
A Probabilistic Beam Search Approach to the
Shortest Common Supersequence Problem?

Christian Blum1, Carlos Cotta2, Antonio J. Fernández2, and José E. Gallardo2

1 ALBCOM, Dept. Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya, Barcelona, Spain

cblum@lsi.upc.edu
2 Dept. Lenguajes y Ciencias de la Computación, ETSI Informática,

Universidad de Málaga, Málaga, Spain
{ccottap,afdez,pepeg}@lcc.uma.es

Abstract. The Shortest Common Supersequence Problem (SCSP) is
a well-known hard combinatorial optimization problem that formalizes
many real world problems. This paper presents a novel randomized search
strategy, called probabilistic beam search (PBS), based on the hybridiza-
tion between beam search and greedy constructive heuristics. PBS is
competitive (and sometimes better than) previous state-of-the-art algo-
rithms for solving the SCSP. The paper describes PBS and provides an
experimental analysis (including comparisons with previous approaches)
that demonstrate its usefulness.

1 Introduction

The Shortest Common Supersequence Problem (SCSP) is a very well-known
problem in the area of string analysis. Basically, the SCSP consists of finding
a minimal-length sequence s of symbols from a certain alphabet, such that all
strings in a given set L can be embedded in s. The resulting combinatorial prob-
lem is enormously interesting for several reasons. Firstly, the SCSP constitutes a
formalization of different real-world problems. For example, it has many impli-
cations in bioinformatics [1]: it is a problem with a close relationship to multiple
sequence alignment [2], and to probe synthesis during microarray production [3].
This does not exhaust the practical usefulness of the SCSP though, since it also
has applications in planning [4] and data compression [5], among other fields.

Another reason the SCSP has attracted interest lies in its “cleanliness”, that
is, it is an abstract formulation of different real-world problems that can never-
theless be studied from a theoretical point of view in a context-independent way.
Indeed, theoretical computer scientists have analyzed in depth the problem, and
we now have accurate characterizations of its computational complexity. These
characterizations range from the classical complexity paradigm to the more re-
cent parameterized complexity paradigm. We will survey some of these results in
?

This work was supported by grant TIN-2005-08818-C04-01 of the Spanish government. Christian
Blum acknowledges support from the Ramón y Cajal program of the Spanish Ministry of Science
and Technology.



the next section as well, but it can be anticipated that the SCSP is intrinsically
hard [6–8] under many formulations and/or restrictions.

The practical impossibility of utilizing exact approaches for tackling this
problem in general justifies the use of heuristics. Such heuristic approaches are
aimed to producing probably- (yet not provably-) optimal solutions to the SCSP.
Good examples of such heuristics are the Majority Merge (MM) algorithm,
and related variants [9], based on greedy construction strategies. More sophisti-
cated heuristics have been also proposed, for instance, evolutionary algorithms
(EAs) [9–12]. In this work, we present a novel randomized search strategy (or
metaheuristic) to tackle the SCSP termed probabilistic beam search (PBS). As
the name indicates, this strategy is based in the framework of beam search, but
also borrows some heuristic ideas from the greedy constructive heuristics men-
tioned before. In the following we will show that this strategy can satisfactorily
compete in the SCSP arena, outperforming previous state-of-the-art approaches.
As a first step, the next section will describe the SCSP in more detail.

2 The Shortest Common Supersequence Problem

First of all, let us introduce some notation that we use in the following. We
write |s| for the length of string s (|s(1)s(2) . . . s(n)| = n, where s(j) ∈ Σ is the
element at the j-th position of s) and ε for the empty string (|ε| = 0). Abusing the
notation, |Σ| denotes the cardinality of set Σ. We use s D α for the total number
of occurrences of symbol α in string s (s(1)s(2) . . . s(n) D α =

∑
1≤i≤n,s(i)=α 1).

We write αs for the string obtained by appending the symbol α in front of string
s. Deleting symbol α from the front of string s is denoted by s|α, and is defined
as s′ when s = αs′, or s otherwise. We also use the | symbol to delete a symbol
from the front of a set of strings: {s1, · · · , sm}|α = {s1|α, · · · , sm|α}. Finally,
s ∈ Σ∗ means that s is a finite length string of symbols in Σ.

Let s and r be two strings of symbols taken from an alphabet Σ. String s
can be said to be a supersequence of r (denoted as s Â r) using the following
recursive definition:

s Â ε , True
ε Â r , False, if r 6= ε

αs Â αr , s Â r

αs Â βr , s Â βr, if α 6= β

(1)

Plainly, s Â r implies that r can be embedded in s, meaning that all symbols in
r are present in s in the very same order (although not necessarily consecutive).
For example, given the alphabet Σ = {a, b, c}, aacab Â acb. We can now state the
SCSP as follows: an instance I = (Σ, L) for the SCSP is given by a finite alphabet
Σ and a set L of m strings {s1, · · · , sm}, si ∈ Σ∗. The problem consists of finding
a string s of minimal length that is a supersequence of each string in L (s Â
si, ∀si ∈ L and |s| is minimal). For example, given I = ({a, b, c}, {cba, abba, abc}),
a shortest common supersequence of I is abcba.



The SCSP can be shown to be NP−hard, even if strong constraints are posed
on L, or on Σ. For example, it is NP−hard in general when all si have length
two [5], or when the alphabet size |Σ| is two [7]. In principle, these NP−hardness
results would have to be approached with caution, since they merely represent a
worst case scenario. In this sense, a more sensible characterization of the hard-
ness of the SCSP is provided by the framework of parameterized complexity [13].
This is done by approaching the problem from a multidimensional perspective,
realizing its internal structure, and isolating some parameters. If hardness (that
is, non-polynomial behavior) can be isolated within these parameters, the prob-
lem can be efficiently3 solved for fixed values of them. This is the case for several
NP−hard problems such as Vertex Cover [14, 15]; the term fixed-parameter
tractable (FPT) is used to denote these problems. Non-FPT problems will fall
under some class in the W−hierarchy. Hardness for class W [1] -the first one
above FPT in the hierarchy- is the current measure of intractability: problems
in this class cannot be efficiently solved (i.e., in fixed polynomial time) for in-
creasing sizes of the parameter.

Several parameterizations are possible for the SCSP. Firstly, the maximum
length k of the supersequence sought can be taken as a parameter. If the alphabet
size is constant, or another parameter, then the problem turns in this case to be
FPT, since there are at most |Σ|k supersequences, and these can be exhaustively
checked. However, this is not very useful in practice because k > max |si|. If
the number of strings m is used as a parameter, then SCSP is W [1]−hard, and
remains so even if |Σ| is taken as another parameter [1], or is constant [8]. Failure
of finding FPT results in this latter scenario is particularly relevant since the
alphabet size in biological problems is fixed (e.g., there are just four nucleotides
in DNA). Furthermore, the absence of FPT algorithms implies the absence of
fully polynomial-time approximation schemes (FPTAS) for the corresponding
problem.

3 Majority Merge Heuristics for the SCSP

The hardness results mentioned previously motivate the utilization of heuristics
for tackling the SCSP. One of the most popular algorithms for this purpose is
Majority Merge (MM). This is a greedy algorithm that constructs a super-
sequence incrementally by adding the symbol most frequently found at the front
of the strings in L, and removing these symbols from the corresponding strings.
More precisely:

Heuristic MM (L = {s1, · · · , sm})
1: let s ← ε
2: do
3: for α ∈ Σ do let ν(α | s) ← ∑

si∈L,si=αs′i
1

3 Here, efficiently means in time O(f(k)nc), where k is the parameter value, n is the
problem size, f is an arbitrary function of k only, and c is a constant independent
of k and n.



4: let β ← argmax{ν(α | s) | α ∈ Σ}
5: let L ← L|β
6: let s ← sβ
7: until

∑
si∈L |si| = 0

8: return s

The myopic functioning of MM makes it incapable of grasping the global struc-
ture of strings in L. In particular, MM misses the fact that the strings can have
different lengths [9]. This implies that symbols at the front of short strings will
have more chances to be removed, since the algorithm has still to scan the longer
strings. For this reason, it is less urgent to remove those symbols. In other words,
it is better to concentrate in shortening longer strings first. This can be done
by assigning a weight to each symbol, depending on the length of the string in
whose front is located. Branke et al. [9] propose to use precisely this string length
as weight, i.e., step 3 in the previous pseudocode would be modified to have

ν(α | s) ←
∑

si∈L,si=αs′i

|s′i| (2)

This modified heuristic is termed Weighted Majority Merge (WMM), and
its empirical evaluation indicates it can outperform MM on some problem in-
stances in which there is no structure, or the structure is deceptive [9, 11].

In this work we also consider look-ahead versions of the WMM heuristic.
For that purpose we use the notation LA-WMM(l), where l > 0 is a parameter
that indicates the size (or depth) of the look-ahead. For example, LA-WMM(0)
denotes the standard WMM heuristic, whereas LA-WMM(1) is obtained by
choosing at each construction step the symbol that corresponds to the first sym-
bol in the best possible sequence of two WMM construction steps. The value
of a sequence of two construction steps is obtained by summing the two corre-
sponding WMM weights (see Equation 2). In the following we will refer to these
look-head values as the LA-WMM(l) weights.

4 Probabilistic Beam Search for the SCSP

In the following we present a probabilistic beam search (PBS) approach for the
SCSP. This algorithm is based on the WMM heuristic outlined before. Beam
search is a classical tree search method that was introduced in the context of
scheduling [16]. The central idea behind beam search is to allow the extension
of partial solutions in more than one way. The version of beam search that we
implemented—see algorithm PBS below—works as follows: At each step of the
algorithm is given a set B of partial solutions which is called the beam. At the
start of the algorithm B only contains the empty partial solution ε (that is,
B = {ε}). Let C denote the set of all possible children of the partial solutions in
B. Note that a child of a string s is obtained by appending one of the symbols
from Σ to it. At each step, kext different (partial) solutions from C are selected;
each selection step is either performed probabilistically or deterministically. A



chosen (partial) solution is either stored in set Bcompl in case it is a complete
solution, or in the new beam B otherwise. At the end of each construction step
the new beam B is reduced in case it contains more than kbw (called the beam
width) partial solutions. This is done by evaluating the partial solutions in B
by means of a lower bound LB(·), and by subsequently selecting the kbw partial
solutions with the smallest lower bound values.

Algorithm PBS(kext, kbw, sbsf, d)
1: let Bcompl = ∅
2: let B = {ε}
3: while B 6= ∅
4: let C ← Children of(B)
5: let B ← ∅
6: for k = 1, . . . , kext do
7: let st ← Choose From(C, d)
8: if LB(st) = |st| then
9: let Bcompl ← Bcompl ∪ {st}

10: if |st| < |sbsf| then sbsf ← st endif
11: else
12: if LB(st) ≤ |sbsf| then B ← B ∪ {st} endif
13: end if
14: let C ← C \ {st}
15: end for
16: let B ← Reduce(B,kbw)
17: end while
18: return argmin {|s| |s ∈ Bcompl }

In the following we explain the functions of algorithm PBS in more detail.
First of all, let us define the following function that will be useful to calculate
lower bounds of partial solutions:

s À ε , (ε, ε)
ε À r , (ε, r), if r 6= ε

αs À αr , (αre, rr), where (re, rr) = s À r

αs À βr , s À βr, if α 6= β

(3)

Intuitively, s À r = (re, rr) if re is the longest initial segment of string r
embedded by s and rr is the remaining part of r not embedded by s (i.e.,
r = rerr). Note that s Â r ⇐⇒ s À r = (r, ε).

Function Children of(B) produces the set C of all possible children of the
partial solutions in B. Note that, given a partial solution st, at most |Σ| children
can be generated by appending each of the symbols from Σ to st. Children with
unproductive characters (i.e., not contributing to embedding any string in L)
are not added to C.

Another important function of algorithm PBS is Choose From(C, d). Upon
invocation, this function returns one of the partial solutions from set C. This



is done as follows. First, we calculate for each st ∈ C a heuristic value η(st) as
follows:

η(st) ←


|st|∑

i=1

νr
(
st(i) | st(1)st(2) . . . st(i− 1)

)


−1

, (4)

where νr(α | s) is the rank of the weight ν(α | s) which the LA-WMM(l)
heuristic assigns to the extension α of string s (see Section 3). The rank of ex-
tending string s by symbol α is obtained by sorting all possible extensions of
string s with respect to their LA-WMM(l) weights in descending order. Note
that the sum shown in Equation 4 is the sum of the ranks of the LA-WMM(l)
weights that are used for constructing the partial solution st. For example, in
case st can be constructed by always appending the symbol suggested by the LA-

WMM(l) heuristic, the heuristic value of st is η(st) =
(∑|st|

i=1 1
)−1

= (|st|)−1.
This way of defining the heuristic values has the effect that partial solutions ob-
tained by mostly following the suggestions of the LA-WMM(l) heuristic have
a greater heuristic value than others. Given the heuristic values we can de-
fine the probability of a (partial) solution st from C to be chosen in function
Choose From(C, d):

p(st) ← η(st)∑
sl∈C η(sl)

(5)

However, instead of always choosing a partial solution st ∈ C probabilistically,
we employ the following mixed strategy. First, a random number r ∈ [0, 1] is
drawn. If r < d (where d ∈ [0, 1] is a parameter of the algorithm), the partial
solution s∗ to be returned by function Choose From(C, d) is selected such
that s∗ ← argmax{p(st) | st ∈ C}. Otherwise, a partial solution is chosen by
roulette-wheel-selection using the probabilities defined in Equation 5.4

Finally, the lower bound LB(st) of a partial solution st is calculated as fol-
lows: First, we calculate the set of remaining strings in L not embedded by st

as follows:
R(st) = {ri | (se

i , ri) = st À si, si ∈ L} (6)

Let M(α, R(st)) be the maximum number of occurrences of symbol α in any
string in R(st):

M(α, R(st)) = max{ri D α | ri ∈ R(st)} (7)

Clearly, every common supersequence for the remaining strings must contain
at least M(α,R(st)) copies of the symbol α. Thus a lower bound is obtained
by summing the length of the partial solution st and the maximum number of
occurrences of each symbol of the alphabet in any string in R(st):

|st|+
∑

α∈Σ

M(α,R(st)) (8)

4 This strategy is known as the pseudo-random proportional transition rule in the
context of the metaheuristic ant colony optimization.



Note that we use algorithm PBS in a multi-start fashion, that is, given a CPU
time limit we apply algorithm PBS over and over again until the CPU limit is
reached. The best solution found, denoted by sbsf, is recorded. In fact, this solu-
tion is one of the input parameters of algorithm PBS. It is used to exclude partial
solutions whose lower bound value exceeds |sbsf| from further consideration.

5 Experimental Evaluation

We implemented our algorithm in ANSI C++ using GCC 3.2.2 for compiling the
software. Our experimental results were obtained on a PC with an AMD64X2
4400 processor and 4 Gb of memory.

Two different sets of benchmark instances have been used in the experimen-
tation. The first one—henceforth referred to as Set1—is composed of random
strings with different lengths. To be precise, each instance is composed of eight
strings, four of them of length 40, and the other four of length 80. Each of these
strings is randomly generated, using an alphabet Σ. The benchmark set consists
of 5 classes of each 5 instances characterized by different alphabet sizes, namely
|Σ| = 2, 4, 8, 16, and 24. Accordingly, the benchmark set consists of 25 differ-
ent problem instances. The same instances were used for experimentation, for
example, in [11].

A second set of instances is composed of strings with a common source.
To be precise, we have considered strings obtained from molecular sequences.
The sequences considered comprise both DNA sequences (|Σ| = 4) and protein
sequences (|Σ| = 20). In the first case, we have taken two DNA sequences of the
SARS coronavirus from a genomic database5; these sequences are 158 and 1269
nucleotides long. As to the protein sequences, we have considered three of them,
extracted from Swiss-Prot6:

– Oxytocin: quite important in pregnant women, this protein causes contrac-
tion of the smooth muscle of the uterus and of the mammary gland. The
sequence is 125-aminoacid long.

– p53 : this protein is involved in the cell cycle, and acts as tumor suppressor
in many tumor types; the sequence is 393-aminoacid long.

– Estrogen: involved in the regulation of eukaryotic gene expression, this pro-
tein affects cellular proliferation and differentiation; the sequence is 595-
aminoacid long.

In all cases, problem instances are constructed by generating strings from the
target sequence by removing symbols from the latter with probability p%. In our
experiments, problem instances comprise 10 strings, and p ∈{10%,15%,20%}.

5.1 Algorithm tuning

First we wanted to find reasonable settings for the parameters of PBS. Remem-
ber that PBS has 4 parameters: kbw is the beam width; kext is the number of
5 http://gel.ym.edu.tw/sars/genomes.html
6 http://www.expasy.org/sprot/



 280
 290
 300
 310
 320
 330
 340
 350
 360

average result

0.0 0.25 0.5 0.75 0.9550

10

1

"performance"
     340
     320
     300
     280

average result

(a) Σ = 24

 250
 260
 270
 280
 290
 300
 310

average result

0.0 0.25 0.5 0.75 0.9550

10

1

"performance"
     300
     280
     260

average result

(b) Σ = 16

 190

 200

 210

 220

 230

average result

0.0 0.25 0.5 0.75 0.9550

10

1

"performance"
     230
     220
     210
     200
     190

average result

(c) Σ = 8

 150

 155

 160

 165

average result

0.0 0.25 0.5 0.75 0.9550

10

1

"performance"
     165
     160
     155
     150

average result

(d) Σ = 4

 110.6
 110.8

 111
 111.2
 111.4
 111.6
 111.8

 112
 112.2
 112.4

average result

0.0 0.25 0.5 0.75 0.9550

10

1

"performance"
     112
     112
     111
     110

average result

(e) Σ = 2

Fig. 1. The z-axis of each graphic shows the average performance of PBS with the
parameter settings as specified by the x-axis (parameter d) and the y-axis (parameter
kbw).

children to be chosen from set C at each step; d is the parameter that controls
the extent to which the choice of children from C is performed deterministically.
If d = 1.0, this choice is always done deterministically, whereas when d = 0.0 the
choice is always done by roulette-wheel-selection; Finally, l is the depth of the
look-ahead function, that is, the parameter in LA-WMM(l) (see Section 3).

In order to reduce the set of parameters to be considered for tuning we
decided beforehand to set kext = 2 · kbw. In preliminary experiments we found
this setting to be reasonable. Concerning the remaining parameters we tested
the following settings: kbw ∈ {1, 10, 50}, d ∈ {0.0, 0.25, 0.5, 0.75, 0.95}, and l ∈
{0, 1, 2, 3}. First we studied the relation between parameters kbw and d, fixing



 270

 275

 280

 285

 290

 295

 300

 305

 310

 315

 320

av
er

ag
e 

re
su

lt

l=0 l=1 l=2 l=3

(a) Σ = 24

 235

 240

 245

 250

 255

 260

 265

 270

av
er

ag
e 

re
su

lt

l=0 l=1 l=2 l=3

(b) Σ = 16

 185

 186

 187

 188

 189

 190

 191

 192

 193

 194

 195

 196

av
er

ag
e 

re
su

lt

l=0 l=1 l=2 l=3

(c) Σ = 8

 143.5

 144

 144.5

 145

 145.5

 146

 146.5

 147

 147.5

 148

 148.5

av
er

ag
e 

re
su

lt

l=0 l=1 l=2 l=3

(d) Σ = 4

 109

 109.5

 110

 110.5

 111

 111.5

 112

 112.5

 113

av
er

ag
e 

re
su

lt

l=0 l=1 l=2 l=3

(e) Σ = 2

Fig. 2. The y-axis of each graphic shows the average performance (and its standard
deviation) of PBS with the parameter setting of l as specified by the x-axis.

parameter l to the maximum value 3 (that is, l = 3). We applied PBS with
each combination of parameter values 5 times for 500 CPU seconds to each
of the problem instances of Set1. This provided us with 25 results for each
instance class (as characterized by the alphabet size). The averaged results for
each instance class are shown in the graphics of Figure 1. The results show
that, in general, PBS needs some determinism in extension of partial solutions
(d > 0.0), as well as a beam width greater than 1 (d > 1). However, in particular
for the problem instances with a smaller alphabet size, the determinism should
not be too high and the beam width should not be too big. Therefore, we decided
for the settings d = 0.5 and kbw = 10 for all further experiments.

Finally we performed experiments to decide for the setting of l, that is, the
parameter of the look-ahead mechanism. We applied PBS with the four different
settings of l (l ∈ {0, 1, 2, 3} 5 times for 500 CPU seconds to each of the problem
instances of Set1. This provides us with 25 results for each instance class. The
averaged results for each instance class are shown in the graphics of Figure 2.
The results show that, in general, the setting of l = 3 is best. Especially when
the alphabet size is rather large, the performance of PBS is better the higher l
is. Only for Σ = 2, the setting of l does not play much of a role. Therefore, we
decided for the setting l = 3 for all further experiments.

5.2 Final Experimental Evaluation

We compare the results of PBS to 3 different algorithms: MM refers to a multi-
start version of the MM heuristic. This can be done as in case of ties during
the solution construction they are broken randomly. Furthermore, WMM refers
to a multi-start version of the WMM heuristic, and Hybrid MA-BS refers to



Table 1. Results for the instances of Set1.

MM WMM
|Σ| best mean ± σ i.% best mean ± σ i.%

2 112.0 112.0 ± 0.1 0.0 114.8 114.8 ± 0.0 -2.5
4 152.6 153.4 ± 0.7 0.0 157.8 157.8 ± 0.0 -2.8
8 212.4 213.8 ± 0.9 0.0 208.2 208.2 ± 0.0 2.6
16 283.8 286.1 ± 2.0 0.0 272.8 273.4 ± 0.5 4.4
24 330.2 333.9 ± 2.3 0.0 324.0 325.2 ± 0.7 2.6

Hybrid MA-BS PBS
|Σ| best mean ± σ i.% best mean ± σ i.%

2 110.6 110.7 ± 0.0 1.2 110.8 110.9 ± 1.7 1.0
4 145.6 146.4 ± 0.5 4.6 144.8 145.4 ± 1.5 5.2
8 191.6 192.6 ± 1.4 9.9 186.4 187.2 ± 1.7 12.4
16 242.8 244.0 ± 1.0 14.7 240.4 241.9 ± 3.4 15.4
24 280.2 281.2 ± 0.8 15.8 276.4 277.9 ± 4.0 16.8

an algorithm that is a hybrid between beam search and a memetic algorithm.
Note that Hybrid MA-BS is a current state-of-the-art technique for the SCSP.
The results for all three techniques are taken from [17]. The stopping criterion
of MM, WMM, and Hybrid MA-BS was 600 CPU time seconds on a Pentium
IV PC with 2400 MHz and 512 MB of memory. This corresponds roughly to the
350 CPU time seconds that we allowed on our machine for PBS.

First, we present the results of PBS for the instances of Set1 in numerical
form in Table 1. The results show that PBS is always better than the basic
greedy heuristics. With respect to the more sophisticated MA-BS algorithm, the
results of PBS are roughly equivalent for |Σ| = 2. In the remaining instances,
PBS improves significantly over the results of Hybrid MA-BS. Even the average
performance of PBS is always better than the best performance of Hybrid MA-
BS.

As to the biological sequences, the results are shown in Table 2. Again, PBS
can be seen to be notoriously better than the greedy algorithms. With respect to
MA-BS, PBS is capable of performing at the same level in most instances, sys-
tematically finding the optimal solutions. Only in the largest problem instances
PBS starts to suffer from the curse of dimensionality. Notice nevertheless that
PBS has still room for improvement. For example, using a larger beam width
kbw = 100 (instead of kbw = 10), the results for the two harder SARS DNA
instances are notably improved: for 15% gap, the mean result is 1269±0.0 (i.e.,
systematically finding the optimal solution); for 20% gap, the mean result is
1483±143.1 (best result = 1294) which is much closer to optimal. Further fine-
tuning of the parameters may produce even better results.

6 Conclusions and future work

We have introduced PBS, a novel metaheuristic that blends ideas from beam
search and randomized greedy heuristics. Though relatively simple, and with
just four parameters, PBS has been shown to be competitive with a much more



Table 2. Results of the different algorithms for the biological sequences.

158-nucleotide SARS sequence
MM WMM Hybrid MA-BS PBS

gap% best mean ± σ best mean ± σ best mean ± σ best mean ± σ

10% 158 158.0 ± 0.0 158 158.0 ± 0.0 158 158.0 ± 0.0 158 158.0 ± 0.0
15% 160 160.0 ± 0.0 231 231.0 ± 0.0 158 158.0 ± 0.0 158 158.0 ± 0.0
20% 228 229.6 ± 1.8 266 266.0 ± 0.0 158 158.0 ± 0.0 158 158.0 ± 0.0

1269-nucleotide SARS sequence
MM WMM Hybrid MA-BS PBS

gap% best mean ± σ best mean ± σ best mean ± σ best mean ± σ

10% 1970 2039.9 ± 32.9 2455 2455.0 ± 0.0 1269 1269.0 ± 0.0 1269 1269.0 ± 0.0
15% 2151 2236.4 ± 30.4 2346 2346.0 ± 0.0 1269 1269.0 ± 0.0 1269 1303.8 ± 36.6
20% 2163 2180.2 ± 13.9 2207 2207.0 ± 0.0 1269 1269.0 ± 0.0 1571 1753.2 ± 61.0

125-aminoacid Oxytocin sequence
MM WMM Hybrid MA-BS PBS

gap% best mean ± σ best mean ± σ best mean ± σ best mean ± σ

10% 126 126.0 ± 0.0 126 126.0 ± 0.0 125 125.0 ± 0.0 125 125.0 ± 0.0
15% 126 126.0 ± 0.0 126 126.0 ± 0.0 125 125.0 ± 0.0 125 125.0 ± 0.0
20% 132 132.0 ± 0.0 227 227.0 ± 0.0 125 125.0 ± 0.0 125 125.0 ± 0.0

393-aminoacid p53 sequence
MM WMM Hybrid MA-BS PBS

gap% best mean ± σ best mean ± σ best mean ± σ best mean ± σ

10% 393 393.0 ± 0.0 396 396.0 ± 0.0 393 393.0 ± 0.0 393 393.0 ± 0.0
15% 422 422.0 ± 0.0 832 832.0 ± 0.0 393 393.0 ± 0.0 393 393.0 ± 0.0
20% 612 677.1 ± 40.7 833 833.0 ± 0.0 393 393.0 ± 0.0 393 393.0 ± 0.0

595-aminoacid Estrogen sequence
MM WMM Hybrid MA-BS PBS

gap% best mean ± σ best mean ± σ best mean ± σ best mean ± σ

10% 628 628.0 ± 0.0 1156 1156.0 ± 0.0 595 595.0 ± 0.0 595 595.0 ± 0.0
15% 671 672.9 ± 2.0 1232 1242.1 ± 4.5 595 595.0 ± 0.0 595 595.0 ± 0.0
20% 1071 1190.3 ± 66.2 1324 1327.9 ± 4.6 595 595.0 ± 0.0 596 596.0 ± 0.0

complex hybrid metaheuristic for the SCSP that combines beam search and
memetic algorithms. Furthermore, PBS has clearly outperformed this latter al-
gorithm in one set of instances. In all cases, PBS has also been shown to be
superior to two popular greedy heuristics for the SCSP. In general, PBS is a
metaheuristic framework that can be applied to any optimization problem for
which exist (1) a constructive mechanism for producing solutions and (2) a lower
bound for evaluating partial solutions.

The scalability of PBS is one of the features that deserves further exploration.
As indicated by current results, an adequate parameterization of the algorithm
can lead to improved results. The underlying greedy heuristic using within PBS,
or the probabilistic choosing procedure can be also adjusted. The possibilities
are manifold, and work is currently underway in this direction. An additional
line of research is the hybridization of PBS with memetic algorithms. A plethora



of models are possible in this sense, and using the same algorithmic template of
the MA-BA hybrid would be a natural first step.

References

1. Hallet, M.: An integrated complexity analysis of problems from computational
biology. PhD thesis, University of Victoria (1996)

2. Sim, J., Park, K.: The consensus string problem for a metric is NP-complete.
Journal of Discrete Algorithms 1(1) (2003) 111–117

3. Rahmann, S.: The shortest common supersequence problem in a microarray pro-
duction setting. Bioinformatics 19(Suppl. 2) (2003) ii156–ii161

4. Foulser, D., Li, M., Yang, Q.: Theory and algorithms for plan merging. Artificial
Intelligence 57(2-3) (1992) 143–181

5. Timkovsky, V.: Complexity of common subsequence and supersequence problems
and related problems. Cybernetics 25 (1990) 565–580

6. Bodlaender, H., Downey, R., Fellows, M., Wareham, H.: The parameterized com-
plexity of sequence alignment and consensus. Theoretical Computer Science 147(1–
2) (1994) 31–54

7. Middendorf, M.: More on the complexity of common superstring and supersequence
problems. Theoretical Computer Science 125 (1994) 205–228

8. Pietrzak, K.: On the parameterized complexity of the fixed alphabet shortest
common supersequence and longest common subsequence problems. Journal of
Computer and System Sciences 67(1) (2003) 757–771

9. Branke, J., Middendorf, M., Schneider, F.: Improved heuristics and a genetic
algorithm for finding short supersequences. OR-Spektrum 20 (1998) 39–45

10. Branke, J., Middendorf, M.: Searching for shortest common supersequences by
means of a heuristic based genetic algorithm. In: Proceedings of the Second Nordic
Workshop on Genetic Algorithms and their Applications, Finnish Artificial Intel-
ligence Society (1996) 105–114

11. Cotta, C.: A comparison of evolutionary approaches to the shortest common super-
sequence problem. In Cabestany, J., Prieto, A., Sandoval, D., eds.: Computational
Intelligence and Bioinspired Systems. Volume 3512 of Lecture Notes in Computer
Science., Berlin, Springer-Verlag (2005) 50–58

12. Cotta, C.: Memetic algorithms with partial lamarckism for the shortest common
supersequence problem. In Mira, J., Álvarez, J., eds.: Artificial Intelligence and
Knowledge Engineering Applications: a Bioinspired Approach. Number 3562 in
Lecture Notes in Computer Science, Berlin Heidelberg, Springer-Verlag (2005) 84–
91

13. Downey, R., Fellows, M.: Parameterized Complexity. Springer-Verlag (1998)
14. Chen, J., Kanj, I., Jia, W.: Vertex cover: further observations and further improve-

ments. In: Proceedings of the 25th International Workshop on Graph-Theoretic
Concepts in Computer Science. Number 1665 in Lecture Notes in Computer Sci-
ence, Berlin Heidelberg, Springer-Verlag (1999) 313–324

15. Niedermeier, R., Rossmanith, P.: A general method to speed up fixed-parameter-
tractable algorithms. Information Processing Letters 73 (2000) 125–129

16. Ow, P.S., Morton, T.E.: Filtered beam search in scheduling. International Journal
of Production Research 26 (1988) 297–307

17. Gallardo, J.E., Cotta, C., Fernández, A.J.: Hybridization of memetic algorithms
with branch-and-bound techniques. IEEE Transactions on Systems, Man, and
Cybernetics, Part B 37(1) (2006) 77–83


