A formal approach to component adaptation

Andrea Bracciali , Antonio Brogi #, and Carlos Canal P

2Department of Computer Science, University of Pisa, Italy

bDepartment of Languages and Computer Science, University of Malaga, Spain

Component adaptation is widely recognised to be one of the crucial problems in Component-Based Software
Engineering (CBSE). We present a formal methodology for adapting components with mismatching interaction
behaviour. The three main ingredients of the methodology are: (1) The inclusion of behaviour specifications
in component interfaces, (2) a simple, high-level notation for expressing adaptor specifications, and (3) a fully
automated procedure to derive concrete adaptors from given high-level specifications.

1. Introduction

Component adaptation is widely recognised to
be one of the crucial problems in CBSE [1,2], and
it has been the subject of increasing attention in
the last few years. The possibility for applica-
tion builders to easily adapt off-the-shelf software
components to properly work within their appli-
cation is a must for the creation of a true compo-
nent marketplace and for component deployment
in general [3].

Available component-oriented platforms (e.g.,
CORBA, COM, JavaBeans, .NET) address soft-
ware interoperability typically using Interface
Description Languages (IDLs) to specify the
functionality offered (and required) by possibly
heterogeneous software components. IDL in-
terfaces are important for software integration,
since they highlight signature mismatches be-
tween components, in view of their adaptation or
wrapping. However, solving all signature prob-
lems does not guarantee that the components
will suitably interoperate. Indeed, mismatches
may also occur at the protocol level, due to the
ordering of the messages exchanged, and also to
blocking conditions [4], that is, because of be-
haviour mismatches of the involved components.
Other than case-based testing of the compatibil-
ity of components, more rigorous techniques are
needed to lift their integration from hand-crafting
to an engineering activity.

For instance, system developers would like to
determine beforehand whether the inclusion of a
third-party component may introduce a deadlock
into the application under development. In order
to rigorously verify properties of systems consist-
ing of large numbers of dynamically interacting
components, a formal description of the interac-
tive behaviour of components is needed [5].

In this paper, we focus on the problem of
adapting mismatching behaviours that compo-
nents may exhibit. A formal foundation for adap-
tation was set by Yellin and Strom in their sem-
inal paper [6]. There, they used finite state ma-
chines for specifying component behaviours, and
introduced formally the notion of adaptor as a
software entity capable of letting two components
with mismatching behaviour interoperate.

The aim of this paper is to present a formal
methodology for behavioural adaptation, whose
main aspects are the following.

1. Component interfaces. IDL interfaces are ex-
tended with a description of the behaviour of
the components. Hence, an interface consists
of two parts: A signature definition (describing
the functionalities offered and required by a com-
ponent), and a behaviour specification (describ-
ing the interaction protocol followed by a com-
ponent). While signatures are expressed in the
style of traditional IDLs, behaviour specifications
are expressed by using a subset of m-calculus [7],
a process algebra well-suited for the specification
of dynamic and evolving systems.

2. Adaptor specification. We present a simple no-
tation for expressing the specification of an adap-
tor intended to feature the interoperation of two
components. The adaptor specification consists
of a set of correspondences between actions and
parameters of the two components. The distin-
guishing aspect of the notation is that it produces
a high-level, partial specification of the adaptor.
The meaning of the adaptor specification can be
formalised into a set of properties (expressed in 7-
calculus), which constrains the automatic deriva-
tion of correct adaptors.

3. Adaptor derivation. A concrete adaptor is
fully automatically generated, given its partial
specification and the interfaces of two compo-
nents, by exhaustively trying to build a compo-
nent which satisfies the given specification. The
separation of adaptor specification and deriva-
tion allows for automating the error-prone, time-
consuming task of generating a detailed imple-
mentation of a correct adaptor, thus simplifying
the task of the (human) software developer.

Component interfaces and the notation for
adaptor specifications are described in Sect. 2 and
Sect. 3, respectively. Sect. 4 describes automated
adaptor generation. An example in Sect. 5 illus-
trates the whole methodology. Related work and
concluding remarks are discussed in Sect. 6.

2. Component interfaces

Component interfaces consist of a set of roles
[8]. Each role is an abstract description of a spe-
cific facet of the behaviour that the component
plays in its interaction with any other component
it will be related to. The specification of a role
is divided into two parts: (1) a description of the
component at the signature level (as usually done
by IDLs), and (2) a description of the component
interactive behaviour:

role roleName = {
signature input and output actions
behaviour interaction pattern }

The signature interface of a role declares a set
of input and output actions, that is, the set of
messages sent and received by the role, repre-
senting the methods that the component offers

and invokes, the values or exceptions returned,
etc.. Differently from typical IDLs, not only the
services that the component offers to its envi-
ronment (i.e., its output actions), but also the
services required by the component (i.e., its in-
put actions) are explicitly indicated. Both input
and output actions may have parameters, repre-
senting the data exchanged in the communica-
tion. Parameters can be typed, allowing for type-
checking, but for the purpose of this paper only
two different types are used: Data and Link. The
latter identifies link names which can be sent and
received by the component, and then used for in-
teracting with its environment, while Data refers
to generic data (anything but links).

The behaviour description of a role consists of
what we call an interaction pattern [9]. Intu-
itively speaking, an interaction pattern describes
the essential aspects of the finite interactive be-
haviour that a component may (repeatedly) show
to its environment. These patterns are described
by means of a sugared subset of the polyadic
m-calculus, in which tuples, and not only single
names, can be communicated. The w-calculus,
allowing link names to be sent and received as val-
ues, has proved to be a very expressive notation
for describing the behaviour of software compo-
nents in applications with changing interconnec-
tion topology. Interaction patterns are defined as
follows:

E::= 0| a.E | (x)E | [x=ylE | EI|E | E+E
a ::= tau | x?7(d) | x!'(d)

Input and output actions are respectively repre-
sented by x7(d) and x!(d), where x is the link
along which the actions are performed and d is
a tuple of parameters (either links or data), sent
or received along x. Non-observable actions (also
called silent actions) are denoted by tau. Actions
are composed in expressions (processes), where 0
represents inaction. Restriction, e.g. (x)E, repre-
sents the creation of a new link name x in an ex-
pression E. The matching operator [x=y]E is used
for specifying conditional behaviour: [x=y] E be-
haves as E if x=y, otherwise as 0. Finally, non-
deterministic choice (+) and parallel (||) opera-
tors are defined: E + E’ may proceed either to
E or to E’, while E || E’ consists of expressions

E and E’ acting in parallel but, differently from
the standard 7-calculus parallel operator (|), not
synchronising (only expressions of different com-
ponents may communicate).

Notice that interaction patterns do not contain
recursion, since they are intended to specify finite
fragments of the interaction as an abstract way of
representing component behaviours. In order to
show the implications of this choice, consider, for
instance, a reader component R that sequentially
reads a file. File items are received via an action
read?(x), the end-of-file being represented by a
special value EOF. Moreover, the component may
decide to break the transmission at any time via
an action break! (). Such a behaviour would be
expressed in full (recursive) m-calculus as:

R = read?(x).([x!=EOF] R + [x=EOF] 0)
+ tau. break! (). 0

i.e., the component repeatedly presents a read?
action until either an EOF is received, or it de-
cides (by performing a tau action) to break the
transmission. The encoding of this behaviour as
a (non-recursive) interaction pattern, I1, is:

I1 = read?(x). 0 + tau. break!(). 0

where some aspects of the behaviour, like recur-
sion and the alternative after the read? action,
have been abstracted by projecting them over
time, collapsing repeated actions into a single one.

Indeed, trying to describe all the aspects of
the behaviour of a distributed system in one
shot unavoidably leads to complex formulations
of low practical usability. Instead, we focus on
descriptions of finite concurrent behaviours, mak-
ing the verification of properties more tractable.
In some sense, the choice of considering simple
non-recursive interaction patterns resembles the
introduction of types in programming languages.
Even if type checking cannot in general guarantee
the correctness of a program, it does eliminate the
vast majority of programming errors. Similarly,
even if the compatibility of a set of interaction
patterns does not guarantee the correctness of a
concurrent system, it can eliminate many errors
in system assembly [9].

A component may exhibit more than one role
or pattern. Consider the behaviour of a more

complex reader, RW, which writes to disk the re-
ceived file, using actions fwrite! and fclose!:

RW = read?(x). ([x!=EOF] fwrite!(x). RW
+ [x=EQF] fclose!(). 0)
+ tau. break! (). fclose! (). 0

This behaviour can be partitioned into two inde-
pendent roles: One for reading files, I1, and the
other one, I2, for interacting with the file system:

I2 = tau. furite!(x). 0 + tau. fclose!(). 0

Each role represents the reader from the point
of view of the component to which the role is
connected, facilitating a modular representation
and analysis of behaviour. Indeed, I2 expresses
the point of view of the file system, for which
the reader seems to freely decide which action to
output.

3. Adaptor specification

Adaptation is a hard problem which involves
a large amount of domain knowledge and may
require complex reasoning. Hence our approach
aims at providing a methodology for specifying
the required adaptation between two components
in a general and abstract way. In this section
we will illustrate a simple, high-level language
for describing the intended mapping among the
functionalities of two components to be adapted.
This description will be used for the automatic
construction of an adaptor that mediates the in-
teraction of the two components.

We first observe that adaptation does not sim-
ply amount to unifying link names. Consider for
instance a component P1 that requests a file by
providing an url, and a server Q1 that first re-
ceives the url and then returns the corresponding
file. Their interfaces are, respectively:

role P1 = {
signature request! (Data url);
reply?(Data page);
behaviour request!(url). reply?(page). 0 }

role Q1 = {
signature query?(Data handle);
return! (Data file);
behaviour query?(handle) . return! (file). 0}

The connection between request! and query?,
and between reply? and return! could be de-
fined by means of a substitution o:

o = { u/request, u/query, v/reply, v/return }

which allows the interaction of both components
through links u and v. However, after applying
the substitution, the communication between Po
and Qo would be direct and unfiltered, since they
would share link names. Unfortunately, this con-
trasts with encapsulation principles as, in gen-
eral, one would like neither to modify the com-
ponents, nor to allow them to communicate di-
rectly, by-passing the adaptor. Moreover, this
kind of adaptation can solve only renaming-based
mismatching of very similar behaviours. We are
instead interested in adapting less trivial mis-
matches where, for instance, reordering and re-
membering of messages is required.

Hence, we represent an adaptor specification
by a mapping that establishes a number of rules
relating actions and data of two components. For
instance, the mapping expressing the intended
adaptation for the previous example consists of
the following two rules:

M1 = { request!(url) <> query?(url);
reply?(file) <> return!(file); }

where, as a convention, all the actions in the left
hand side refer to the first of the components be-
ing adapted (in this case P1), while those in the
right refer to the second one (here, Q1). The
intended meaning of the first rule of M1 is that
whenever P1 performs a request! output ac-
tion, Q1 will eventually perform a corresponding
query? input action. Similarly, the second rule
indicates that whenever Q1 performs a return!
action, P1 will eventually perform a reply? ac-
tion. The parameters url and file explicitly
state the correspondence among data. Parame-
ters have a global scope in the mapping, so that
every occurrence of the same name, even if in dif-
ferent rules, refers to the same parameter.
Intuitively speaking, the mapping M1 provides
the minimal specification of an adaptor that will
play the role of a “component-in-the-middle” be-
tween P1 and Q1, mediating their interaction ac-
cording to the given specification. It is important

to observe that the adaptor specification defined
by a mapping abstracts away from many details of
the components behaviours. The burden of deal-
ing with these details is left to the (automatic)
process of adaptor construction, that will be de-
scribed in Sect. 4. For instance, the behaviour of
an adaptor Al satisfying the specification given
by the above mapping M1 is:

A1 = request?(url). query! (url).
return?(file). reply!(file). O

This adaptor will maintain the name spaces of
P1 and Q1 separated and prevent them from in-
teracting without its mediation. Observe that the
introduction of such an adaptor to connect P1 and
Q1 has the effect of changing their communication
from synchronous to asynchronous. Indeed, the
task of the adaptor is precisely to adapt P1 and
Q1 together, not to act as a transparent commu-
nication medium between them.

Mappings can be used to specify different im-
portant cases of adaptation, as shown in the ex-
amples below.

Multiple action correspondence. While the
previous example dealt with one-to-one corre-
spondences between actions, adaptation may in
general require relating groups of actions of both
components. For instance, consider two compo-
nents P2 and Q2 involved in an authentication
procedure. Suppose that P2 authenticates itself
by sending first its user name and then a pass-
word. Instead, Q2 is ready to accept both data in
a single shot:

role P2 = { signature usr!(Data me);
pass! (Data pwd);
behaviour usr!(me). pass! (pwd). 0}
role Q2 = { signature login?(Data acc, pin);
behaviour login?(acc, pin). 0 }

The required adaptation is specified by the map-
ping:

M2 = {usr!(me),pass!(pwd) <> login?(me,pwd);}

which associates both output actions of P2 to the
single input action of Q2. The mapping also il-
lustrates the use of parameters (viz., me and pwd)

to specify which data the adaptor must store for
later use.

Actions without a correspondent. Adap-
tation must also deal with situations in which
some actions of a component do not have a cor-
respondent in the other one. For instance, con-
sider a component P3 that features a printing
service, waiting for requests for printing a num-
ber of copies of a document by means of an ac-
tion printn?(doc,n), and another component
Q3, which issues print requests in two steps: One
for setting the number of copies, and one for actu-
ally printing the document. Their interfaces are,
respectively:

role P3 = { signature printn?(Data doc, n);
behaviour (...) }

role Q3 = { signature setCopies!(Data n);
print! (Data doc);
behaviour (...) }

A suitable mapping for connecting P3 and Q3 can
be defined as follows:

M3 = { none <> setCopies!(n);
printn?(doc,n) <> print!(doc); }

The first rule of M3 indicates that the action
setCopies! in Q3 does not have a correspondent
in P3. The keyword none is used to explicitly
represent, this asymmetry between components.

Notice that in this example the situation is
different from that described for multiple action
correspondence. Indeed, the mapping M3 does
not indicate whether Q3 will set the number of
copies for each printing request, or whether a sin-
gle setCopies! action will be issued for print-
ing a given number of copies of several docu-
ments. However, a correct adaptor would be
developed in either situation, depending on the
actual behaviours of the two components (delib-
erately omitted in the example), which will be
used for generating the adaptor, as we shall see
in Sect. 4. Notice also that one could enforce the
number of copies to be set for each printing re-
quest by specifying the mapping:

M3’ = { printn?(doc,n) <> setCopies!(n),
print!(doc); }

Indeed, M3’ specifies a multiple action correspon-
dence so that the adaptor will ensure that Q3 will
perform both a setCopies! and a print! out-
put action for each printing request accepted by
P3 with a printn? input action.

Nondeterministic action correspondence.
A difficult case for adaptation arises when the
execution of a component action may correspond
to different alternative actions to be executed by
the other component. In such cases, adapta-
tion should take care of dealing with many pos-
sible combinations of actions independently per-
formed by the two components. In order to fea-
ture a high-level style of the specification of the
desired adaptation, we allow nondeterminism in
the adaptor specification.

For instance, consider a component P4 send-
ing a file by means of repeated data! actions.
Suppose also that the corresponding reader com-
ponent Q4 receives the file with read? input ac-
tions, while it may also decide to interrupt the
transmission at any time by issuing a break! ac-
tion. Their interfaces are represented by the roles:

role P4 = { signature data!(Data n);
behaviour data!(n). 0 }

role Q4 = { signature read?(Data m);
break! ();
behaviour read?(m). 0
+ tau. break!(). 0 }

The required adaptation can be simply specified
by the mapping:

M4 = { data!(x) <> read?(x);
data! (x) <> break!(); }

The adaptor derivation process will be then in
charge of building an adaptor capable of dealing
with all the possible specified situations. Once
more, our goal is to allow the adaptor specifi-
cation to abstract away from many implemen-
tation details, and to leave the burden of deal-
ing with these details to the (automatic) adaptor
construction process. The use of nondeterministic
action correspondences will be further illustrated
in Sect. 5.

Name passing. The special characteristics of
mobility which are present in the w-calculus al-

low for the creation and transmission of link
names which can be later used for communica-
tion. Hence, we can address situations in which
the topology of the communication between com-
ponents is not necessarily static, but may change
over time. This determines that the signature in-
terface of a m-calculus interaction pattern is not
fixed a priori (like in other process algebras or in
object-oriented environments), but instead it can
be extended by link-passing.

For instance, consider a situation very simi-
lar to the interaction described by components
P1 and Q1. There, we used predetermined links
(reply/return) for the return value of the re-
quest, but it is also possible to indicate a newly
created return link for each query:

role P5 = {
signature request!(Data url, Link reply) >
reply?(Data page) ;
behaviour (reply) request!(url,reply).
reply?(page). 0 }
role Q5 = {
signature query?(Data handle, Link ret) >
ret!(Data file);
behaviour query? (handle,ret) . ret! (file). 0}

Here, the situation is slightly different from that
of P1 and Q1. Role P5 indicates that initially the
component presents an interface consisting only
of the action request!. However, after perform-
ing this action, the interface is enlarged with a
new link name reply, which must be also con-
sidered part of it. This fact is indicated in the
signature interface by using the operator ‘>’ (read
as “before”) which explicitly represents the causal
dependency between the parameter sent in the ac-
tion request with the link used later for receiving
the reply. Symmetrically for @5, the link name re-
ceived as the parameter ret in the query? input
action will be used later for sending the return
value. The mapping for connecting both compo-
nents will be:

M5 = {request!(url,reply)<>query?(url,reply);
reply?(file) <>reply! (file); }

4. Adaptor derivation

In the previous section, we have presented a
simple notation for expressing a high-level speci-
fication of the adaptation needed to let two mis-
matching components interoperate. Given such
a specification (mapping) M, and the interaction
patterns P and Q of two components, a concrete
adaptor (if any) is generated by means of a fully
automated procedure. Intuitively speaking, such
an adaptor will be a component-in-the-middle A
such that:

(1) The parallel composition P|A|Q will not
deadlock, and

(2) A will satisfy all the action correspondences
and data dependencies specified by M.

Space limitations do not allow us to present here
the algorithm for adaptor derivation in full de-
tails. We shall however summarise the essence of
the algorithm w.r.t. points (1) and (2) above.

4.1. Deadlock elimination

The algorithm for adaptor generation has been
obtained as a specialisation of the algorithm we
developed [9] for checking the “so-far correctness”
of open contexts of components. Such algorithm,
given two patterns P and Q, returns a completion
process A (if any) such that the parallel composi-
tion P|A|Q will not deadlock.

To achieve (1), the algorithm tries to incremen-
tally build a completion A by progressively elim-
inating all the deadlocks that may occur in the
evolutions of P|A|Q. Because of its inherent non-
deterministic nature, the construction has been
naturally implemented in Prolog.

The algorithm is basically a loop which keeps
track of the completion A constructed so far, as
well as of the last action added to A. While
the parallel composition P|A|Q is not deadlock-
free, the algorithm tries to expand A with an
action that will trigger one of the deadlocked
states. Two cases are distinguished depending on
whether P|A|Q may deadlock or not after execut-
ing the last action included in the completion.

(a) If PIAIQ may deadlock after executing ac-
tion last, then an action a capable of trig-

gering one of those deadlocked states is non-
deterministically chosen (if any), and used
to expand the completion as one of the
possible actions following last. The con-
struction process continues, being now a the
last action included in the completion.

If there is no suitable triggering action, or if
P|A|Q may both deadlock and succeed after
executing action last!, then the algorithm
backtracks to the state preceding the inser-
tion of last in A.

(b) PIA|Q may deadlock, but no deadlock may
occur after executing action last of the
completion. In this case, there is no point
in trying to expand further the completion
“after” last. The algorithm hence tries to
continue by considering the action that pre-
cedes last as the new last action.

To grasp the idea of how the algorithm works,
consider for instance the simple case of the pat-
tern P = a! (). (tau.b!().0+tau.c!().0) and
let @ = 0 for simplicity. The completion is ini-
tially empty and the parallel composition P|Q is
stuck. Case (a) applies, and action a?() can be
chosen to trigger the context, hence yielding the
partial completion A = a?() .0 and setting last
toa?(). The new context P| (a?().0) | Q presents
now two deadlocks, both of them occurring after
executing action last. Case (a) applies again,
but there are now two possible triggers, namely
b?() and c?(). Suppose that the algorithm
(nondeterministically) chooses b?7(), hence ex-
panding the completion into A = a?().b?().0,
being b?() the new last. The new context
Pl (a?().p7().0) |Q may still deadlock, but no
deadlock may occur after executing last (viz.,
b?()). Case (b) then applies and the algorithm
checks whether deadlocks may occur after exe-
cuting a?(). This is indeed the case, hence the
algorithm selects the only possible trigger c? ()
and adds it as a further choice after a?() in the
completion, which now becomes

A=2a?0).®70.0+c?().0)

ndeed in the latter case any attempt to extend A with a
new action “after” last would spoil those successes — see
example below.

The algorithm then terminates (as there are no
other deadlocks in P|A|Q) and returns the con-
structed completion A.

To understand why the algorithm backtracks in
case (a) when there is both a success and a dead-
lock after last, it is enough to consider the pat-
tern P = (a!().b!'().0+a!().0), and let again
Q = 0 for simplicity. It is easy to see that the only
possible trigger a? () introduces both a successful
and a deadlocked trace. But now no action can
be added after a?(), as it would spoil the suc-
cess. The algorithm will then backtrack and fail
as there is no process A such that P|A|Q will not
deadlock.

4.2. Mapping satisfaction

In order to derive adaptors, rather than sim-
ply completions, the algorithm of [9] needed to
be specialised so as to take into account the con-
straints specified by the mapping. Basically this
amounts to suitably constrain the way in which
triggering actions are chosen during the incremen-
tal construction of the adaptor.

Technically this is done by exploiting the prop-
erties defined by the mapping, which define a set
of constraints on the possible actions that the
adaptor may perform at each moment. Each
property is expressed as a m-calculus process,
where actions are represented from the point of
view of the adaptor, and combined according to
the data dependencies implicitly stated by the
corresponding mapping rule.

For instance, consider again the mapping M1.
Its first rule indicated a one-to-one correspon-
dence between actions request! and query?.
Formally, this property can be represented by the
following process:

Rl = request?(url). (query!(url). O || R1)
+ tau. 0

stating that whenever the adaptor performs a
request? input action, then it will have to even-
tually perform a corresponding query! output
action. Moreover, according to the data depen-
dencies induced by parameters in the mapping
rule, the adaptor should not perform an output
action query! (url) until the requested url is re-
ceived by means of the corresponding input action

request?(url). Finally, the process may even-
tually end via an internal tau move. Notice how
the property refers to the point of view of the
adaptor, not of the components. Thus, the sign
(input/output) of the actions in the property is
complementary with respect to the mapping.
When trying to solve an existing deadlock in
P|A|Q, the algorithm may extend the current
adaptor by choosing an action which is capable of
triggering the deadlock while respecting the given
properties. Consider for instance the patterns:

P1
Q1

request! (url) .reply?(file) .0
query?(q) .return! (r) .0

along with mapping M1, which is represented by
the properties:

Rl = request?(url). (query!(url). O || R1)
+ tau. 0

R2 = return?(file). (reply!(file). O || R2)
+ tau. 0

The adaptor is initially empty, and the algo-
rithm tries to extend it with an action capable
of triggering the deadlocked composition P1|Q1.
While both a request? and a query! ac-
tion would trigger P1|Q1, only the former can
be selected since the latter does not respect the
expected behaviour specified by the properties.
The algorithm then considers the new context
P1| (request?(url).0) |Q1 along with the prop-
erties updated according to the selection made:

R1’ = query!(url). 0 || R1
R2 = return?(file). (reply!(file). O || R2)
+ tau. 0

The new context is still deadlocked and it
might be triggered by both a reply! and a
query! action. As the former does not re-
spect properties R1’ and R2, only the latter
can be added to the current adaptor. Hence
the algorithm will consider the new context
P1| (request?(url) .query! (url).0) |Q1 along
with properties R1 and R2 again. The construc-
tion will then continue similarly until all dead-
locks will have been eliminated, while satisfying
the properties imposed by the mapping. The re-
turned adaptor will be

A = request?(url).query! (url).
return?(file) .reply! (file) .0

5. An example of adaptation

We illustrate now an example of application of
the whole methodology. The problem to be solved
regards the adaptation needed to support a typ-
ical FTP transmission in which a file is sent by
a server to a client, when the two parties employ
different protocols. Simplified in some aspects,
the example shows only the relevant details, while
hopefully keeping its realistic flavour.

In order to make a modular specification of the
problem, we will use two roles for each compo-
nent. First, we will describe the interaction for
creating and closing a FTP session, and also for
requesting a file transmission. Second, we will
describe the details of file transmission using a
separate pair of roles.

FEach role-to-role connection needs a different
mapping, from which a corresponding adaptor
will be produced. The first pair of roles, IServer
and IClient, describe the interface of the server
and the client regarding the use of FTP com-
mands.

role IServer = {
signature open?(Link ctl);
user?(Data name,pwd, Link ctl);
put?(Data fn, Link ctl);
get?(Data fn, Link ctl);
close?(Link ctl);

behaviour open?(ctl). user?(name,pwd,ctl).
(put?(fn,ctl). close?(ctl). O
+ get?(fn,ctl). close?(ctl). O
+ close?(ctl) .0)) }

Role IServer indicates how, for opening a ses-
sion, a socket (here named ctl) must be pro-
vided. This socket will be used both for identi-
fying the source FTP commands (allowing thus
multiple parallel sessions), and also for data
transmission, as it will be shown in the sec-
ond part of the example. Once the connection
is opened, clients must authenticate themselves
with a name and password. Then, put and get
commands for file transmission can be issued. Fi-
nally, the connection can be ended with close.

role IClient = {
interface login!(Data usr);
pass! (Data pin);

getfile! (Data file);
logout! ();

behaviour login! (usr) .pass!(pin).
getfile! (file) .logout! (). 0 }

On the other hand, the role IClient specifies that
the client connects with a login message, fol-
lowed by a password in a separate message (how-
ever no control socket is provided). Then, the
client will ask for a certain file, and finally log
out.

Despite the different behaviours of the two
components, their adaptation can be simply spec-
ified by the following mapping:

MA = { login! (usr), open?(ctl),
pass! (pin) <> wuser?(usr,pin,ctl);
getfile! (file) <> get?(file,ctl);
logout! () <> close?(ctl); }

The first rule of MA establishes the intended corre-
spondence between log-in actions in both compo-
nents, while the second rule adapts the file trans-
mission commands. The third rule describes the
correspondence between the log-out actions. The
mapping also uses action parameters to specify
data dependencies among different actions.

Starting from an action login?(usr), the ex-
ploration of the derivation tree for constructing
the adaptor is mainly guided by the behaviour
described in IClient. As shown in Sect. 4,
once an action on which IClient is deadlocked
is matched by the adaptor, the mapping will trig-
ger the matching of the corresponding action(s)
in IServer, yielding in the end the adaptor:

AA = login?(usr) . pass?(pin). (ctl)open! (ctl).
user! (usr,pin,ctl). getfile?(file).
get!(file,ctl). logout?(). close! (crtl). 0

Notice that, even if the actual action ordering
of the components’actions is not specified in the
mapping, the exploration of the derivation tree
of the two components implemented returns an
adaptor which will enable both components to
interoperate successfully, while at the same time
respecting the mapping MA.

Let us now consider the file transmission phase.
Typically, the server will create a separate thread

(daemon) for the transmission of the file. In order
to model this facet of the interaction, another pair
of roles is used, IGetDaemon and IGettingFile.

role IGettingFile = {
interface read?(Data x);
break! ();

behaviour read?(x). 0 + tau. break!(). 0 }

role IGetDaemon = {
interface ctl!(Link data, Link eof) >
data! (Data x), eof!();

behaviour (data,eof) ctl!(data,eof).
(tau. data!(x). 0 + tau. eof!(). 0)}

The mapping for adapting both roles will be:

MB = { nome <> ctl!(data,eof);
read?(x) <> data!(x);
read?(EOF) <> eof!();
break! () <> data!(y);
break! () <> eof!(); }

Its first rules establishes that server action ctl!
does not have a correspondent in the client, re-
flecting the fact that while the server creates spe-
cific control links for each file transmission, the
client uses fixed, predefined links for the same
purpose.

Then, the second rule indicates that the read-
ing of (a fragment of) a file is called read? in
the client, while the corresponding action in the
server is data!. However, the server may indicate
at any moment the end of the file by sending an
eof! (), while the client does not have a corre-
sponding action. This mismatch is solved in the
third rule by letting the adaptor forge a special
value, EOF, and send it to the client, allowing the
client role to terminate successfully.

In addition, the client can decide to break
the transmission at any moment by sending a
break! () message. This situation is slightly more
difficult to adapt, since the server could not be
able to react to such a message, being already
engaged in transmitting a fragment of the file
(data! (x) action), or in signalling the termina-
tion of the transmission (eof!()). Moreover,
in this case the one-to-one correspondence be-
tween actions read?(x) and data! (x) expressed

10

by the second rule of the mapping would be vi-
olated. However, the mismatch can be adapted
by mapping client’s break! () to both read! (x)
and eof! () of the server as indicated by the last
two rules of the mapping.

Notice that the mapping above specifies ac-
tion correspondences in a nondeterministic way.
Its last two rules state that the execution of the
break! action may correspond to either a data!
action or to a eof! action on the server side.
Similarly, the second and fourth rule specify that
the execution of a data! operation by the server
may match either a read? or a break! operation
performed by the client.

It is important to observe again that allowing
nondeterministic correspondences in the mapping
features a high-level style of the specification of
the desired adaptation. While the mapping sim-
ply lists a number of possible action correspon-
dences that may arise at run-time, the adaptor
derivation process is in charge of devising the ac-
tual adaptor able to suitably deal with all the
possible specified situations.

Let us detail some of the steps of the construc-
tion of the adaptor for these two roles (to simplify
the reading, we shall not list explicitly the proper-
ties derived from the mapping). Initially, the only
possible trigger is the action ctl?(data,eof).
Once this action is chosen, we have four actions
in which the roles are deadlocked: data!, eof!,
read?, and break!. Suppose that the first se-
lected for matching is eof ! —the file is empty—,
yielding the adaptor:

AB = ctl?(data,eof). eof?(). 0

At this point, following the mapping, the adaptor
is expanded with the action read! (EQF), so as to
forward the EOF message to the client.

AB = ctl?(data,eof). eof?(). read! (EOF). O

No more deadlocks can occur after executing
read! (EOF) but the adaptor construction is not
complete yet. For instance the client may au-
tonomously decide to send a break! () before re-
ceiving any data from the server. The construc-
tion therefore continues by extending the adaptor
with a branch capable to treat such a situation:

AB = ctl?(data,eof). eof?().
(read! (EOF). 0 + break?(). 0)

Again, no deadlocks can occur after executing
break?() but the process continues in order
to complete the construction of the adaptor by
building all the other needed alternatives, and fi-
nally returning the adaptor:

ctl?(data,eof).

(eof?(). (read! (EOF). 0 + break?(). 0)
+ data?(x). (read!(x). 0 + break?(). 0)
+ break?(). (data?(x). 0 + eof?(). 0))

which adapts the roles IGettingFile and
IGetDaemon respecting the mapping MB.

6. Concluding remarks

The main aim of this paper is to contribute to
the definition of a methodology for the automatic
development of adaptors, capable of solving be-
havioural mismatches between heterogeneous in-
teracting components. Our work falls in the well-
settled research stream which advocates the ap-
plication of formal methods to describe the in-
teractive behaviour of software systems. More
specifically, we carry on the approach of enriching
component interfaces with behavioural descrip-
tion for facilitating system analysis and verifi-
cation in general, [10-12], and behavioural mis-
matching detection in particular [13-15], to cite
but a few of the more closely related works. A
distinguish feature of our approach consists of the
adoption and use of a process algebra, namely a
dialect of m-calculus, which allows for the auto-
matic verification of a rich set of properties of in-
teracting systems, mainly for what concerns the
compatibility of component protocols.

Several proposals for extending IDLs with be-
havioural aspects are based on finite state ma-
chines, like, for instance, [6,11,16]. The main
advantage of finite state machines is that their
simplicity supports a simple and efficient verifi-
cation of protocol compatibility. However, such
a simplicity is a severe expressiveness bound for
modelling complex open distributed systems.

Process algebras feature more expressive de-
scriptions of protocols, enable more sophisticated

analysis of concurrent systems [10,12,13,17], and
support system simulation and formal derivation
of safety and liveness properties, as also illus-
trated by the use of 7-calculus for describing com-
ponent models like COM [18] and CORBA [19],
and architecture description languages like Dar-
win [20] and LEDA [8].

However, the main drawback of using full-
fledged process algebras for software specification
is related to the inherent complexity of their anal-
ysis. In order to manage this complexity, the pre-
vious work of the authors has described the use of
modular and partial specifications, by projecting
behaviour both over space (roles) [14] and over
time (finite interaction patterns) [9], so as to ease
automatic property verification. In this work we
use a combination of both approaches.

A number of practice-oriented studies have
analysed different issues encountered in (manu-
ally) adapting a third-party component for using
it in a (possibly radically) different context (e.g.,
see [21-23]). Besides, the problem of software
adaptation was specifically addressed by the work
of Yellin and Strom [6], which constitutes the
starting point for our work. They use finite state
grammars to specify interaction protocols be-
tween components, to define a relation of compat-
ibility, and to address the task of (semi)automatic
adaptor generation. Some significant limitations
of their approach are related with the expressive-
ness of the notation used, i.e., the impossibility
of representing internal choices, parallel compo-
sition of behaviours, creation of new processes,
and the dynamic re-organisation of the commu-
nication topology of systems, a possibility which
immediately becomes available when using the -
calculus. Also, the asymmetric meaning they give
to input and output actions makes it necessary
their use of ex-machina arbitrators for control-
ling system evolution. Finally, their mappings
establish only one-to-one relations between ac-
tions, while our proposal address the issues of cor-
respondence between actions, parameter storage
and rearrangement in a more general setting.

A different approach is that of [24], where soft-
ware composition is addressed in the context of
category theory. The connection between com-
ponents is done by superposition, defining a mor-

11

phism between actions in both components. Mor-
phisms are similar to our mappings, though the
kind of adaptation provided is more restrictive:
They cannot remember previous actions or data,
nor adapt different behaviours at the protocol
level, limiting adaptation to a kind of name trans-
lation similar to that provided by IDL signature
descriptions.

As it results from the comparison with signifi-
cant related works appeared in the literature, and
from the representative set of examples shown in
this paper, our approach improves the capabili-
ties of adapting components by combining expres-
siveness and effectiveness in a formally grounded
methodology. Several promising lines of future
research suggest to extend the framework for ad-
dressing issues like: Multiple-role adaptation, re-
covery strategies for adaptor construction fail-
ures, such as relaxing mapping constraints or de-
vising partial adaptors, and the integration of the
methodology in CBSE development tools.

REFERENCES

1. G.H. Campbell. Adaptable components. In
ICSE 1999, pages 685—686. IEEE Press, 1999.

2. G.T. Heineman. An evaluation of component
adaptation techniques. In ICSE’99 Workshop
on CBSE, 1999.

3. A.W. Brown and K.C. Wallnau. The current
state of CBSE. IEEFE Software, 15(5):37-47,
1998.

4. A. Vallecillo, J. Hernandez, and J.M. Troya.
New issues in object interoperability. In
Object-Oriented Technology, LNCS 1964,
pages 256—269. Springer, 2000.

5. E. Clarke, O. Grumberg, and D. Long. Ver-
ification tools for finite-state concurrent sys-
tems. In A Decade of Concurrency, LNCS
803. Springer, 1994.

6. D.M. Yellin and R.E. Strom. Protocol spec-
ifications and components adaptors. ACM
Transactions on Programming Languages and
Systems, 19(2):292-333, 1997.

7. R. Milner, J. Parrow, and D. Walker. A cal-
culus of mobile processes. Journal of Infor-
mation and Computation, 100:1-77, 1992.

8. C. Canal, E. Pimentel, and J.M. Troya. Spec-

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

ification and refinement of dynamic software
architectures. In Software Architecture, pages
107-126. Kluwer, 1999.

A. Bracciali, A. Brogi, and F. Turini. Coor-
dinating interaction patterns. In ACM Sym-
posium on Applied Computing (SAC’2001).
ACM Press, 2001.

P. Inverardi and M. Tivoli. Auto-
matic synthesis of deadlock free connec-
tors for COM/DCOM applications. In
ESEC/FSE’2001. ACM Press, 2001.

J. Magee, J. Kramer, and D. Gian-
nakopoulou. Behaviour analysis of software
architectures. In Software Architecture, pages
35—49. Kluwer, 1999.

E. Najm, A. Nimour, and J.B. Stefani. In-
finite types for distributed objects interfaces.
In FMOODS’99. Kluwer, 1999.

R. Allen and D. Garlan. A formal basis
for architectural connection. ACM Transac-
tions on Software Engineering and Methodol-
ogy, 6(3):213-49, 1997.

C. Canal, E. Pimentel, and J.M. Troya. Com-
patibility and inheritance in software archi-
tectures. Science of Computer Programming,
41:105-138, 2001.

D. Compare, P. Inverardi, and A.L. Wolf.
Uncovering architectural mismatch in com-
ponent behavior. Science of Computer Pro-
gramming, 33(2):101-131, 1999.

I. Cho, J. McGregor, and L. Krause. A
protocol-based approach to specifying inter-
operability between objects. In TOOLS’26,
pages 84-96. IEEE Press, 1998.

A.P. Moore, J.E. Klinker, and D.M. Mihelcic.
How to construct formal arguments that per-
suade certifiers. In Industrial-Strength For-
mal Methods in Practice. Springer, 1999.
L.M.G. Feijs. Modelling Microsof COM us-
ing m-calculus. In Formal Methods’99, LNCS
1709, pages 1343-1363. Springer, 1999.

M. Gaspari and G. Zavattaro. A process al-
gebraic specification of the new asynchronous
CORBA messaging service. In ECOOP’99,
LNCS 1628, pages 495-518. Springer, 1999.
J. Magee, S. Eisenbach, and J. Kramer. Mod-
eling Darwin in the w-calculus. In Theory and
Practice in Distributed Systems, LNCS 938,

21.

22.

23.

24.

pages 133-152. Springer, 1995.

S. Ducasse and T. Richner. Executable con-
nectors: Towards reusable design elements.
In ESEC/FSE’97, LNCS 1301. Springer,
1997.

D. Garlan, R. Allen, and J. Ockerbloom. Ar-
chitectural mismatch: Why reuse is so hard.
IEEE Software, 12(6):17-26, 1995.

K. Wallnau, S. Hissam, and R. Seacord.
Building Systems from Commercial Compo-
nents. SEI Series in Soft. Engineering, 2001.
M. Wermelinger and J.L. Fiadeiro. Con-
nectors for mobile programs. IEEFE Trans-
actions on Software Engineering, 24(5):331-
341, 1998.

