin, cos, log, exp, min and max. The terminal nodes are constants
and variables. Three values at each pixel are calculated using one generated
mathematical equation by assuming that the constants are 3D vectors consist-
ing of three real numbers and the variables are 3D tuples consisting of (x, y, 0).
The three calculated values are regarded as members of a vector (hue, lightness
and saturation) and are transformed to RGB values for each pixel. These three
values are normalised to values in [−1, 1] using a saw-like function. It allows the
creation of movies by replacing (x, y, 0) with (x, y, t), where t is a time variable.
The SBART ’s functions were expanded to create a collage [15].

In NEvAr (Neuro Evolutionary Art) [16], of Peneusal Machado et al., the
function set is composed mainly of simple functions such as arithmetic, trigono-
metric and logic operations. The terminal set is composed of a set of variables x,
y and random constants. The phenotype (image) is generated by evaluating the
genotype for each (x, y) pair belonging to the image. In order to produce colour
images, NEvAr resorts to a special kind of terminal that returns a different value
depending on the colour channel – Red, Green or Blue – that is being processed.
This tool focus on the reuse of useful individuals, which are stored in an image
database and led to the development of automatic seeding procedures.

Despite the interesting results achieved by the above evolutionary art sys-
tems, to the best of our knowledge, none of them has been applied this technique
to evolve terrain landscaps. We believe the use of evolutionary art systems with
GP will allow the creation of both aesthetic and real terrains (without requiring
a database of real terrain data). Additionally some control over localised ter-
rain features will be possible trough the use of several TPs to compose the full
landscape, this is the main drawback of the procedural techniques. It will also
require less effort and time than modeling techniques to create complex terrains
and the result is not solely dependent on the designer’s skills.

3 Genetic Terrain Programming

Our main goals are to create TPs capable of generating different terrains but
consistently with the same features and obtain TPs capable of generating realis-
tic or aesthetic terrains. We propose the use of aesthetic evolutionary design with
GP to achieve them. This approach consists of a guided evolution of terrains (by
means of Interactive Evolution) accordingly to a specific desired terrain feature
or aesthetic appeal. We have coined the term Genetic Terrain Programming to
denote this new technique. Although the concept is similar to the one used in
evolutionary art systems, it has never been applied to terrain generation.
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Our application, Generator of Terrain Programs (GenTP) has been devel-
oped with GPLAB [17], an open source GP toolbox for Matlab11. The initial
population is created randomly, without restrictions on trees depth size and a
fixed population size of 12. The number of generations is decided by the designer,
who can stop the application at any time. The designer can select one or two
individuals to create the next population and the genetic operators used depend
upon the number of selected individuals. If one individual is selected only the
mutation operator will be used. In case the designer chooses to select two indi-
viduals both the standard crossover and mutation operators [18] will be applied.
Like in others IEC systems, the fitness function relies exclusively on designers’
decision, either based on his aesthetic appeal or on desired features.

F = {plus(a, b);minus(a, b);myMultiply(a, b);myDivide(a, b);myLog(a);
myMod(a, b);mySin(a);myCos(a);myTan(a);myAtan(a);FFT (a);
myPower(a);mySqrt(a);Smooth(a); Incline(a)} . (2)

T = {squares; rectangles; circles; triangles; planes;myRandom;fftGen} .
(3)

Each GP individual is a tree composed by mathematical functions shown in
Eq. (2) and height maps as terminals, shown in Eq. (3). Some terminals depend
upon a Random Ephemeral Constant (REC) to define some characteristics, such
as inclinations of planes, spectrum values of fftGen and sizes of the geometric
figures terminals. All these terminals depend upon a random number generator,
which means that consecutive calls of one TP will always generate different ter-
rains. This is a desired characteristic because we want to be able create different
terrains with each TP, but that will share the same features. An example of a
GP individual is given in Fig. 1.

mySin mySin plus
2.0
fftGen

2.0
fftGen

Fig. 1. Example of a GP tree individual with two RECs (in grey ellipses)

While in [14,15] the mathematical equations are used to calculate both the
pixel value and its coordinates, in GenTP only the height will be calculated.
The (x, y) coordinates will be dictated by the matrix position occupied by the
height value.

The GenTP interface (see Fig. 2) presents a grid with 12 individuals as 3D
surfaces to allow the designer to select one or two of them to create the next
generation. This interface also permits to see the TP of the selected individuals
and record them as a formula and the generated terrain as a VRML 2.0 file.
11 Matlab is a product of Mathworks (http://www.mathworks.com/)
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Fig. 2. GenTP graphical user interface

4 Experimental Results

Two kind of experiments were conducted, the first one consisted on obtaining
aesthetic appealing terrains (regardless of their realism) and the second one to
achieve a realistic terrain with a specific feature in mind.

On the first kind of experiments we were able to get aesthetic appealing
terrains after about 30 to 70 generations. On those experiments we were able
to obtain very different kinds of terrains types. Must of them are difficult to
describe due to their exotic look (see Fig. 3).

H = myLog(Incline(mySin(mySqrt(Smooth(fftGen(1.25)))))) . (4)

For example, the TP represented in Eq. (4) creates terrains with a bank of
knolls with two ridges that give them an alien look (see Fig. 3). In this TP
the REC in fftGen allows us to control the number of knolls, e.g. if we change
the REC from 1.25 to 2.5 we can decrease their number. Fig. 3 has examples of
terrains generated from three different TPs. Each column has pictures of terrains
generated by three consecutive executions of the same TP. In this set of pictures
is visible that each TP is capable of generate different terrains, but with the
same features.

On the second kind of experiments we tried to obtain TPs to generate terrains
with a specific features, such as mountains, cliffs or corals. In this case the number
of necessary generations varies widely until we are able to get acceptable results.
These number is highly dependent on the initial population and could vary
between 10 to more than 100 generations. When running the experiments, if
after a number of generations an interesting result is not obtained, we have
preferred to cancel the experiment and begin again, avoiding this way a long



8

Fig. 3. Exotic terrains generated by three different TPs (rendered with 3DS
Max). The pictures of the third column were generated by Eq. (4), the two top
terrains with REC = 1.25 and on the bottom one with REC = 2.5.

run. We also verified that, for realistic landscapes, the range of terrains types
were narrower than in the first experiment. Eq. (5) has an example of a TP
that was evolved having in mind to achieve a coral looking terrain. In the set of
pictures on Fig. 4 it is visible that the terrains generated by each TP are allways
different, but still present the same features.

H = myLog(minus(fftGen(2.75),myLog(minus(
Smooth(fftGen(1.50)),fftGen(2.50))))) . (5)

The evolution is influenced by the number of selected TPs, if just one TP
is selected - only mutation operator applied - the next generation will present
few variations of the selected individual and the TP will evolve slowly. On the
other hand, if the designer opts to select two individuals, the next generation
will present more diversity and the evolved TPs can change their look more
dramatically. Some robustness tests, on a few TPs, showed that the functions
myLog, myPower, myTan and myAtan are the ones that have more influence
in the terrain look, followed by the Smooth. Changes on the REC also influence
the terrain look, but that change is not always noticeable.

5 Conclusions and Future Work

On this paper we present the Genetic Terrain Programming technique for terrain
generation. The idea behind this new approach is to use interactive evolution
with GP to generate TPs. To employ this technique a first implementation of
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Fig. 4. TPs evolved with specific features in mind (rendered with 3DS Max).
From left to right column: cliffs, corals (Eq. (5)) and mountains.

GenTP has been carried out with GPLAB and Matlab. Through a series of ex-
periments we have shown that multiple execution of the same TP will allways
generate differrent terrains, because of the randomness present on its terminals,
but with the same features (e.g. mountains, valleys). With a single technique
designers will be able to evolve very different kinds of TPs, from real looking
terrains to more exotic ones with an alien semblance. Those TPs can be in-
serted in video games to generate different terrains each time a user plays and
consequently help to keep users interested in playing.

The potential shown by GenTP suggests several lines for future develop-
ments. One of them is to augment the GP terminal set in order to try obtain a
wider range of realistic terrain types with fewer generations. After that we plan
to incorporate the Genetic Terrain Programming technique in a real video game.
More features could be added to our technique so that whole scenarios, includ-
ing vegetation and buildings, can be generated. On a later stage, we will try to
involve a large number of users, by means of volunteer computing, to create a
whole set of different TPs.
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