
Chapter 1

Memetic Algorithms

1.1 Introduction

Back in the late 60s and early 70s, several researchers laid the founda-
tions of what we now know as evolutionary algorithms [75, 108, 218, 227]
(EAs). In these almost four decades, and despite some hard beginnings, most
researchers interested in search or optimization –both from the applied and
the theoretical standpoints– have grown to know and accept the existence
–and indeed the usefulness– of these techniques. This has been also the case
for other related techniques, such as simulated annealing [122] (SA), tabu
search [83] (TS), etc. The name metaheuristics is used to collectively term
these techniques.

It was in late 80s that the term ‘Memetic Algorithms’ [178] (MAs) was
given birth to denote a family of metaheuristics that tried to blend several
concepts from tightly separated –at that time– families such as EAs and SA.
The adjective ‘memetic’ comes from the term ’meme’, coined by R. Dawkins
[62] to denote an analogous to the gene in the context of cultural evolution.
Quoting Dawkins:

“Examples of memes are tunes, ideas, catch-phrases, clothes fash-
ions, ways of making pots or of building arches. Just as genes
propagate themselves in the gene pool by leaping from body to
body via sperms or eggs, so memes propagate themselves in the
meme pool by leaping from brain to brain via a process which, in
the broad sense, can be called imitation.”

The above quote illustrates the central philosophy of MAs: individual
improvement plus populational cooperation. As it was the case for classical
EAs, MAs had to suffer tough initial times, but they are now becoming
increasingly popular, as the reader may check by taking a quick look at
the review of current work in MAs done at the end of this chapter. It is
often the case that MAs are used under a different name (‘hybrid EAs’ and
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’Lamarckian EAs’ are two popular choices for this). Not quite surprisingly
in a rapidly expanding field as this is, one can also find the term MA used
in the context of particular algorithmic subclasses, arguably different from
those grasped in the initial definition of MAs. This point will be tackled
in next section; anticipating further definitions, we can say that a MA is a
search strategy in which a population of optimizing agents synergistically
cooperate and compete [189]. A more detailed description of the algorithm,
as well as an functional template will be given in Section 1.2.

As mentioned before, MAs are a hot topic nowadays, mainly due to
their success in solving many hard optimization problems. A particular
feature of MAs is greatly responsible for this: unlike traditional Evolutionary
Computation (EC) methods, MAs are intrinsically concerned with exploiting
all available knowledge about the problem under study; this is something
that was neglected in EAs for a long time, despite some contrary voices such
as Hart and Belew [100], and most notably Davis [61]. The formulation
of the so-called No-Free-Lunch Theorem (NFL) by Wolpert and Macready
[247] made it definitely clear that a search algorithm strictly performs in
accordance with the amount and quality of the problem knowledge they
incorporate, thus backing up one of the leiv motivs of MAs.

The exploitation of problem-knowledge can be accomplished in MAs in
a by incorporating heuristics, approximation algorithms, local search tech-
niques, specialized recombination operators, truncated exact methods, etc.
Also, an important factor is the use of adequate representations of the prob-
lem being tackled. These issues are of the foremost interest from an applied
viewpoint, and will be dealt in Section 1.3.

As important as the basic algorithmic considerations about MAs that
will be presented below, a more applied perspective of MAs is also provided
in Section 1.4. The reader may be convinced of the wide applicability of
these techniques by inspecting the numerous research papers published with
regard to the deployment of MAs on the most diverse domains. We will pay
special attention to the application of MAs in Engineering-related endeavors.
This chapter will end with a brief summary of the current research trends
in MAs, with special mention to those emerging application fields in which
MAs are to play a major rôle in the near future.

1.2 The MA Search Template

As mentioned in the previous section, MAs try to blend together concepts
from different metaheuristics, such as EAs and SA for instance. Let us start
by those ideas gleaned from the former.

MAs are –like EAs– population-based metaheuristics. This means that
the algorithm maintain a population of solutions for the problem at hand,
i.e., a pool comprising several solutions simultaneously. Each of these solu-
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tions is termed individual in the EA jargon, following the nature-inspired
metaphor upon which these techniques are based. In the context of MAs,
the denomination agent seems more appropriate for reasons that will be ev-
ident later in this section. When clear from the context, both terms will be
used interchangeably.

Each individual –or agent– represents a tentative solution for the problem
under consideration. These solutions are subject to processes of competition
and mutual cooperation in a way that resembles the behavioral patterns of
living beings from a same species. To make clearer this point, it is firstly
necessary to consider the high-level template of the basic populational event:
a generation. This is shown below in Fig. 1.1.

Process Do-Generation (↓↑ pop : individual[ ])
variables

breeders, newpop : Individual[ ];
begin

breeders ← Select-From-Population(pop);
newpop ← Generate-New-Population(breeders);
pop ← Update-Population (pop, newpop)

end

Figure 1.1: The basic generational step

As it can be seen, each generation consists of the updating of a popula-
tion of individuals, hopefully leading to better and better solutions for the
problem being tackled. There are three main components in this genera-
tional step: selection, reproduction, and replacement. The first component
(selection) is responsible (jointly with the replacement stage) for the com-
petition aspects of individuals in the population. Using the information
provided by an ad hoc guiding function (fitness function in the EA termi-
nology), the goodness of individuals in pop is evaluated; subsequently, a
sample of individuals is selected for reproduction according to this goodness
measure. This selection can be done in a variety of ways. The most popular
techniques are fitness-proportionate methods (the probability of selecting
an individual for breeding is proportional to its fitness1), rank-based meth-
ods (the probability of selecting an individual depends on its position after
ranking the whole population), and tournament-based methods (individuals
are selected on the basis of a direct competition within small sub-groups of
individuals).

Replacement is very related to this competition aspect, as mentioned
above. This component takes care of maintaining the population at a con-

1Maximization is assumed here. In case we were dealing with a minimization problem,
fitness should be transformed so as to obtain an appropriate value for this purpose, e.g.,
subtracting it from the highest possible value of the guiding function
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stant size. To do so, individuals in the older population are substituted by
the newly-created ones (obtained from the reproduction stage) using some
specific criterion. Typically, this can be done by taking the best (according
to the guiding function) individuals both from pop and newpop (the so-called
“plus” replacement strategy), or by simply taking the best individuals from
newpop and inserting them in pop substituting the worst ones (the “comma”
strategy). In the former case, if |pop| = |newpop| then the replacement is
termed generational ; if |newpop| is small (say |newpop| = 1), then we have
a steady-state replacement.

Maybe the most interesting aspect in this generation process is the in-
termediate phase of reproduction. At this stage, we have to create new
individuals (or agents) by using the existing ones. This is done by utilizing
a number of reproductive operators. Many different such operators can be
used in a MA, as illustrated in the general pseudocode shown in Fig. 1.2.
Nevertheless, the most typical situation involves utilizing just two operators:
recombination and mutation.

Process Generate-New-Population
(↓ pop : Individual[ ], ↓ op : Operator[ ]) → Individual[ ]

variables
buffer : Individual[ ][ ];
j : [1..|op|];

begin
buffer[0] ← pop;
for j ← 1:|op| do

buffer[j] ← Apply-Operator (op[j], buffer[j − 1]);
endfor;
return buffer[nop]

end

Figure 1.2: Generating the new population.

Recombination is a process that encapsulates the mutual cooperation
among several individuals (typically two of them, but a higher number is
possible [72]). This is done by constructing new individuals using the infor-
mation contained in a number of selected parents. If it is the case that the
resulting individuals (the offspring) are entirely composed of information
taken from the parents, then the recombination is said to be transmitting
[211]. This is the case of classical recombination operators for bitstrings
such as single-point crossover, or uniform crossover [233]. This property
captures the a priori rôle of recombination as previously enunciated, but it
can be difficult to achieve for certain problem domains (the Traveling Sales-
man Problem –TSP– is a typical example). In those situations, it is possible
to consider other properties of interest such as respect or assortment. The
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former refers to the fact that the recombination operator generate descen-
dants carrying all features (i.e., basic properties of solutions with relevance
for the problem attacked) common to all parents; thus, this property can
be seen as a part of the exploitative side of the search. On the other hand,
assortment represents the exploratory side of recombination. A recombina-
tion operator is said to be properly assorting if, and only if, it can generate
descendants carrying any combination of compatible features taken from
the parents. The assortment is said to be weak if it is necessary to perform
several recombinations within the offspring to achieve this effect.

Several interesting concepts have been introduced in this description of
recombination, namely, relevant features and cooperation. We will return to
these points in the next section. Before that, let us consider the other oper-
ator mentioned above: mutation. From a classical point of view (at least in
the genetic-algorithm arena [84]), this is a secondary operator whose mission
is to keep to pot boiling, continuously injecting new material in the popu-
lation, but at a low rate (otherwise the search would degrade to a random
walk in the solution space). Evolutionary-programming practitioners [75]
would disagree with this characterization, claiming a central rôle for muta-
tion. Actually, it is considered the crucial part of the search engine in this
context.

In essence, a mutation operator must generate a new solution by partly
modifying an existing solution. This modification can be random –as it is
typically the case– or can be endowed with problem-dependent information
so as to bias the search to probably-good regions of the search space. It is
precisely in the light of this latter possibility that one of the most distinctive
components of MAs is introduced: local-improvers. To understand their
philosophy, let us consider the following abstract formulation: first of all,
assume a mutation operator that performs a random minimal modification
in a solution; now consider the graph whose vertices are solutions, and whose
edges connect pairs of vertices such that the corresponding solutions can be
obtained via the application of the mutation operator on one of them2. A
local-improver is a process that starts at a certain vertex, and moves to an
adjacent vertex, provided that the neighboring solution is better that the
current solution. This is illustrated in Fig. 1.3.

As it can be seen, the local-improver tries to find an “uphill” (in terms
of improving the value provided by the guiding function Fg) path in the
graph whose definition was sketched before. The formal name for this graph
is fitness landscape [115]. Notice that the length of the path found by the
local-improver is determined by means of a Local-Improver-Termination-
Criterion function. A usual example is terminating the path when no more
uphill movements are possible (i.e., when the current solution is a local

2Typically this graph is symmetrical, but in principle there is no problem in assuming
it to be asymmetrical.
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Process Local-Improver (↓↑ current : Individual, ↓ op : Operator)
variables

new : Individual
begin

repeat
new ← Apply-Operator(op, current);
if (Fg(new) ≺F Fg(current)) then

current ← new;
endif

until Local-Improver-Termination-Criterion();
return current;

end

Figure 1.3: Pseudocode of a Local-Improver

optimum with respect to op). However, this is not necessarily the case
always. For instance, the path can be given a maximum allowed length,
or it can be terminated as soon as the improvement in the value of the
guiding function is considered good enough. For this reason, MAs cannot
be characterized as “EAs working in the space of local-optima [with respect
to a certain fitness landscape]”; that would be an unnecessarily restricted
definition.

The local-improver algorithm can be used in different parts of the genera-
tion process, for it is nothing else than just another operator. For example, it
can be inserted after the utilization of any other recombination or mutation
operator; alternatively, it could be just used at the end of the reproductive
stage. See [?] for examples of these settings.

As said before, the utilization of this local-improver3 is one of the most
characteristic features of MAs. It is precisely because of the use of this mech-
anism for improving individuals on a local (and even autonomous) basis that
the term ‘agent’ is deserved. Thus, the MA can be viewed as a collection
of agents performing an autonomous exploration of the search space, co-
operating some times via recombination, and competing for computational
resources due to the use of selection/replacement mechanisms.

After having presented the innards of the generation process, we can now
have access to the larger picture. The functioning of a MA consists of the
iteration of this basic generational step, as shown in Fig. 1.4.

Several comments must be made with respect to this general template.
First of all, the Generate-Initial-Population process is responsible for cre-
ating the initial set of |pop| configurations. This can be done by simply

3We use the term in singular, but notice that several different local-improvers could be
used in different points of the algorithm.
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Process MA () → Individual[ ]
variables

pop : Individual[ ];
begin

pop ← Generate-Initial-Population();
repeat

pop ← Do-Generation (pop)
if Converged(pop) then

pop ← Restart-Population(pop);
endif

until MA-Termination-Criterion()
end

Figure 1.4: The general template of a MA

generating |pop| random configurations or by using a more sophisticated
seeding mechanism (for instance, some constructive heuristic), by means of
which high-quality configurations are injected in the initial population [232]
[147]. Another possibility, the Local-Improver presented before could be
used as shown in Fig. 1.5:

Process Generate-Initial-Population (↓ µ : N) → Individual[ ]
variables

pop : Individual[ ];
ind : Individual;
j : [1..µ];

begin
for j ← 1:µ do

ind ← Generate-Random-Solution();
pop[j] ← Local-Improver (ind);

endfor
return pop

end

Figure 1.5: Injecting high-quality solutions in the initial population.

There is another interesting element in the pseudocode shown in Fig.
1.4: the Restart-Population process. This process is very important in or-
der to make an appropriate use of the computational resources. Consider
that the population may reach a state in which the generation of new im-
proved solution be very unlikely. This could be the case when all agents in
the population are very similar to each other. In this situation, the algorithm
will probably expend most of the time resampling points in a very limited
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region of the search space [48], with the subsequent waste of computational
efforts. This phenomenon is known as convergence, and it can be identified
using measures such as Shannon’s entropy [60]. If this measure falls below
a predefined threshold, the population is considered at a degenerate state.
This threshold depends upon the representation of the problem being used
(number of values per variable, constraints, etc.) and hence must be deter-
mined in an ad-hoc fashion. A different possibility is using a probabilistic
approach to determine with a desired confidence that the population has
converged. For example, in [111] a Bayesian approach is presented for this
purpose.

Once the population is considered to be at a degenerate state, the restart
process is invoked. Again, this can be implemented in a number of ways.
A very typical strategy is keeping a fraction of the current population (this
fraction can be as small as one solution, the current best), and substituting
the remaining configurations with newly generated (from scratch) solutions,
as shown in Fig. 1.6:

Process Restart-Population (↓ pop : Individual[ ])→ Individual[ ]
variables

newpop : Individual[ ];
j, #preserved : [1..|pop|];

begin
#preserved ← |pop| ·%PRESERV E;
for j ← 1:#preserved do

newpop[j] ← ithBest(pop, j);
endfor
for j ← (#preserved + 1) : |pop| do

newpop[j] ← Generate-Random-Configuration();
newpop[j] ← Local-Improver (newpop[j]);

endfor;
return newpop

end

Figure 1.6: A possible re-starting procedure for the population.

The above process completes the functional description of MAs. Obvi-
ously, it is possible to conceive some ad-hoc modifications of this template
that still could be catalogued as MA. The reader can nevertheless be ensured
that any such algorithm will follow the general philosophy depicted in this
section, and could be possibly rewritten so as to match this template.
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1.3 Design of Effective MAs

The general template of MAs we have depicted in the previous section
must be instantiated with precise components in order to be used for solving
an specific problem. This instantiation has to be done carefully so as to
obtain an effective optimization tool. We will address some design issues in
this section.

A first obvious remark must be done: there exist no general approach for
the design of effective MAs. This fact admits different proofs depending on
the precise definition of effective in the previous statement. Such proofs may
involve classical complexity results and conjectures if ‘effective’ is understood
as ‘polynomial-time’, the NFL Theorem if we consider a more general set
of performance measures, and even Computability Theory if we relax the
definition to arbitrary decision problems. For these reasons, we can only
define several design heuristics that will likely result in good-performing
MAs, but without explicit guarantees for this.

Having introduced this point of caution, the first element that one has
to decide is the representation of solutions. At this point it is necessary
to introduce a subtle but important distinction here: representation and
codification are different things. The latter refers to the way solutions are
internally stored, and it can be chosen according to memory limitations,
manipulation complexity, and other resource-based considerations. On the
contrary, the representation refers to an abstract formulation of solutions,
relevant from the point of view of the functioning of reproductive operators.
This duality was present in discussions contemporary to the early debate
on MAs (e.g., see [210]), and can be very well-exemplified in the context of
permutational problems. For instance, consider the TSP; solutions can be
internally encoded as permutations, but if a edge-recombination operator is
used (e.g., [150]) then solutions are de facto represented as edge lists.

The above example about the TSP also serves for illustrating one of
the properties of representations that must be sought. Consider that a
permutation can be expressed using different information units; for instance,
it can be determined on the basis of the specific values of each position. This
is the position-based representation of permutations [84]. On the other hand,
it can be determined on the basis of adjacency relationships between the
elements of the permutation. Since the TSP is defined by a matrix of inter-
city distances, it seems that edges are more relevant for this problem than
absolute positions in the permutation. In effect, it turns out that operators
manipulating this latter representation perform better than operators that
manipulate positions such as partially-mapped crossover [85] (PMX) or cycle
crossover [191] (CX).

There have been several attempts for quantifying how good a certain set
of information units is for representing solutions for a specific problems. We
can cite a few of them:
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• Minimizing epistasis: epistasis can be defined as the non-additive in-
fluence on the guiding function of combining several information units
(see [59] for example). Clearly, the higher this non-additive influence,
the lower the absolute relevance of individual information units. Since
the algorithm will be processing such individual units (or small groups
of them), the guiding function turns out to be low informative, and
prone to misguide the search.

• Minimizing fitness variance [212]: This criterion is strongly related to
the previous one. The fitness variance for a certain information unit is
the variance of the values returned by the guiding function, measured
across a representative subset of solutions carrying this information
unit. By minimizing this fitness variance, the information provided by
the guiding function is less noisy, with the subsequent advantages for
the guidance of the algorithm.

• Maximizing fitness correlation: In this case a certain reproductive op-
erator is assumed, and the correlation in the values of the guiding
function for parents and offspring is measured. If the fitness correla-
tion is high, good solutions are likely to produce good solutions, and
thus the search will gradually shift toward the most promising regions
of the search space. Again, there is a clear relationship with the pre-
vious approaches; for instance, if epistasis (or fitness variance) is low,
then solutions carrying specific features will have similar values for
the guiding function; since the reproductive operators will create new
solutions by manipulating these features, the offspring is likely to have
a similar guiding value as well.

Obviously, the description of these approaches may appear somewhat
idealized, but the underlying philosophy is well illustrated. It must be noted
that selecting a representation is not an isolated process, but it has a strong
liaison with the task of choosing appropriate reproductive operators for the
MA. Actually, according to the operator-based view of representations de-
scribed above, the existence of multiple operators may imply the consider-
ation of different representations of the problem at different stages of the
reproductive phase. We will come back to this issue later in this section.

In order to tackle the operator-selection problem, we can resort to ex-
isting operators, or design new ad hoc operators. In the former case, a
suggested line of action could be the following [49]:

1. We start from a set of existing operators Ω = {ω1, ω2, · · · , ωk}. The
first step is identifying the representation of the problem manipulated
by each of these operators.

2. Use any of the criterions presented for measuring the goodness of the
representation.
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3. Select ωi from Ω, such that the representation manipulated by ωi is
the more trustable.

This is called inverse analysis of operators since some kind of inverse
engineering is done in order to evaluate the potential usefulness of each
operator. The alternative would be a direct analysis in which new operators
would be designed. This could be do as follows:

1. Identify different potential representation for the problem at hand
(e.g., recall the previous example on the TSP).

2. Use any of the criterions presented for measuring the goodness of these
representation.

3. Create new operators Ω′ = {ω′1, ω′2, · · · , ω′m} via the manipulation of
the most trustable information units.

In order to accomplish the last step of the direct analysis, there exists
a number of templates for the manipulation of abstract information units.
For example, the templates known as random respectful recombination (R3),
Random Assorting Recombination (RAR), and Random Transmitting Re-
combination (RTR) have been defined in [211]. An example of the success-
ful instantiation of some of these templates using the direct analysis in the
context of flowshop scheduling can be found in [52].

The generic templates mentioned above are essentially blind. This means
that they do not use problem-dependent information at any stage of their
functioning. This use of blind recombination operators is traditionally justi-
fied on the grounds of not introducing excessive bias in the search algorithm,
thus preventing extremely fast convergence to suboptimal solutions. How-
ever, this is a highly arguable point since the behavior of the algorithm is
in fact biased by the choice of representation. Even if we neglect this fact,
it can be reasonable to pose the possibility of quickly obtaining a subopti-
mal solution and restarting the algorithm, rather than using blind operators
for a long time in pursuit of an asymptotically optimal behavior (not even
guaranteed in most cases).

Reproductive operators that use problem knowledge are commonly termed
heuristic or hybrid. In these operators, problem information is utilized to
guide the process of producing the offspring. There are numerous ways to
achieve this inclusion of problem knowledge; in essence, we can identify two
major aspects into which problem knowledge can be injected: the selection
of the parental features that will be transmitted to the descendant, and the
selection of non-parental features that will be added to it4.

4Notice that the use of the term ‘parental information’ does not imply the existence of
more than one parent. In other words, the discussion is not restricted to recombination
operators, but may also include mutation operators.
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With respect to the selection of parental features to be injected in the off-
spring, there exists evidence that respect (transmission of common features,
as mentioned in the previous section) is beneficial for some problems (e.g.,
see [51][150]). After this initial transmission, the offspring can be completed
in several ways. For example, Radcliffe and Surry [212] have proposed the
use of local-improvers or implicit enumeration schemas5. This is done by
firstly generating a partial solution by means of a non-heuristic procedure;
subsequently, two approaches can be used:

• locally-optimal completion: the child is completed at random, and a
local-improver is used restricted to those information units added for
completion.

• globally-optimal completion: an implicit enumeration schema is used
in order to find the globally best combination of information units that
can be used to complete the child.

Related to the latter approach, the implicit enumeration schema can be
used to find the best combination of the information units present in the
parents. The resulting recombination would thus be transmitting, but not
necessarily respectful for these two properties are incompatible in general.
However, respect can be enforced by restricting the search to non-common
features. Notice that this would not be globally-optimal completion since the
whole search is restricted to information comprised in the parents. The set of
solutions that can be constructed using this parental information is termed
dynastic potential, and for this reason this approach is termed dynastically
optimal recombination [56] (DOR). This operator is monotonic in the sense
that any child generated is at least as good as the best parent.

Problem-knowledge need not be necessarily included via iterative algo-
rithms. On the contrary, the use of constructive heuristics is a popular
choice. A distinguished example is the Edge Assembly Crossover (EAX)
[186]. EAX is a specialized operator for the TSP (both for symmetric and
asymmetric instances) in which the construction of the child comprises two-
phases: the first one involves the generation of an incomplete child via the
so-called E-sets (subtours composed of alternating edges from each parent);
subsequently, these subtours are merged into a single feasible subtours using
a greedy repair algorithm. The authors of this operator reported impressive
results in terms of accuracy and speed. It has some similarities with the
recombination operator proposed in [179].

To some extent, the above discussion is also applicable to mutation op-
erators, although these exhibit a clearly different rôle: they must introduce
new information. This means that purely transmitting mechanisms would

5Actually, these approaches can be used even when no initial transmission of common
features is performed.
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not be acceptable for this purpose. Nevertheless, it is still possible to use the
ideas described in the previous paragraphs by noting that the ‘partial so-
lution’ mentioned in several situations can be obtained by simply removing
some information units from a single solution. A completion procedure as
described before can then be used in order to obtain the mutated solution.

Once we have one or more knowledge-augmented reproductive opera-
tors, it is necessary to make them work in a synergistic fashion. This is a
feature of MAs that is also exhibited by other metaheuristics such as vari-
able neighborhood search (VNS) [98], although it must me emphasized that
it was already included in the early discussions of MAs, before the VNS
metaheuristic was formulated. We can quote from [177]:

“Another advantage that can be exploited is that the most power-
ful computers in the network can be doing the most time-consuming
heuristics, while others are using a different heuristics. The pro-
gram to do local search in each individual can be different. This
enriches the whole, since what is a local minima for one of the
computers is not a local minima for another in the network. Dif-
ferent heuristics may be working fine due to different reasons.
The collective use of them would improve the final output. In
a distributed implementation we can think in a division of jobs,
dividing the kind of moves performed in each computing individ-
ual. It leads to an interesting concept, where instead of dividing
the physical problem (assignment of cities/cells to processors) we
divide the set of possible moves. This set is selected among the
most efficient moves for the problem.”

This idea of synergistically combining different operators (and indeed
different search techniques) was exemplified at its best by Applegate, Bixby,
Cook, and Chvatal in 1998. They established new breakthrough results for
the Min TSP which supports our view that MAs will have a central role as
a problem solving methodology. This team solved to optimality an instance
of the TSP of 13,509 cities corresponding to all U.S. cities with populations
of more than 500 people 6. The approach, according to Bixby: “...involves
ideas from polyhedral combinatorics and combinatorial optimization, integer
and linear programming, computer science data structures and algorithms,
parallel computing, software engineering, numerical analysis, graph theory,
and more”. Their approach can possibly be classified as the most complex
MA ever built for a given combinatorial optimization problem.

These ideas have been further developed in a recent unpublished manuscript,
“Finding Tours in the TSP” by the same authors (Bixby et al.), available
from their web site. They present results on running an optimal algorithm
for solving the Min Weighted Hamiltonian Cycle Problem in a sub-

6See: http://www.crpc.rice.edu/CRPC/newsArchive/tsp.html
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graph formed by the union of 25 Chained Lin-Kernighan tours. The ap-
proach consistently finds the optimal solution to the original Min TSP
instances with up to 4461 cities. They also attempted to apply this idea to
an instance with 85,900 cities (the largest instance in TSPLIB) and from
that experience they convinced themselves that it also works well for such
large instances.

The approach of running a local search algorithm (Chained Lin Kernighan)
to produce a collection of tours, following by the dynastical-optimal recom-
bination method the authors named tour merging gave a non-optimal tour
of only 0.0002 % excess above the proved optimal tour for the 13,509 cities
instance. We take this as a clear proof of the benefits of the MA approach
and that more work is needed in developing good strategies for complete
memetic algorithms, i.e., those that systematically and synergistically use
randomized and deterministic methods and can prove optimality.

We would like to close this section by emphasizing once again the heuris-
tic nature of the design principles described in this section. The most in-
teresting thing to note here is not the fact that they are just probably-good
principles, but the fact that there is still much room for research in method-
ological aspects of MAs (e.g., see [125]). The open-philosophy of MAs make
them suitable for incorporating mechanisms from other optimization tech-
niques. In this sense, the reader may find a plethora of new possibilities for
MA design by studying other metaheuristics such as TS, for example.

1.4 Applications of MAs

This section will provide an overview of the numerous applications of
MAs. This overview is far from exhaustive since new applications are being
developed continuously. However, it is intended to be illustrative of the
practical impact of these optimization techniques.

1.4.1 NP -hard Combinatorial Optimization problems

Traditional NP Optimization problems constitute one of the most typi-
cal battlefields of MAs. A remarkable history of successes has been reported
with respect to the application of MAs to NP−hard problems such as the fol-
lowing: Graph Partitioning [21] [22] [159] [162] [163], Min Number Par-
titioning [16] [17], Max Independent Set [3] [102] [225], Bin-Packing
[219], Min Graph Coloring [44] [47] [70] [74], Set Covering [12], Min
Generalised Assignment [41], Multidimensional Knapsack [13] [53]
[91], Nonlinear Integer Programming [234], Quadratic Assignment
[20] [35] [157] [161] [162], Quadratic Programming [164][166], Set Par-
titioning [138], and particularly on the Min Travelling Salesman
Problem and its variants [79] [78] [88] [89] [90] [109] [119] [128] [156] [158]
[162] [165] [181] [213] [222] .
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Regarding the theory of NP -Completeness, most of them can be cited
as “classical” as they appeared in Karp’s notorious paper [117] on the re-
ducibility of combinatorial problems. Remarkably, in most of them the
authors claim that they have developed the best heuristic for the problem
at hand. This is important since these problems have been addressed with
several with different approaches from the combinatorial optimization tool-
box and almost all general-purpose algorithmic techniques have been tested
on them.

The MA paradigm is not limited to the above mentioned classical prob-
lems. There exist additional “non-classical” combinatorial optimization
problems of similar or higher complexity in whose resolution MAs have re-
vealed themselves as outstanding techniques. As an example of these prob-
lems, one can cite partial shape matching [196], Kauffman NK Landscapes
[160], spacecraft trajectory design [57], minimum weighted k-cardinality tree
subgraph problem [18], minimum k-cut problem [251], uncapacitated hub lo-
cation [2], placement problems [110] [134] [226], vehicle routing [15] [113],
transportation problems [82] [190], and task allocation [97].

Another important class of combinatorial optimization problems are
those that directly or indirectly correspond to telecommunication network
problems. For example, we can cite: frequency allocation [55] [118], network
design [81] [224], degree-constrained minimum spanning tree problem [214],
vertex-biconnectivity augmentation [120], assignment of cells to switches in
cellular mobile networks [209], and OSPF routing [23],

Obviously, this list is by no means complete since its purpose is sim-
ply to document the wide applicability of the approach for combinatorial
optimization.

1.4.2 Scheduling Problems

Undoubtedly, scheduling problems are one of the most important opti-
mization domains due to its practical implications. They thus deserve sepa-
rate mention, despite they could be included in the NP -hard class surveyed
in the previous subsection.

MAs have been used to tackle a large variety of scheduling problems.
We can cite the following: maintenance scheduling [28] [29] [30], open shop
scheduling [40] [73] [142], flowshop scheduling [10] [36] [183] [184], total tardi-
ness single machine scheduling [153], single machine scheduling with setup-
times and due-dates [76] [137] [170], parallel machine scheduling [38] [39]
[154] [172], project scheduling [188] [197] [215], warehouse scheduling [240],
production planning [67] [173], timetabling [24] [25] [26] [27] [31] [87] [145]
[175] [176] [200] [201] [216], rostering [63] [174], and sport games scheduling
[46].
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1.4.3 Machine Learning and Robotics

Machine learning and robotics are two closely related fields since the
different tasks involved in the control of robots are commonly approached
using artificial neural networks and/or classifier systems. MAs, generally
cited as “genetic hybrids” have been used in both fields, i.e., in general
optimization problems related to machine learning (for example, the training
of artificial neural networks), and in robotic applications. With respect to
the former, MAs have been applied to neural network training [1] [112] [179]
[236] [249], pattern recognition [4], pattern classification [132] [169], and
analysis of time series [71] [193].

As to the application of MAs to robotics, work has been done in reac-
tive rulebase learning in mobile agents [54], path planning [192] [205] [248],
manipulator motion planning [221], time optimal control [37], etc.

1.4.4 Engineering, Electronics and Electromagnetics

Electronics and engineering are also two fields in which these methods
have been actively used. For example, with regard to engineering problems,
work has been done in the following areas: structure optimization [250], sys-
tem modeling [239], fracture mechanics [198], aeronautic design [19] [208],
trim loss minimization [194], traffic control [231], power planning [237], cal-
ibration of combustion engines [123] [204], and process control [45] [254].

As to practical applications in the field of electronics and electromagnet-
ics [42], the following list can illustrate the numerous areas in which these
techniques have been utilized: semiconductor manufacturing [121], circuit
design [6] [7] [94] [99] [244], circuit partitioning [5] computer aided design
[14], multilayered periodic strip grating [9], analogue network synthesis [92],
service restoration [8], optical coating design [107], and microwave imaging
[33] [203].

1.4.5 Molecular Optimization Problems

We have selected this particular class of computational problems, involv-
ing nonlinear optimization issues, to help the reader to identify a common
trend in the literature. Unfortunately, the authors continue referring to their
technique as ‘genetic’, although they are closer in spirit to MAs [106].

The Caltech report that gave its name to the, at that time incipient, field
of MAs [177] discussed a metaheuristic which can be viewed as a hybrid
of GAs and SA developed with M.G. Norman in 1988. In recent years,
several papers applied hybrids of GAs with SA or other methods to a variety
of molecular optimization problems [11] [58] [64] [69] [80] [93] [114] [116]
[135] [140] [146] [148] [171] [155] [199] [228] [229] [235] [245] [253] [255].
Hybrid population approaches like this can hardly be catalogued as being
‘genetic’, but this denomination has appeared in previous work by Deaven
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and Ho [65] and then cited by J. Maddox in Nature [149]. Other fields of
application include cluster physics [187]. Additional work has been done
in [66] [104] [105] [206] [207] [245]. Other evolutionary approaches to a
variety of molecular problems can be found in: [69] [101] [103] [152] [168]
[217] [238]. Their use for design problems is particularly appealing [43] [116]
[246]. They have also been applied in protein design [68] [136], structure
prediction [126] [127] [131], and alignment [34] (see also the discussion in
[179] and the literature review in [106]).

This field is enormously active, and new application domains for MAs are
continuously emerging. Among these, we must mention applications related
to genomic analysis, such as clustering gene-expression profiles [167], or
inferring phylogenetic trees [50].

1.4.6 Other Applications

In addition to the application areas described above, MAs have been
also utilized in other fields such as, for example, medicine [95] [96] [241],
economics [139] [195], oceanography [185], mathematics [220] [242] [243],
imaging science and speech processing [32] [133] [141] [151] [223] [252], etc.

For further information about MA applications we suggest querying
bibliographical databases or web browsers for the keywords ‘memetic al-
gorithms’ and ‘hybrid genetic algorithm’. We have tried to be illustrative
rather than exhaustive, pointing out some selected references for well-known
application areas. This means that, with high probability, many important
contributions may have been inadvertently left out.

1.5 Conclusions and Future Directions

We believe that MAs have very favorable perspectives for their devel-
opment and widespread application. Such a belief is grounded on several
reasons. First of all, MAs are showing a great record of efficient implemen-
tations, providing very good results in practical problems as the reader may
have checked by inspecting the previous section. We also have reasons to
believe that we are near some major leaps forward in our theoretical un-
derstanding of these techniques, including for example the worst-case and
average-case computational complexity of recombination procedures. On
the other hand, the ubiquitous nature of distributed systems, like networks
of workstations for example, plus the inherent asynchronous parallelism of
MAs and the existence of web-conscious languages like Java are all together
an excellent combination to develop highly portable and extendable object-
oriented frameworks allowing algorithmic reuse.

We also see as a healthy sign the systematic development of other partic-
ular optimization strategies. If any of the simpler metaheuristics (SA, TS,
VNS, GRASP, etc.) performs the same as a more complex method (GAs,
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MAs, Ant Colonies, etc.), an “elegance design” principle should prevail and
we must either resort to the simpler method, or to the one that has less free
parameters, or to the one that is easier to implement. Such a fact should defy
us to adapt the complex methodology to beat a simpler heuristic, or to check
if that is possible at all. An unhealthy sign of current research, however, are
the attempts to encapsulate metaheuristics on stretched confinements.

We think that there are several “learned lessons” from work in other
metaheuristics. For instance, a Basic Tabu Search scheme ([83]) decides to
accept another new configuration (whether a feasible solution or not) with-
out restriction to the relative objective function value of the two solutions.
This has lead to good performance in some configuration spaces where evo-
lutionary methods and Simulated Annealing perform poorly. A classical
example of this situation is the Min Number Partitioning problem [17].

There are many open lines of research in areas such as co-evolution.
In [180] we can find the following quotation:

“It may be possible that a future generation of MAs will work in
at least two levels and two time scales. In the short-time scale,
a set of agents would be searching in the search space associated
to the problem while the long-time scale adapts the heuristics
associated with the agents. Our work with D. Holstein which
will be presented in this book might be classified as a first step
in this promising direction. However, it is reasonable to think
that more complex schemes evolving solutions, agents, as well as
representations, will soon be implemented.”

At that time, we were referring to the use of a metaheuristic called Guided
Local Search used in [109] as well as the possibility of co-evolving the neigh-
borhood techniques by other means. Unfortunately, this was not studied in
depth in Holstein’s thesis [?]. However, a number of more recent articles
are paving the way to more robust MAs [34, 124, 129, 130]. Krasnogor has
recently introduced the term multimeme algorithms to identify those MAs
that also adaptively change the neighborhood definition [131], and with col-
leagues is applying the method for the difficult problem of protein structure
prediction [127]. Smith also presents a recent study on these issues in [230].

More work is necessary, and indeed the protein folding models they are
using are a good test-bed for the approach. However, we also hope that
the researchers should again concentrate MAs for large-scale challenging
instances of the TSP, possibly following the approaches of using population
structures [182, 77], self-adapting local search, [128] as well as the powerful
recombination operators that have been devised for TSP instances [109, 156,
165, 179]. We have also identified some problems with evolutionary search
methods in instances of the TSP in which the entries of the distance matrix
have a large number of decimal digits. This means that there is an inherent
problem to be solved, for evolutionary methods to deal with fitness functions
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that have so many decimal digits. Traditional rank-based or fitness-based
selection schemes to keep new solutions in the current population fail. It
would be then reasonable to investigate whether some ideas from basic TS
mechanisms could be adapted to allow less stringent selection approaches.

Multiparent recombination is also an exciting area to which research
efforts can be directe4d too. From [202] we can read:

“The strategy developed by Lin [143] for the TSP is to obtain
several local optima and then identify edges that are common
to all of them. These are then fixed, thus reducing the time to
find more local optima. This idea is developed further in [144]
and [86].” It is intriguing that such an strategy, which has been
around for more than three decades, is still not accepted by some
researchers.

We think that the use of multiparent recombination with proven good
properties is one of the most challenging issues for future developement in
MAs, as well as for the whole EC paradigm.
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