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Abstract: Implementation of formal techniques to aid the design and implementation of workflow management systems
(WfMS) is still required. We believe that formal methods can be applied in the field of properties demon-
stration of a workflow specification. This paper develops a formalization of the workflow paradigm based on
communication (speech-act theory) by using a temporal logic, namely, the Temporal Logic of Actions (TLA).
This formalization provides the basic theoretical foundation for the automated demonstration of the properties
of a workflow map, its simulation, and fine-tuning by managers.

1 INTRODUCTION

The development of a workflow management sys-
tem for an organization is a highly complex process.
Therefore, the workflow map should be tested and
validated before it is implemented; in other words,
it should be analyzed prior to implementation. Most
current workflow systems deal with this validation is-
sue by using simulation modules that “execute” the
model and examine the possible problems before it is
truly “executed” and implemented in real life.

Although these simulation modules are very use-
ful for the management team to detect problems in
the business processes represented by the workflow, it
would be advisable to find other more reliable meth-
ods. In other words, the model should allow and fa-
cilitate the automated demonstration of properties and
characteristics. For example: will any workflow never
be executed? Will this workflow ever be executed? Is
the operation carried out with a specified time cost?
Formal proving mechanisms will provide a practical
solution to these kinds of problems (Hofstede et al.,
1998).

In this paper we aim at approaching workflow mod-
elling in a different way. Our object is to make a for-
malization of the language/action paradigm (Medina-
Mora et al., 1992), based on a extension of temporal
logic. This extension is known as Temporal Logic of
Actions (TLA) (Lamport, 1994), and allows the easy
modelling of transition states.

The application of TLA to workflow management
systems provides three bases: (a) Theory: Providing
a theory with a robust basis and strongly validated to
carry out analyses. (b) Formalization: The possibil-
ity of formalizing workflow maps from such a theory.
In other words, expressing workflow maps as TLA
expressions. (c) Analysis: Providing a mechanism
for the automated demonstration of workflow model
properties. The capacity to prove the existence of - or
freedom from - bottlenecks, deadlocks, etc.

Our approach is as follows: (i) Specification of the
workflow loop semantics (section 2.2); (ii) explain the
auxiliar variables used for workflow implementation,
(iii) the formalization the workflow loop in TLA (sec-
tion 4); (iv) formalization of basic workflow construc-
tors.

This paper is organized as follows: we begin
with a description of workflow, workflow manage-
ment systems, and the modelling of workflow pro-
cesses (sec. 2). In section 2.2 we analyze the ba-
sis of communication-based methodology (“speech-
act”). In section 3 the TLA elements needed for the
formalization are described. The core of this paper is
(section 4), where the TLA formalization of the lan-
guage/action paradigm is developed. The last section
includes some relevant conclusions and future work.
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2 WORKFLOW AND WfMS

Workflow includes a set of technological solutions
aimed at automating work processes that are de-
scribed in an explicit process model called the work-
flow map. Workflow has a wide range of possibilities
as demonstrated by group support and the automation
of organizational processes. In general terms we can
define workflow as (Sheth and Rusinkiewicz, 1993):
workflow is comprised by a set of activities dealing
with the coordinated execution of multiple tasks de-
veloped by different processing entities in order to
reach a common objective.

This technology is made tangible as information
technology systems in the form of workflow man-
agement systems (WFMS). WFMS can be defined
as (WFMC, 1994): “A system that defines, creates,
and manages automatically the execution of workflow
models by the use of one or more workflow engines in
charge of interpreting process definitions (workflow
maps), interacting with agents and, when required, in-
voking the use of information systems involved in the
work”.

2.1 Modelling techniques for
workflow processes

Many authors agree on splitting workflow methodolo-
gies into two main categories (Georgakopoulos et al.,
1995): (a) Activity-based methodology. These focus
on modelling the activities that will take place during
the development of the workflow (WFMC, 1994). (b)
Communication-based methodologies. These stem
from Searle’s theory, known as “speech-acts” (Searle,
1975).

2.2 Communication-based
methodologies

Communication-based methodologies stem from the
“Conversation for Action” model developed by
Medina-Mora, Winograd, and Flores (Winograd,
1988),(Medina-Mora et al., 1992). They view work-
flow as a sequence of conversations between a client
and a server. In this section, the agents involved are
described as the client requiring a service that will be
developed or performed by the server .

The communication previously described between
client (Cli) and server (Svr) can be defined in four
steps (figure??): (i) Request/preparation. In this
stage, the client requests an action and establishes the
criteria for completing it successfully. (ii) Negotia-
tion. In this stage, the conditions for being satisfied
with the work to be done are negotiated. (iii) Develop-
ment. The action is carried out by the server. (iv) Ac-
ceptance. The workflow loop is closed by accepting

the work under the terms of satisfaction established in
the second step.

Each stage or step can be broken down into several
sub-workflows which will help to make them more
specific. The set of subdivisions within the workflow
loops is known as a Business Process Map (BPM).

Figure 1: Example model

At any phase we can connect workflows in three
modes (see figure 1): (a) Sequential mode: likeA and
B workflows. (b) Conditional mode: likeOP1 and
OP2 that can be executed depending on the guardG.
(c) Parallel model: likePAR1 andPAR2.

3 TEMPORAL LOGIC OF
ACTIONS

In this paper, we make use of Temporal Logic of
Actions (TLA) which allows us to model state tran-
sition diagrams in a relatively easy manner. There-
fore, we now describe the basic principles described
by Lamport (Lamport, 1994) which are required to
understand our work.

TLA combines two types of logic: Action logic,
used to represent relationships between states, and
temporal logic, dealing with the reasoning involved in
an infinite sequence of states. All TLA formulas are
TRUE or FALSE in a behavior (

.= denotes equal to
by definition). We define behaviorσ as an infinite se-
quence of states< s0, s1, s2, · · · >, where each state
si has been assigned a corresponding variable.

3.1 Elements of State Logic in TLA

Variables. An infinite number of variable names
(e.g.,x or y) and a value class set that can be assigned
to the variables are assumed. These value classes in-
clude strings, numbers, sets, and functions. Ifx is a
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variable,[[x]] is the function that semantically maps
the value ofx in the states. Similarly,[[x]](s) is the
function of the value ofx in the states.

State and predicate functions. A state function is
a non-Boolean expression built from variables, con-
stants, and standard arithmetic operators. The seman-
tics of [[f ]], wheref is a state function, consists of
mapping states into values. To obtain the value of
f in states, we replace each variablexi of f with
[[xi]](s). Similarly, a predicate function or predicate
P is a Boolean predicate.[[P ]] is an application of
the set of states in a Boolean value.s fulfills P iff
[[P ]](s) is equal to TRUE.

Actions. An action is a Boolean expression contain-
ing non-qualified primed variables (such asx′), stan-
dard operators, and values. An action represents an
atomic operation of the system. Semantically, an ac-
tion A is true or false for a pair of states, and takes
the primed variables belonging to the second state. If
we take an old states, a new statet, and an actionA,
we obtain[[A]](s, t), by first replacing each variablex
with [[x]](s) and each variablex′ with [[x]](t) to later
evaluate the expression. It is said that the state pair
(s, t) is a A-step iff[[A]](s,t) is equal to TRUE.

Active action in a state and execution. An action
A is said to be active in a states if there is a statet
such that(s, t) is a A-step (ecuacin 1).

[[Enabled A]](s) .= ∃t ∈ σ : [[A]](s, t) (1)

An actionA can be broken down into two logical
formulae:G refers to the precondition, andB to the
body of the action in itselfA ≡ G ∧B.

3.2 Elements of Temporal Logic in
TLA

In TLA, the behavior of a system is modeled as an
infinite sequence of states, where their basic elements
are actions and temporal logic. In order to define the
semantics of temporal formulae, we need to extend
the semantic definition of the predicates whose value
will be TRUE or FALSE in a given behavior. A be-
havior satisfies the predicateP iff (eq. 2) is satisfied
in the first state.

[[P ]](< s0, s1, s2, · · · >) ⇒ [[P ]](s0) (2)
Similarly, a behavior satisfies the actionA iff the

first pair of states of the given behavior is an A-step
(eq. 3).

[[A]](< s0, s1, s2, · · · >) ⇒ [[A]](s0, s1) (3)

Always operator. The operator� (always) is the
basic block of any temporal logic. Given a formula
F , �F asserts thatF is always TRUE (eq. 4):

[[�F ]](< s0, s1, s2, · · · >) .= ∀n ≥ 0 :
[[F ]](< sn, sn+1, sn+2, · · · >) (4)

From equations 2 and 3 we define a behaviorσ that
satisfies�P iff all the states of the behaviorσ satisfy
P . Similarly, a behaviorσ satisfies�A iff all steps
(si, si+1) areA-steps.

Eventually operator. The formula♦F asserts that
F is eventually TRUE (eq. 5):

[[♦F ]](< s0, s1, s2, · · · >) .= ∃n ≥ 0 :
[[F ]](< sn, sn+1, sn+2, · · · >) (5)

Validity. A formulaeF is valid iff it is satisfied for
all behaviors (eq. 6).S∞ denotes the set of all possi-
ble behaviors.

� F
.= ∀σ ∈ S∞ : [[F ]](σ) (6)

Specification in TLA. All previous definitions can
be summed up in a single one to make a formal speci-
fication. A formal specification has the following gen-
eral formula (eq. 7).

Π .= Init ∧�(A1 ∨A2 ∨ · · · ∨An) (7)

A formulaΠ is TRUE in a behavior iff its first state
satisfies the predicateInit and each step at least sat-
isfies an actionAi. Actions in TLA are allowed only
if the predicateEnabled is TRUE and the context can
be expressed as in equation 8.

[A]v
.= A ∨ v′ = v (8)

This expression indicates that a newv-step is a step
where either A is an A-step or the values ofv do not
change. Similarly, a non-stuttering execution can be
defined:

〈A〉v
.= A ∨ v′ 6= v (9)

Fairness operators. The fairness operators are in
charge of ensuring that “nothing abnormal will hap-
pen”. There are two types: weak fairness (WF) and
strong fairness (SF) operators.

Weak fairness. The weak fairness formula asserts
that an action has to be infinitely executed frequently
if it is continuously enabled for an infinitely long
time.

WFv(A) .= �♦〈A〉v ∨�♦¬Enabled〈A〉v (10)
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Strong fairness. The strong fairness formula asserts
that an action has to be infinitely executed frequently
if it is often infinitely enabled.

SFv(A) .= �♦〈A〉v ∨ ♦�¬Enabled〈A〉v (11)

Formal specification in TLA. A Φ formula repre-
sents a workflow system specification. Let be:InitΦ
variables initial state.N the execution in atomic op-
erations form ofPhi. f a used variables n–tuple.F
conjunction of formulas in the formWFf (A) and/or
SFf (A) whereA represents an part ofN . Then the
specificationΦ is in the following form ( 12).

Φ ≡ InitΦ ∧�[N ]f ∧ F (12)

Parallel composition. If Φ andΨ are the represen-
tation of two workflows and do not share variables the
Φ ∧Ψ represents the parallel composition.

4 FORMALIZING THE
LANGUAGE/ACTION
PARADIGM

As a prior step, we will define what is understood
by work. Work w is a quadruple expressed in the
equationw

.= {I,H, P, SC, V } where: I: Infor-
mation needed to carry out the task.H: Tools and
methods needed to perform the task.P : Person, role
or agent with the capacity to perform the task.SC:
Terms of satisfaction for the work to be considered
completed.V : Set of state variables belonging to the
workflow.

Each of these sub-variables is denoted asW k.I,
W k.H, W k.P , W k.SC, W k.V , respectively, where
W k is the work element.

Also we define a set of workflow attributes that can
be used as control variables for its execution (these
attributes are include inV ): W kS: State of the work.
W fS: Current state of the workflow.W fP : Current
phase of the workflow.Wk: The variable representing
the current work.XWk: External work proposed by
A (whereA is the workflow’s client).W fCli: Work-
flow client. W fSvr: Workflow server.

At this point we can get the workflow behavior for-
malization. We use the example from figure 1 to il-
lustrate how the main primitives formalize in TLA.
We use theWfP andWfS workflow attributes for
the specification. The control variableWfP that con-
tains the actual worflow phase is as follows:

WfP ∈ {“preparation”, “negotiation”,

“development”, “acceptance”, “final”}

WfS represents the internal status value for a
workflow. This variable is equal to “finished” when
the workflows is terminated.

Also for the sub–workflows sequentiation into each
phase we use the control attributesec. This vari-
able stores the actual execution position at each work-
flow phase. Thesec type is an array that can
be noted withWf .sec if it has only one position
or Wf .sec[1],Wf .sec[2], . . . Wf .sec[n] that specifies
multiples ways of execution.

4.1 Workflow loop formalization

With these elements we can formalize the case study
in TLA. For the formalization we use the following
notation:

• ΨWF a formal specification of workflowWF .

• WF the relationship with the following workflow
state.

• InitΨWF initial condition for workflow execu-
tion. This condition is composed byInitWF (ini-
tial condition for work variables of workflowWF )
andInitΨ or initial condition forWF control vari-
ables. ThereforeInitΨWF = InitWF ∧ InitΨ.

• WF{phase name} the equation that defines the
behavior at workflow level for each phase.
WF{negotiation} corresponds with the negotiation
phase specification. If the specification does not
exists its value will beWF{phase name} = > and
therefore always correct.

• ΨWF{phase name} corresponds with the phase spec-
ification.

• Ex(WF{phase name}) corresponds with the execu-
tion level specification ofΨWF{phase name} . This
is an atomic sub–workflow and therefore equiva-
lent at the definition level with the general formulae
ΨWF . We use this term to nest specifications.

• f corresponds with the set of variables used
by workflow both control variablesf<control>

and work variablesf<WF> (f = f<control> ∪
f<WF>).

To begin with theWF specification we define the
general formulaeΨWF (equation 13).

ΨWF ≡ InitΨWF ∧�[WF ]f
∧SF (WF{preparation})
∧SF (WF{negotiation})
∧SF (WF{development})
∧SF (WF{acceptance}) (13)

The initial state is the one at both control variables
and work variables ofWF (to simplify we do not
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use this type of variable). This state indicates that the
workflow is in the “preparation” phase (equation 14).

InitΨWF ≡ InitΨ ∧ InitWF

InitΨ ≡ WfP = “preparation” (14)

The workflow execution behavior consists in a se-
quential execution for each phase. Each phase exe-
cutes its specification; and when it finishes then the
workflow transits to the next phase until the workflow
has bee correctly completed (equation 15)1.

WF ≡ ∨WF{preparation}

∨WF{negotiation}

∨WF{development}

∨WF{acceptance} (15)

Each specification can be found in equations 16,
17, 18 and 192.

WF{preparation} ≡ WfP = “preparation”
∧ΨWF{preparation}

WfP ′ = “negotiation”
∧Unchg<f−{Wf P}> (16)

WF{negotiation} ≡ WfP = “negotiation”
∧ΨWF{negotiation}

WfP ′ = “development”
∧Unchg<f−{Wf P}> (17)

WF{development} ≡ WfP = “development”
∧ΨWF{development}

WfP ′ = “acceptance”
∧Unchg<f−{Wf P}> (18)

WF{acceptance} ≡ WfP = “acceptance”
∧ΨWF{acceptance}

WfP ′ = “final”
∧Unchg<f−{Wf P}> (19)

1We used operator∧ and∨ following Lamport’s recom-
mendation (Lamport, 1994)

2Unchgis ’Unchanged operator’ in TLA

4.2 Sequential tasks formalization

To continue with the example, we formalize tasksA
andB where execution must be sequential. We use
thesec attribute, which notes the actual execution se-
quence into each phase.

The general equation begins with a development
phaseΨWF{development} (equation 20).

ΨWF{development} ≡ InitΨWF{development}

∧�[Ex(WF{development}]f
∧SF (A)
∧SF (B) (20)

The initial state variables has an effect on the se-
quential step (equation 21).

InitΨWF{development} ≡ WF{dev.}.sec = “A”
∧InitWF{dev.} (21)

The execution is based on sub-workflow specifica-
tionsA andB (equations 22, 23, 24 and .

Ex(WF{development} ≡ A ∨B (22)

A ≡ ∧WF{development}.sec = “A”

∧ΨA ∧WF{development}.sec
′ = “B”

∧Unchg<f−WF{development}.sec> (23)

B ≡ ∧WF{development}.sec = “B”

∧ΨB ∧WF{development}.sec
′ = “end”

∧Unchg<f−WF{development}.sec> (24)

4.3 Conditional task formalization

The worksOP1 and OP2 are executed depending
guard G at WF preparation phase. The equation
specifies how this phase works and the fairness sec-
tion specifies that bothOP1 andOP2 will be exe-
cuted eventually if infinitely often they are active for
its execution.

ΨWF{preparation} ≡ InitWF{preparation}

∧�[Ex(WF{preparation})]f
∧(WF (OP1)
∨WF (OP2)) (25)

We usedG and the predicateInitWF{preparation}
to decide about the execution for this sub–workflows
(equation 26).
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InitWF{prep.} ≡ (G → WF{prep.}.sec = “OP1”)

∨(¬G →
WF{prep.}.sec = “OP2”) (26)

The execution definition, using the initialitation
formulae, is simple (equations 27, 28 y 29):

Ex(WF{preparation}) ≡ (G → OP1) ∧
(¬G → OP2) (27)

OP1 ≡ WF{preparation}.sec = “OP1”
∧ΨOP1

WF{preparation}.sec
′ = “fin”

∧Unchg<f−sec> (28)

OP2 ≡ WF{preparation}.sec = “OP2”
∧ΨOP2

WF{preparation}.sec
′ = “fin”

∧Unchg<f−sec> (29)

4.4 Parallel execution formalization

ThePAR1 andPAR2 workflows are executed at the
execution phase of workflowB. We use theΨB for-
mulae for the specification (equation 30).

ΨB ≡ InitΨB
∧�[B] ∧ SF (B) (30)

The B specification follows the general schema
that we used forWF (equation 31).

InitΨB
≡ B.WfP = “preparation”

∧InitBesp

B ≡ B{preparation}

∨B{negotiation}

∨B{development}

∨B{acceptance}

. . .

B{development} ≡ ∧B.WfP = “development”
∧ΨB{development}

∧B.WfP ′ = “acceptance”
. . . (31)

Finally we used the parallel composition to define
B{development} (equation 32).

ΨB{development} ≡ (ΨPAR1 ∧ΨPAR2) (32)

5 CONCLUSIONS

Workflow technology needs something else other
than commercial workflow products to advance pro-
cess automatization. The descriptive specification of
workflow maps is very useful for managers - who
have a description of business processes - and for de-
velopment teams. This paper introduces formal meth-
ods to carry out automated demonstrations of work-
flow properties. The formal method chosen is TLA.
In order to prove the power of this logic, we have for-
malized the workflow loop of communication-based
technologies. Modelling the workflow structure has
been addressed at a micro-level, i.e., at the workflow
loop’s inner operating level.

We have shown that combining the use of tradi-
tional modelling methodologies and TLA makes pos-
sible the representation of workflow loops in a way
that user-designers without expertise in logic can un-
derstand, and at the same time the model can be auto-
matically analyzed by demonstrating workflow prop-
erties such as consistency, time deadlines, and other
desirable characteristics.
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