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Abstract 

Nowadays there are a wide range of techniques for terrain generation, but are focused on 

providing realistic terrains often neglecting the aesthetic appeal. The Genetic Terrain 

Programming technique, based on evolutionary design with Genetic Programming, allows 

designers to evolve terrains according to their aesthetic feelings or desired features. This 

technique evolves TPs (Terrain Programmes) that are capable of generating different terrains, but 

consistently with the same features. This paper presents a study about the perseverance of 

terrain features of the TPs across different LODs (Levels Of Detail). Results showed it is possible 

to use low LODs during the evolutionary phase without compromising results and the terrain 

features generated by a TPs are scale invariant. 
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1. Introduction 

Artificial terrain generation techniques are used across a broad range of applications, including 

computer animation, architecture, virtual reality and video games. This last area is, probably, the 

one where its use is more prominent. A detailed terrain model involves a huge amount of 

polygons to be represented, even when considering only the portion of the scene that is visible. 

Clark suggested [1] using simpler versions of the geometry for objects that had lesser visual 

importance, such as those far away from the viewer. These simplifications are called Levels of 

Detail (LODs) and allow adapting structures, such as terrains, to the processing power 

requirements. 

 

Nowadays there are many techniques for terrain generation (see Section 2), but procedural 

techniques are one of the most popular among game's designers, mostly due to their speed, 

ease of implementation and to their ability to create irregular shapes across an entire range of 

LODs. However, these techniques allow only a confined variety of terrain types and  it only allows 



the generation of real looking terrains. Although this is important, in some areas, such as video 

games, it might be more relevant designers' creativity. A designer could evolve a terrain 

accordingly to their aesthetic feelings rather than realism. This can lead to the creation of terrains 

with an exotic look, but might also increase users’ interest on a video game. The GTP (Genetic 

Terrain Programming) technique [2] allows the evolution of TPs (Terrain Programmes) based on 

aesthetic evolutionary design with GP (Genetic Programming). For a specific LOD it is known the 

ability of those TPs to generate different terrains, but with coherent terrain features. However, this 

property has not been studied across different LODs. This paper analyses the perseverance of 

terrain features generated by TPs over a range of LODs. This is a desired characteristic by video 

games' designers and can help to improve performance during the TPs' evolutionary phase. 

  

Section 2 introduces some background about the traditional terrain generation techniques and 

their main constrains. It is also presented an overview of evolutionary systems applied to terrain 

generation. Section 3 succinctly describes the GTP technique and Section 4 shows the achieved 

results. Finally, the conclusions and future work are presented. 

 

2. Background 

Although other data structures exist, height maps are frequently used to represent terrains. 

Formally, a height map is a scalar function of two variables, such that for every coordinate pair 

(x,y) corresponds an elevation value h. A well-known limitation of height maps is the inability to 

represent structures where multiple heights exist for the same pair of coordinates (e.g., caves).  

Nevertheless, height maps can be used in numerous scenarios, and on top of that, they can be 

highly optimised in operations such as rendering and collision detection [3].  

 

2.1 Traditional Generation Techniques 

Traditional techniques for terrain generation can be categorised into three main groups: (1) 

measuring, (2) modeling and (3) procedural. Next, we briefly review each of these techniques. 

 

(1) Measuring techniques gather elevation data through real-world measurements, producing so-

called Digital Elevation Models1. These models are commonly built using remote sensing 

techniques such as satellite imagery and land surveys. One key advantage of measuring 

techniques lies in the fact that they produce highly realistic terrains with minimal human effort, 

although this comes at the expenses of the designer control. In fact, if the designer wants to 

express specific goals for the terrain's design and features, this approach may be very time-

consuming since the designer may have to search extensively for real-world data that meet her 

targeted criteria.  

                                            
1  http://rockyweb.cr.usgs.gov/nmpstds/demstds.html 



 

(2) A key advantage of the modeling technique for terrain generation, that departs itself from the 

other two techniques, lies in its adaptability. In the modeling approach, an human artist manually 

models or sculpts the terrain morphology resorting to a 3D modeling program (e.g. Maya2, 

Blender3). The way the terrain is built is different depending on the features provided by the 

chosen editor, but the general principle is the same. Contrary to the measuring technique, under 

the modeling approach the designer retains the full control, a characteristic that has its 

drawbacks: it might force the designer to consume significant time, effort and the resulting terrain 

is fully dependent on the designers' skills. 

 

Finally, (3) procedural techniques are those in which the terrains are generated programmatically. 

This category can further be divided into physical, spectral synthesis and fractal techniques. The 

physical approach aims to simulate real phenomena such as erosion [4], or plate tectonics 

movements. Physically-based techniques generate highly realistic terrains, but require an in-

depth knowledge of physical laws to be properly implemented and used. Another procedural 

approach is the spectral synthesis.  Random frequency data is generated in the frequency 

domain and then converted into altitudes, in the space domain, by applying the inverse Fast 

Fourier Transform (FFT). The problem of using this technique for simulating real world terrain is 

that it is statistically homogeneous and isotropic, two properties that real terrain does not share 

[5].  Furthermore, it does not allow much control on the outcome of terrains' features. Fractal 

techniques are based on the self-similarity concept. An object is said to be self-similar when 

magnified subsets of the object look like the whole and to each other [6]. This allows the use of 

fractals to generate terrain which still looks like terrain, regardless of the LOD in which it is 

displayed [7]. This is one of the reasons why fractal techniques are popular among game's 

designers, besides their speed and ease of implementation. Several tools exist that are 

predominantly based on fractal algorithms (e.g. Terragen4  and GenSurf5). However, not all 

terrain types present the self-similarity characteristic. Furthermore, generated terrains by this 

technique are easily recognised because of the self-similarity pattern and the designer has little 

control on the resulting terrain features. 

 

2.2 Evolutionary Generation Techniques 

Evolutionary algorithms (EA) are a kind of bio-inspired algorithms that apply the Darwin's theory 

[8] of natural evolution of the species, were living organisms are rewarded through its continued 

survival and the propagation of its own genes to its successors. There are four main classes of 

                                            
2  http://www.autodesk.com/fo-products 
3  http://www.blender.org 
4  http://www.planetside.co.uk/terragen 
5  http://tarot.telefragged.com/gensurf 



EAs: genetic algorithms (GA) [9], evolutionary strategies [10], genetic programming (GP) [11] and 

evolutionary programming [12].  

 

To the best of our knowledge, Teong Ong et al. [13] were the first authors to propose an 

evolutionary approach to generate terrains. Their approach, based on GA, breaks down the 

terrain generation process into two stages: the terrain silhouette generation phase, and the terrain 

height map generation phase. A database of height map samples, representative of the different 

terrain types, is used to search an optimal arrangement of elevation data that approximates the 

map generated in the first phase. 

 

M. Frade et al. proposed a new evolutionary approach designated GTP (Genetic Terrain 

Programming) [2]. Their approach consists on the combination of evolutionary art systems with 

GP to evolve mathematical expressions, designated TPs (Terrain Programmes), to generate 

artificial terrains as height maps. GTP relies on GP as evolutionary algorithm, which creates 

computer programs, or mathematical expressions as the solution (represented in a tree form).  

GP algorithms uses four steps to solve problems: (1) generate an initial population of random 

compositions of the functions and terminals of the problem; (2) execute each program in the 

population and assign it a fitness value according to how well it solves the problem, on interactive 

systems this task is performed by a human; (3) create a new population by copying the best 

existing solution and creating new individuals by mutation and crossover (sexual reproduction); 

(4) The best computer program that appeared in any generation, the best-so-far solution, is 

designated as the result of GP [11].  

 

3. Genetic Terrain Programming 

The GTP technique [2] consists of a guided evolution, by means of Interactive Evolution, 

accordingly to a specific desired terrain feature or aesthetic appeal. This technique can yield both 

aesthetic and real terrains and is capable of generating different terrains, but consistently with the 

same features. Furthermore, by way of resorting to several TPs to compose the full landscape, it 

is possible to control some localised terrain features, thus eliminating the main drawback of 

traditional procedural techniques. The combination of GP with evolutionary art systems also 

diminish the effort and time required to create complex terrains, relatively to modeling techniques 

and the results that are not dependent on the designer's skills. 

 

In GTP the first population is created randomly, with initial trees depth size limited to 20 and a 

fixed population size of 12. The number of generations is decided by the designer, who can stop 

the application at any time. The designer can select one or two individuals to create the next 

population. Like in others IEC systems, the fitness function relies exclusively on designers' 



decision, either based on his aesthetic appeal or on desired features. The individuals of a 

population are represented as trees composed by nodes and terminals. The tree nodes can 

contain any of the functions in Table 1 and the possible terminals are presented in Table 2. 

Contrarily to other GP implementations, where the terminals are scalar values, in GTP the 

terminals are two-dimensional matrices which represent height maps. 

 

Table 1 – GP functions 

Name Description 

plus(a,b) plus: a + b 

minus(a,b) minus: a - b 

multiply(a,b) multiply: a x b  

sin(a), cos(a), tan(a), atan(a) trigonometric functions 

myLog(a) returns 0, if a=0 and log(|a|) otherwise 

myPower(a,b) returns 0 if a^b is NaN, Inf, or or has imaginary part, otherwise returns a^b 

myDivide(a,b) returns a if b=0, otherwise returns a/b 

myMod(a,b) is 0 if b=0, otherwise returns mod(a/b) 

mySqrt(a) returns sqrt(|a|) 

negative(a) returns -a 

FFT(a) returns 2-D discrete Fourier Transform 

smooth(a) circular averaging filter with r=5 

 

Table 2 – GP Terminals 
Name Description 

rand(s) map with random hights between 0 and 1 

fftGen(s) spectral synthesis based hight map, whose spectrum depends on a REC 

gauss(s) gaussian bell shape hight map, whose wideness depends on a REC 

plane(s) flat inclined plane hight map whose orientation depends on a REC 

step(s) step shape hight map whose orientation depends on a REC 

sphere(s) semi-shpere hight map whose radius depends on a REC 

 

 

 

Figure 1 – Example of a TP in tree form. 

 

Most terminals depend upon a Random Ephemeral Constant (REC) to define some 

characteristics. Figure 1 presents an example of a TP in tree form with two REC values 

represented in grey ellipses within the terminals.  

 



In GTP the 12 individuals of the population must be executed during the interactive evolutionary 

phase to be evaluated by a designer, which will choose the TPs for the next generation. This 

means that using high LODs on this phase will consume more time and the application will be 

less responsive. The LOD is controlled through the terminals' variable s during the TP execution. 

The axis values in the terminals' functions are discrete with regular intervals and the variable s 

controls the spacing between axis values by specifying the height map grid size, which covers a 

predefined area. The greater the s value is, the lesser is the distance between each grid point 

and greater is the LOD. 

 

4. Results 

An experiment was conducted to test the perseverance of terrain features across several LODs 

and the consequent impact in generation times for our evolutionary tool GenTP (developed with 

GPLAB6, an open source GP toolbox for Matlab7). A set of TPs was chosen to generate terrains 

with grid sizes from 50 to 450. Figure 2 presents the results of the execution of four different TPs 

at three LODs with grid sizes of 50x50, 150x150 and 450x450. The first row corresponds to TP1, 

the second to TP2 and so on. TP1 (with 8 nodes) and TP2 (with 17 nodes) were evolved by their 

aesthetic appeal and the TP3 and TP4 were evolved with a terrain feature in mind. A mountain in 

TP3 (with 13 nodes) and a volcano in TP4 (with 7 nodes). In this experience all TPs have 

preserved their main features independently of the chosen grid size. Due to terminals' 

randomness consecutive calls of the same terminal will always generate a slightly different height 

map. This is a desired characteristic, but it can be controlled for a specific LOD, by fixating the 

random number seed. However, this approach does not work for generating terrains at different 

LODs, because the amount of necessary random numbers will vary accordingly with the chosen 

LOD. This explains the differences from terrains at different LODs generated by the same TP. 

Figure 3 shows the average time of 10 execution of each TP at each grid size on a Pentium Core 

2 Duo at 1,66 GHz with 2 GB of RAM. As expected the generation time increases at a quadratic 

pace with the increase of the number of grid points, e.g. for TP4  from 18,4 ms at 50x50 to 1066,0 

ms at 450x450. The generation time also increased, as anticipated, with the number of TP's 

nodes. These results show us that it is possible to evolve TPs with low LOD and consequently 

less computation time, thus improving the response time of our tool, without affect the designers' 

judgement about the terrains features of the selected TP. Anyhow, through the analyse function 

implemented in our tool, it is possible to select the desired grid size to inspect the coherence of 

terrain features of a TP across 8 consecutive executions. 

 

TP1=myLog(myLog(myMod(myLog(fftGen(s,3.75)),myLog(myLog(fftGen(s,4.25)))))) 

                                            
6  http://gplab.sourceforge.net/ 
7  http://www.mathworks.com/ 



TP2=myPower(cos(myDivide(myLog(smooth(fftGen(s,2.75))),myMod(sin(fftGen(s,0.50)),myDivide(myLog(smooth(fftGen(

s,2.75))),myMod((sin(fftGen(s,0.50))),fftGen(s,2.25)))))) 

TP3=times(sin(fftGen(s,3.00)),smooth(times(sin(cos(sin(cos(times(fftGen(s,1.75),fftGen(s,0.75)))))),fftGen(s,0.50)))) 

TP4=plus(fftGen(s,3.00),smooth(myMod(gauss(s,0.75),cos(fftGen(s,1.00))))) 

 

   

   

   

   

Figure 2 – Each row as an example of a TP executed with a grid size of 50x50, 150x150 and 450x450.  

     

Figure 3 – Terrain generation time versus grid size 



Conclusion 

This paper presented the GTP technique which allows the evolution of TPs to produce terrains 

accordingly to designers' aesthetic feelings or desired features. Through a series of experiments 

we have shown that the feature perseverance is true independently of the chosen LOD. This 

means that during the evolutionary phase low LODs can be used without compromising the 

result. Consequently less time will be required for our evolutionary tool, enabling it to be more 

responsive, which is an important characteristic on interactive tools.  Additionally, the resulting 

TPs can be incorporated in video games, like any other procedural technique, to generate 

terrains, with the same features, independently of the chosen LOD. Furthermore, this technique 

offers two levels of control regarding randomness: a specific TP will always generate terrains with 

the same features; and the seed for the random number generator can be kept the same across 

separate runs, allowing the same terrain to be regenerated as many times as desired. 

 

The TPs' scale invariance showed in our results preludes the implementation of a zoom feature. 

Fixating the the random number generator seed is not enough to implement this feature due to 

the variation of the amount of necessary random numbers accordingly with the zoom. Besides 

some terminals, like rand and fftGen, are not based on continuous functions. Another future work 

will be the inclusion of more features in our technique in order to generate full landscapes 

including vegetation and buildings. 
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