
A Static Implementation of the Basic Andorra
Model for Distributed Memory Systems?

V. Benjumea J.M. Troya
{benjumea,troya}@lcc.uma.es

Dpt. Lenguajes y Ciencias Computación
Universidad de Málaga

Spain

Abstract. The paper shows an implementation model to support the
execution of the Basic Andorra Model on distributed memory systems.
A model for exploiting dependent AND parallelism in Prolog programs
on distributed systems is also proposed, as well as the way in which it
has to be combined with an OR parallel model. A mechanism for dealing
with unbound variables in a distributed environment is proposed. In the
current implementation, the arrangement of workers in the system in
order to mix both models is done in a static way at the beginning of
computation.

Keywords: Distributed Systems, Parallelism, Logic Programming, Andorra Model.

1 Introduction

The exploitation of parallelism in Prolog programs has been studied for the last
years. Many models have been proposed in order to exploit OR parallelism [15,
20], independent AND parallelism [7, 11], dependent AND parallelism [5, 18, 19],
and combinations among them [4, 10, 12]. However, most of them are focused on
shared memory systems, but only a few of them have been oriented towards dis-
tributed memory systems [2, 3, 1, 13]. Nevertheless, distributed memory systems
are becoming more and more important in modern parallel systems.

The Basic Andorra model [16, 17] modifies the Prolog execution model in or-
der to transparently exploit OR parallelism combined with dependent AND par-
allelism. The latter has been the basis on which committed-choice languages [5,
18, 19] have been developed, thus providing a natural way of combining Prolog
with this kind of languages.

In this paper we present model to support the implementation of the Basic
Andorra Model on distributed memory systems. We also propose a model for the
exploitation of dependent AND parallelism in Prolog programs on distributed
memory systems, on which our implementation of the Basic Andorra Model is
based. The OR parallel model for distributed systems is based on the model pro-
posed by the authors in [1], therefore, and due to space limitations, it will not be
? This work was supported by the project CICYT-TIC 340/90

explained here. At this stage of development, the arrangement of workers in the
combination of both models is achieved in a static way in order to exploit both
kinds of parallelism. That is, processors in the distributed system are arranged
in a fixed way at the beginning of computation, and they are coordinated in
order to exploit both kinds of parallelism. Moreover, side-effects predicates are
not supported. The system implementation is nearly finished, and we hope to
present some results in the nearly future.

The problem that arises when dealing with unbound variables in parallel ex-
ecution is addressed. Moreover, a mechanism for dealing with such an unbound
variables in parallel computations, and more precisely in distributed environ-
ments is also proposed. This mechanism is defined as an extension to the Basic
Andorra execution model (it is embedded in it), besides an extension to the Fos-
ter’s distributed unification scheme [9] in order to deal with unbound variables
in distributed systems, making it more suitable to our extension of the Basic
Andorra execution model.

The paper is organized as follows. Section 2 shows the model on which the
combination of both kinds of parallelism is made possible. Section 3 explains the
model on which we have based the exploitation of dependent AND parallelism.
The model is divided into a model for supporting determinacy detection and goal
suspension in sequential Prolog, and a model for parallelizing suspended goals
in a distributed environment. Section 4 presents how the AND parallel model
and the OR parallel model can be combined. Section 5 analyzes the proposed
model.

2 The Basic Andorra Model

The Basic Andorra model [16, 17] arises as an alternative to the Prolog execu-
tion model in order to be able to exploit dependent AND parallelism in addition
to the intrinsic OR parallelism in Prolog programs. OR parallelism arises in a
natural way in the Prolog execution model, since a Prolog program normally
defines several alternative paths to be traversed, and during the traversing of
a determinate path, some information will be recorded in order to be able to
traverse different paths at later stages. It is the traversing of the different al-
ternative paths defined by a Prolog program that makes the exploitation of OR
parallelism possible by allowing different workers1 to traverse different paths in
parallel.

However, exploitation of dependent AND parallelism is a lot more difficult
to manage in Prolog execution. Thus, the Basic Andorra model was proposed
to solve this drawback by modifying the Prolog execution order. The Basic An-
dorra execution model defines two different phases in which Prolog goals are
executed. In the deterministic phase, execution of non-deterministic goals2 is
suspended and only deterministic goals3 are executed. It can happen that due
1 A worker is an entity able to achieve a task.
2 A non-deterministic goal is such that matches with several clauses.
3 A deterministic goal is such that matches just with one clause.

to the execution of deterministic goals, some goals that were suspended because
of their non-determinacy, now become deterministic, and so, their execution will
be resumed within this phase. When all of the deterministic goals have been exe-
cuted, i.e. each suspended goal is non-deterministic, a non-deterministic goal will
be selected, according to the Prolog execution order, to be reduced within the
non-deterministic phase. It will be started a new deterministic phase where new
deterministic goals will be reduced, and so on. The alternating of both phases
will go on until the end of computation when all goals have been reduced.

It is during the deterministic phase when dependent AND parallelism can be
exploited, since executed goals are deterministic and just one flow of data exists.
Therefore, those goals can be executed in any order, and even in parallel, being
synchronized by the flow of data.

During the non-deterministic phase, a non-deterministic goal will be exe-
cuted, which will create a choice-point that will make it possible to restart the
computation state at that point in order to follow a different alternative path at
a later stage. These choice-points are the key points in the exploitation of OR
parallelism, since they define different alternative paths that can be traversed in
parallel by different workers.

Execution of deterministic goals earlier than non-deterministic ones brings
about a possible reduction of the search space with respect to the Prolog left-
to-right execution order, since some failures can be detected earlier, pruning
branches in the search space, this feature is an important speed-up factor for
suitable Prolog programs.

3 Dependent AND Parallelism Exploitation of Prolog
Programs in Distributed Systems

In this section we will look at some general concepts related to the exploitation
of dependent AND parallelism in distributed systems. Thus, dependent AND
parallelism is characterized by small grain task creation, which is not a great
drawback in shared memory systems. However, in distributed systems it becomes
an important source of inefficiency, due principally to the high cost of remote
task creation in relation to its small lifetime. This fact justifies one of our main
design goals, to increase the parallel task granularity.

The other main design goal consists on achieving a suitable and efficient
sharing of work. In order to get this, not every parallel task has to be shared
out, but we try to keep all workers working for as long as possible with the least
amount of task sharing as possible, favoring in this way local work and therefore
decreasing the accesses to remote data, which is another important source of
inefficiency.

3.1 Goal Suspension in Sequential Prolog

Checking for Determinacy The Basic Andorra Model relies in the fact that
deterministic goals are executed before the non-deterministic ones. Thus, the

first thing we have to do is to distinguish, in a Prolog program, which goals
are deterministic, and which ones are not. However, this feature, most cases,
cannot be detected completely at compile-time, therefore, in order to minimize
the overhead that introduces, most of analysis, as in Andorra-I [17], will be done
at compile-time and the execution of small tests will be achieved at run-time.
Therefore, the WAM instruction set has to be extended to support run-time
checking to detect deterministic goals. Thus, during compilation of a Prolog
program, in addition to the WAM code, code for “goal determinacy checking”
and “guards” will be generated by the determinacy analyzer. So, during the
execution of a goal, it will be taken as deterministic if the checking code proves
it, otherwise the goal will be taken as non-deterministic (although it can be
taken as a deterministic goal later, if proved).

Goal Suspension Goal suspension is the key point that supports the exploita-
tion of AND parallelism in the Andorra model. In our execution model, goals are
executed sequentially as in WAM, but the WAM execution model is modified in
the fact that the execution of some special goals is postponed to a later stage.
Each postponed goal, and the computation derived from it, will be executed
sequentially as explained. Goal postponement can be due to two main reasons.
The first one is based on the fact that the Basic Andorra Model, during the de-
terministic phase, only deterministic goals are executed, and non-deterministic
ones are postponed, thus the execution of goals that have not been proved to
be deterministic will be suspended. The second reason for goal postponement is
based on the creation of a framework to allow the exploitation of AND paral-
lelism. So, a suspended goal (and the work that derives from it) can be executed
by another worker while the origin worker is still executing other goals, exploiting
so AND parallelism.

A goal is suspended by storing enough information to allow its later exe-
cution. This goal, as in JAM [6], will be linked in lists from variables (if the
goal was suspended because of its non-determinacy) or in lists where the goal
can be taken to be executed (possibly by another worker). Moreover, to allow
the execution of non-deterministic goals following the Prolog execution order,
it exists a double linked list that holds each suspended goal in the right order.
Thus, if a goal is reduced and, as result of its execution, some goals are cre-
ated, these ones will replace the original one in the double linked list. When a
non-deterministic goal is going to be executed, it will be taken from this double
linked list, following so the Prolog execution order.

This suspension of goals can be seen as the creation of work, which will
be carried out later at a convenient stage (or it could be shared with another
worker to exploit AND parallelism). Thus, the resolution of a Prolog program
can be roughly seen as the execution of an initial sequential work that can
create more sequential work (deterministic and non-deterministic), which will
be executed when the current work has been carried out. Part of the created
work will be selected for execution, which could create more work, and so on.

The computation will finish when the current work has been carried out and no
work remains to be executed.

However, in general, the suspension of goals degrades the performance of
the efficient sequential WAM execution model (an exception to the rule consists
in the reduction of the search space, which will be described below), therefore
only goals suitable for AND parallel exploitation should be suspended. Due to
the degradation of the system performance, the work division has to be done
carefully trying to keep as much of the original sequential WAM execution of
goals as possible, increasing so the task granularity.

Creating Work The basic Andorra model support relies in the suspension of
non-deterministic goals and their later execution as it was seen above. However,
if we want to improve the performance of our system by sharing the computation
between system workers, we need a way to divide this computation in parts suit-
able for sharing. Thus, suspension of goals (deterministic and non-deterministic)
is the used mechanism to divide the work in smaller parts suitable for sharing.
However, our system is focused on exploiting parallelism in distributed memory
systems, where remote task creation is expensive, therefore remote task lifetime
have to be big enough to make its sharing worthy, so we cannot make a corre-
spondence between a goal and a task as JAM [6] can, but a “task will be rooted
in a goal, and it will comprise all computation deriving from that goal”, unless
that such a work is divided. Thus, a task is a partial resolution, following the
sequential WAM execution model, of a goal. We say partial because this sequen-
tial execution can create more tasks by suspending some goals. This creation of
tasks can be led by program analysis [14] or by user annotations.

The Execution Model In order to support the Basic Andorra Model, the
WAM sequential execution model has been modified to have two main phases,
which alternate each other until the end of computation. The first phase is
the deterministic phase, which follows a sequential execution, including deter-
minacy checking code, of involved goals (a task). If during this phase a goal
cannot be proved to be deterministic, it will be suspended. Moreover, a goal can
be suspended, too, as a consequence of a work creation instruction. When the
current task has finished, another task will be selected for sequential execution.
This selection will be achieved within a sub-phase where a deterministic task
(a deterministic goal points to a deterministic task) will be searched. Therefore,
within this sub-phase, deterministic checking code of goals is executed to know
whether some available goal is deterministic. Found non-deterministic goals are
suspended again, the first found deterministic goal is selected to be the cur-
rent task and its sequential execution is started within the deterministic phase.
When the current task execution has finished and no deterministic task can be
found, which means that there is no deterministic goal available in the system,
then the system falls into the second phase (the non-deterministic one), where a
non-deterministic goal, according to the Prolog execution order, will be selected
from the double linked list for non-deterministic execution. If there is no non-

deterministic goal available when it has to be selected, then a solution for the
initial query will have been found. When a non-deterministic goal is executed in
the non-deterministic phase, it creates the correspondent choice-point and the
current state changes to the deterministic phase.

Backtracking Support This section will explain the extensions to the WAM
backtracking mechanism in order to support the suspension of goals and the two
execution phases in sequential Prolog.

The main change is with respect to the logic variable unique assignation prop-
erty, which externally remains unaltered, but internally, variables, goal record
fields, etc. now hold many different values depending on the computation path.
The WAM trail mechanism is based on the unique assignation property, where
it is only necessary to keep the addresses of conditionally bound variables4 in
order to unbind them when backtracking occurs. In our model, whenever an
object is bound for the first time, the trail mechanism acts like in WAM, but
if the object is bound again to new values, the trail mechanism is modified by
storing the object old value and its address in a new area (Trail Values). Thus to
restore the object values to a determinate state of computation, the untrailing
mechanism is modified to use this information.

Dealing with Unbound Variables As it was explained above, when the
determinacy of a goal depends on the value of some variables, and any of them
is unbound, then the goal is suspended. The same behavior can be applied to
built-in predicates. However, sometimes, determinacy of a goal depends on the
fact that a variable is unbound, so let us take a look at the following code inspired
by [21]:

1.1) send_msg(M, Msg) :- var(M), !, M = [Msg|_].
1.2) send_msg([_|M], Msg) :- send_msg(M, Msg).

2.1) get_word(W, [], []) :- !, W = [].
2.2) get_word(W, [X|Rest], Rest) :- X == ’ ’, !, W = [].
2.3) get_word([X|W], [X|T], Rest) :- X \== ’ ’, !,

get_word(W, T, Rest).

In this example, the ’send msg/2’ predicate will be always deterministic,
thus if the first argument is “unbound” the first clause will be selected, and
otherwise the second one. With respect to the ’get word/3’ predicate, if the
second argument is unbound, its determinacy cannot be proved, but if it is
bound, then the predicate will be deterministic, choosing the first clause if it is
bound to the empty list, the second one if it is bound to a list which head is
bound to the space (’ ’) and the third one if it is bound to a list which head is
“unbound” or is bound to anything different from space.
4 A variable is conditionally bound if since it is created until it gets bound to a value,

some choice-point has been created.

In such cases, if the execution order is fixed (like in Prolog), the program will
have a known behavior, but if the execution order is not fixed (like in Andorra
during the deterministic phase) the program will have an unpredictable and non-
deterministic behavior. Moreover, in parallel executions, results can be worse.
Thus, for example, the following query

... send_msg(M, msg1), send_msg(M, msg2) ...

would raise different results depending on the execution order of the calls

M = [msg1, msg2 | _] or M = [msg1, msg2 | _]

even though the predicate is deterministic. Even worse, it would fail if both calls
are executed in parallel.

This problem seems reasonable since if a clause has to be selected depending
on the value of a variable, or even if the variable is unbound, and there is not
a strict execution order, the time when the variable gets bound will affect to
the computation. Thus, this execution model has a non-deterministic behavior
in case of dealing with unbound variables.

Andorra-I [17] overcomes this problem by mean of its preprocessor, which
makes a preliminary analysis of the Prolog program through abstract interpre-
tation, and establishes a sequential ordering in sensitive and related predicates.

We propose to extend the execution model in order to define a determin-
istic behavior even in such cases. Thus, when the determinacy of a goal de-
pends on a variable that is unbound, the goal will be taken as non-deterministic
(while the variable remains unbound) even if the goal is deterministic for the
case of the unbound variable. Therefore its execution will be delayed up to the
non-deterministic phase, sequencing so the non-deterministic access to unbound
variables. Thus if any deterministic goal bind the variable to any value, the
non-deterministic goal will become now deterministic. However, if the variable
remains unbound, then the goal will be executed in the non-deterministic phase
and will select the clause related to the unbound variable. The model can be seen
as follows: if the determinacy of a goal depends on a variable that is unbound,
the execution of the goal will be delayed until no other goal could bind it. If
any goal binds the variable, then its value will be taken to select the determin-
istic clause (if exists), and if no one binds the variable, then it will be taken as
unbound for the delayed goal.

The same behavior can be applied to any built-in predicate that dealt with
unbound variables, it will be delayed until the variable became bound or up to
the non-deterministic phase.

This extension to the execution model guarantees a deterministic behavior
in the execution of an Andorra program, and it will conform the execution order
of Prolog in most cases.

3.2 Exploiting Dependent AND Parallelism in Prolog

Exploitation of dependent AND parallelism is based on the goal suspension
mechanism seen above, which allows the division of the computation into smaller

parts (tasks) suitable for sharing between system workers, exploiting so AND
parallelism. However, it is important to take into account that our system is
oriented to run on distributed memory machines, therefore task division and
its sharing have to follow several guidelines to take advantage of distributed
execution.

In distributed systems, remote task creation is an expensive operation. For
this reason, it is only worthwhile if the task execution time is high enough with
respect to its remote creation cost. Most of systems that exploit dependent AND
parallelism follow an execution model similar to JAM [6], where in general each
goal corresponds to a process, in this way having a big amount of little processes,
exploiting so small grain parallelism. Our model follows a different approach
in order to exploit medium/coarse grain parallelism, thus a task is executed
internally following the modified WAM sequential execution model explained
above (which can create more tasks), and the creation of tasks will be controlled
by the work creation instructions. So, in our model, a task will not only reduce a
goal, but it will execute sequentially all the work derived from such a goal, and
possibly it will create more tasks. In this way, the granularity of tasks is increased.
The work creation instructions will be generated by program analysis [14], user
annotations, etc. and it can be used in conjunction with extended instructions
for a higher control of parallel tasks.

Our system can be seen as a multisequential AND parallel machine made
up of workers, each one executing a task in a sequential way similar to WAM
execution model, and possibly with some tasks waiting to be executed.

Sharing Parallel Work In this section we will see how tasks are shared be-
tween systems workers in order to exploit dependent AND parallelism, and how
these workers synchronize each other to share work in a suitable way.

The first thing to take into account is that sometimes it could be convenient
to break the sequential execution flow in order to postpone the execution of
a task or to anticipate the creation of another task, etc., and it could happen
that the new created task is not suitable for sharing with other system workers.
Therefore our model divides tasks into two main classes, parallelizable tasks,
which are suitable for sharing between workers in a distributed system, and local
tasks which are not convenient for sharing, but they are useful for breaking the
sequential execution flow.

Another important thing to take into account is that the execution of a
task normally will need data produced by other tasks and it will produce data
for other tasks5. This behavior is quite different from the exploitation of OR
parallelism, where tasks are coarse grained and interaction between them is at
creation task time. Thus, one of our more important design goals is to get an
efficient sharing of AND work, therefore creating tasks suitable for parallelizing
(medium/coarse grained task) is not sufficient, but such tasks have to be shared
in an efficient way between all system workers. To achieve this goal, we try to
keep workers working for as long as possible, but minimizing the amount of task
5 We are exploiting dependent AND parallelism.

exportation6. In this way we get to reduce remote task creation costs and remote
data access costs, but we still exploit dependent AND parallelism in an efficient
way.

At the time of designing a parallel system on a distributed architecture, ab-
straction and independence with respect to the underlying architecture is the
right approach and has numerous advantages. However if we want to get the
best possible performance from the underlying architecture, we need to know
some additional information to help us in our work. Thus, in a distributed envi-
ronment, communication costs vary from some processors to others (depending
on the network topology), and this information can be useful, keeping abstrac-
tion and independence, for our purposes. Therefore, in our system each worker
is surrounded by levels of neighborhood, where each level will hold workers that
have the same communication costs (Fig. 1). This means that workers have to
be ordered by levels depending on their communication costs. Thus this infor-
mation will be used by our system during the sharing of work to select the most
suitable workers with which to do it.

1

1

1

1

2

2

2

2

2

2

3

3

0

3

3 4

Fig. 1. Levels of neighborhood

RW

RW

CRW

CRW

RW

SW

CRW

RW

Available Work

Working

Idle

Received Work Received Work

RW

CRW

RW
RW

Request Work

Cancel Request Work

Share Work
SW

Requested Work

Fig. 2. State machine

The sharing of tasks is controlled by the state machine in fig. 2 which syn-
chronizes the operation between involved workers. Normally a worker will be in
the “working” state, which means that it has got enough work to be running but
it has not got enough parallel work to share, or in the “available work” state,
which means that it has got enough parallel work for sharing. When a worker
is in this latter state and knows that another worker needs work, it will share a
part of its work with it. Whenever the amount of work of a worker is below a
determinate level, it will request work from the neighbor workers and will move
to the “requested work” state. If a worker runs out of work, it will move to the
“idle state” and it will have to wait to get some work from neighbor workers.
When a worker receives some work, it will move to the “received work” states.
Moving between states is governed by thresholds that mark the amount of work

6 Task exportation follows a lazy approach.

needed to stay at a determinate state, and the amount of shared work is defined
by the ratio of sharing.

A state machine is defined for each level of neighborhood, and only neighbor
workers belonging to such a level will be involved in the sharing of work, getting
so a finer control depending on its communication costs. Thus, each level of
neighborhood will have defined suitable thresholds and ratios to produce an
efficient sharing of work. The choosing of suitable thresholds and ratios can be
done by mean of program analysis.

Thus, the sharing of work can be seen as follows: when the amount of work in
a worker is under a determinate threshold (the worker gets into the “requested
work” or “idle” state), it requests work from the neighbor workers from the
distance7 specified by the state machine. When a worker has got enough work
to share (it is in the “available work” state), it will select a worker that has
requested some work within the distance specified by the state machine. Then
it selects the most suitable piece of work (the amount of tasks specified for the
ratio of sharing for that distance) to send it to the worker that requested it.

The way in which the tasks are selected for sharing is, in order of precedence,
as follows:

1. A task imported from the same worker which is now requesting work.
2. A task imported from another worker.
3. A parallelizable task created by the worker that is going to share its

work.

It is important to note that this behavior tries to keep as many tasks as
possible located at workers where they were created, with the minimum amount
of task exportation, since sharing of work is achieved in a lazy way by demand
when the amount of work is below a specified threshold.

Whenever a task is exported, it is marked as such and records a remote
reference to the created remote task. On the other hand, when a task is imported,
it is marked as such and records a remote reference to the original task, moreover,
a message is sent in order to set up the reference from the exported original goal.
It has been seen that imported tasks can be re-exported to other workers, so it
is necessary to keep a reference count in each task in order to synchronize the
reference messages to the original goal. Imported goals are linked in the lists of
goals available for execution.

We have seen that when a goal is executed, it is replaced in the double linked
list by its descendant suspended goals. When a goal is exported, it will no be
removed from this list, since it will be used to control the Prolog ordering in
the selection of a goal during the non-deterministic phase. Imported goals are
not linked in the worker double linked list (they will be executed in the non-
deterministic phase through the original exported goal). When an imported goal
is executed, its descendants will not replace it, but they will be linked in a
double linked list rooted in the father imported goal. In fig. 3 can be seen how
the Prolog ordering is maintained. Thus, there will be a “main double linked list”
7 The level of neighborhood.

and one of them for each imported goal. In this way, and using the references
between exported and imported goals, a “global double linked list” is maintained
distributed in the system.

1 2

3

45 6 7 8

9

1011 12

Exported Goal

Imported Goal

Fig. 3. Distributed double linked list

Sharing Data between Parallel Tasks. Extended Distributed Unifica-
tion This section is based on Foster’s distributed unification model for commit-
ted choice languages [9], which has been extended to support the mechanism for
dealing with unbound variables in a distributed environment. Communication
between tasks is achieved by mean of shared logical objects, which are stored in
WAM memory areas. These shared objects will be distributed, or in some cases
replicated, between the system workers (each worker holds its own memory ar-
eas). Thus, communication of tasks will be achieved by accessing a variable to
unify it with some value (variables keep their property of unique assignment),
or by accessing an object in order to get its value. So in this way, the tasks
within a worker communicate with each other by means of objects residing in
the same shared WAM memory areas. However, a more sophisticated mechanism
is needed in the case of tasks residing in different workers, which need to access
remote objects in order to achieve reading and unification operations.

The way in which distributed data are related each another is by means of
remote references. These are a mean of relating a variable residing in a worker
local memory to an object residing in a remote worker memory. This is done
simply by referring the worker where the object resides and the object with
which the remote reference is related.

Whenever a task needs to access to a variable value, if the variable is bound to
some object, it just takes it. If the variable is unbound and its value is necessary
to know whether a goal is deterministic or not, the goal will be suspended in a
suspension list attached to the variable. If the variable value is necessary for the
execution of a built-in predicate, this will be suspended in the variable suspension
list. It can happen that the variable was a remote reference to an object in a
remote worker. In such cases, a message to get the value from the remote object

will be sent to the worker that owns the object. Meanwhile, the goal will be
suspended in suspension lists attached to variables on which its determinacy
depends.

When a worker receives the message asking for the value of an object, if the
object is available, it just sends it to the worker that requested it. If the object
is a reference to another remote object, the requesting message is forwarded up
to get to the worker that owns that object. However if the object is an unbound
variable, it will attach a note to the suspension list of the variable, in such a way
that when the variable becomes bound, its value will be sent to the worker that
requested it.

The other way of accessing a variable is its unification with another object.
If both objects are local to the task that wants to unify them, the operation is
achieved as in WAM. If the unification involves a local object with a remote one,
the local object is sent to the worker where the remote object resides in order to
unify the local object with the received one. When both objects are remote, it
will send a message to the worker where one object resides to achieve the remote
unification operation with the other worker as seen above.

It is important to note that remote references only can be done in one direc-
tion, in order to avoid remote circular references. Thus, in our system, worker
identifiers are ordered, and only remote references from higher to lower worker
identifier are allowed. Thus, operations explained above and remote object cre-
ation must be achieved according to this rule.

There are, however, several built-in predicates8 which achieve non-strict tests,
that is, they can sometimes proceed even though their input arguments are un-
bound [9]. However Foster’s non-strict read algorithms are oriented to committed
choice languages, which have a very poor treatment of unbound variables. There-
fore, in our model, the non-strict read algorithm is modified in order to support
the Basic Andorra Model extended with the unbound variable treatment on dis-
tributed systems.

As it was said above, goals which determinacy depended on unbound vari-
ables were taken as non-deterministic ones, and so, executed at non-deterministic
phase. Foster’s distributed unification algorithm guarantees that if the value of
a variable is needed for any goal in the distributed system, and the variable
become bound before the non-deterministic phase start, then the value of the
variable will get to the goals that need it before the beginning of the non-
deterministic phase. What we have to get by extending the distributed unifica-
tion mechanism is to guarantee that whenever a goal needs the “last” reference
of an “unbound” variable9, such a last reference must be available at the start
of the non-deterministic phase, since execution of such goals will be delayed up
to then. It is important to note that not every non-strict predicate (such as

8 ’==/2’, ’\==/2’, ’var/1’, ’nonvar/1’, etc.
9 Some built-in predicates such as ’==/2’ and ’\==/2’ compare terms even if they

are unbound. If such predicates appear within the determinacy code or guards of a
Prolog predicate, then the Prolog predicate needs their values in the same way.

’var/1’, etc.) needs the last reference of the unbound argument, therefore the
next discussion will not be applied to them.

The way in which the right (and last) reference for an unbound variable
is guaranteed to be available when needed at non-deterministic phase can be
roughly seen as follows:

When a goal needs the last-reference from a variable for a non-strict
test, a note, holding information about the variable whose last-reference
is needed, will be attached to the current last-reference, and whenever
the last-reference gets bound to another variable, the goal is notified10

and the note is forwarded to the new last-reference. If the last-reference
becomes bound to a value, the goal is notified and the note is discarded.

From Deterministic to Non-Deterministic Phase. Detection and Con-
trol In this section we will see how the change from deterministic to non-
deterministic phase is controlled by the system workers in order to maintain the
Prolog execution order for non-deterministic goals.

As it was seen, the alternating of phases will be done until the end of com-
putation. In the AND parallel model, this alternating will have to be achieved
in a synchronized way. At a determinate moment, all workers will be in the de-
terministic phase executing tasks in parallel. When there is no available task in
the whole system, i.e. every worker in the system is in the “idle” state, then in
a synchronized way all workers change to the non-deterministic phase. One of
them will execute a non-deterministic goal11, and will start a new determinis-
tic phase by executing the task generated by the non-deterministic goal. Every
worker will now change to the same phase and will execute their tasks12. Thus,
we have seen that it is one worker that starts a new deterministic phase, we will
call it the initial worker for each phase.

Let us go to the start of the Prolog computation. There will be an initial
worker that will start the deterministic phase by executing the initial Prolog
query. During the execution of the initial sequential task, some tasks could have
been created, from which, when it gets to the non-deterministic phase, the de-
terministic ones will have been executed, and the non-deterministic ones will
remain waiting for their execution following the Prolog execution order. Pro-
cessing will go on with phase alternating as explained above up to the point
when the selected goal for non-deterministic execution was an exported task.
Then a message has to be sent to the worker that owns that task in order to
start the non-deterministic execution of that goal or, in the case of it had al-
ready been executed, the first non-deterministic goal created by such a task. The
worker that sent the message will wait for the beginning of the new deterministic
phase and non-deterministic goals in such a worker will be executed when all

10 It must be taken into account that such messages can arrive in an unordered way.
11 According to the Prolog execution order
12 Which will have been imported from other workers or will have been awakened by

mean of shared logical variables.

non-deterministic descendants from the exported goal have been executed. The
worker that receives the message will execute the selected non-deterministic goal
(or one of its descendants) and will start a new deterministic phase (being now
the initial worker for that phase). It will return the non-deterministic control, to
the worker from which it got it, when all of the imported goal descendants have
been executed. However, if some of these goals are exported, the process will go
on as explained, giving workers the non-deterministic control and returning it
at many levels in order to keep the Prolog execution order (fig. 3).

We have seen that it is the initial worker that will change to the non-
deterministic phase by selecting the next non-deterministic goal to be executed,
which could have been exported. However, to start a new non-deterministic
phase, all available deterministic goals must have been executed, i.e. there must
not remain any available deterministic task in the system workers without be-
ing executed. Therefore it is the initial worker for that deterministic phase who
has to detect when all workers are in the “idle” state in order to start the new
non-deterministic phase.

It has to be taken into account that in distributed systems, not all computa-
tion is done inside the workers, but some messages can be traveling around the
interconnection network. So, in order to know if a determinate worker is in the
idle state, the workload is not the only important value to be taken into account,
but the messages which it is waiting for have to be taken into account too. That
is, a worker will move to the “idle state” if it has not got any work available to
be executed and it has received an acknowledgment for every message that it
has sent, in which case there will not be messages traveling around the network.

Worker in "Working State"

Worker in "Idle State"

W1

W3

W7

W2

W5

W6

W0 W4W8

3

00

0

1 2

0 0

0

Initial Worker

Fig. 4. Detection of the End of the Deterministic Phase

Detection of the End of the Deterministic Phase The algorithm for the
detection of the end of the deterministic phase is based on the diffusing compu-
tation termination detection method proposed by Dijkstra and Scholten [8], but
it has been oriented to workers instead of tasks13. In it, each worker is controlled
by the worker which has given it work, and each worker controls the workers to
which it gave work. Thus, each worker keeps the worker that controls it, and the
count of workers that it controls, following a tree hierarchical structure (fig. 4).
The algorithm is as follows:

– When a worker gets some deterministic tasks from other worker and
it is not controlled by any worker, the control is established between
both workers.

– When a worker has not got any available deterministic task to be
executed (it is in “idle state”), and it does not control to any worker,
then the control from its controller worker is removed.

– If the initial worker is in the “idle state” and does not control to any
worker, that means that there is no available deterministic task in
the whole system, and, therefore, the non-deterministic phase must
begin.

Backtracking Support In addition to the backtracking support for sequential
execution explained above, our model has to be extended in order to support
backtracking in dependent AND parallelism exploitation in a distributed envi-
ronment.

It is known that choice-points are a key piece in the WAM backtracking mech-
anism, and we have seen that a non-deterministic goal is executed just by one
worker (the initial worker for a deterministic phase) and it will create a choice-
point in its local memory. Then a message for creating a dummy choice-point is
broadcasted to all system workers14 in order to allow every worker to backtrack
to that state of computation in case of failure. After the initial worker creates its
choice-point and broadcasts the dummy choice-point creation message, the ini-
tial worker will go on executing its new task, however, it cannot send any remote
work creation message15 until it has received confirmation from every worker of
having created their correspondent dummy choice-points. This is achieved by
having a ’queue’ where such a messages will be enqueued. This synchronization
is necessary for the choice-points to reflect the same global computation state.

In the same way, when the initial worker discards a choice-point, it broad-
casts a message to every worker in the system in order to act in the same way.

13 The main difference resides in the fact that in the original method, a task waits for
termination of its children in order to finish its computation and to notify this fact
to its father. In our environment, a worker can receive work from many workers and
can become idle even if its children are working.

14 Every worker is at this moment at “idle state”, since the change of phases is done
in a synchronized way.

15 Remote task creation, requested object value/reference or remote unification.

Synchronization as explained above is required. Moreover, in case of an early
failure after the creation/destruction of a choice-point, the failure has to be syn-
chronized with the confirmation from every worker of having created/discarded
the dummy choice-point.

When a failure occurs in a worker, a failure message is broadcasted to every
worker in the system. However, workers are working asynchronously most of
time16, therefore many failures can happen in different workers over the system,
and many obsolete messages can be traveling over the network. Thus, in order
to control this asynchrony chaos, a failure level counter is used. Whenever a
failure occurs in a worker, the failure level counter is incremented. Moreover,
every message is tagged with the worker’s failure level count, in such a way that
when a message is received, if the message failure level count is lower than the
worker’s current failure level count, then the message is discarded as obsolete.
However if the message failure level count is higher than the worker’s current
failure level count, the worker has to fail so many times to get to the message
failure level count, and then the message will be processed.

4 Mixing OR Parallelism with Dependent AND
Parallelism

This section shows the way in which the system is arranged in order to exploit
both kind of parallelism in distributed systems. It is based on the dependent
AND parallelism model explained above and in the OR parallel model explained
at [1] which is based on the incremental copy mechanism [2] for distributed
environments. It will not be explained here due to space limitations.

4.1 Static Teams

The structure that governs the whole system in order to exploit both kinds
of parallelism is arranged as follows: systems workers are divided into fixed size
teams, each one made up of the same number of workers. Workers have identifiers
internal to the team and teams have their own identifiers. The system can be seen
from two points of view. From the outer level point of view, the system is made
up of a set of teams which collaborate one another exploiting OR parallelism by
traversing in parallel different alternative paths from the search space. From the
inner level point of view, each team consists in a set of workers which collaborate
one another exploiting dependent AND parallelism within the traversing of a
search space path. This two level approach can also be applied to the levels
of neighborhood defined for both models. Hence workers within a team can
be organized by levels of neighborhood, and teams within the system can be
organized in such a way too.

Let us look at some definitions and restrictions that system team division
must fulfill.
16 Workers are only synchronized at change of phases.

– Definitions:
1. Let dij be the distance between worker i and worker j within a

team. Then let us define the internal distance for a team Tt with
N workers as

IDt =
N−1∑
i=0

i−1∑
j=0

dij

2. Let us call the worker’s counterpart for a team Tj to the worker
which has the same identifier as it within such a team, and let
Dwij be the distance between worker w from team Ti and its
counterpart from team Tj in the system network. Then let us
define the external distance between two teams Ti and Tj with
N workers as

EDij =
N−1∑
w=0

Dwij

– Restrictions:
1. The team internal distance must be minimum, that is, division

of workers in teams which internal distance is not minimum is
not allowed.

2. The global external distance between all teams must be mini-
mum, that is, team layout and the arrangement of workers within
a team must be achieved in order to minimize

NTeams−1∑
i=0

i−1∑
j=0

EDij

These restrictions are in order to decrease the communication costs
within a team while exploiting Dependent AND parallelism and
while the sharing of work in OR parallel exploitation respectively.

4.2 Mixing both Models

Now we will see how the proposed models have to be modified in order to adapt
themselves to the system arranged in fixed size teams.

The Dependent AND parallel model is lightly modified in order to allow
the mixing of both models. In previous discussion, all workers in the system
were involved in the same AND parallel computation. In order to exploit both
kinds of parallelism, only workers within a team will be related in the same
AND parallel computation, and workers from different teams will be involved
in different computations. The model is modified as follows: a team is a subset
of workers from the whole system, and worker identifiers are now relative to
the subset, hence the model must reflect the relative worker identifiers and the
subset of workers as a whole AND parallel system.

The OR parallel model, however needs deeper modifications. It has to be
modified to support the teams, instead of workers, as the core to exploit the OR

parallelism. Now a team plays the same role as a single worker in the OR model.
These teams are made up of small pieces that will have to be coordinated in
order to achieve the sharing of OR work in the correct way (now the OR work
is not a monolithic piece, but it is made up of small parts distributed among the
workers belonging to a team).

Therefore, it is the sharing of OR work, and the corresponding coordination of
workers within a team and inter-teams on which our attention must be focused.

The way in which the sharing of work was synchronized in the pure OR
parallel model can roughly be seen as follows [1]:

– When a worker ran out of work, it sent to its neighbors a request for
work, and moved to the “idle state”.

– When a worker had got enough work to share, it selected the most
suitable idle worker with which to share part of its work.

– When an idle worker was selected for sharing work, it chose the most
suitable work for sharing and rejected the other ones.

– If overlapping17 occurs before the commitment of the work18, then
the sharing of work is aborted.

This simplified protocol to synchronize two workers for sharing OR work
becomes more complex in the case of the mixed models, since now two teams
(made up of several workers running most of time asynchronously) have to be
synchronized. It can roughly be seen as follows:

Within a team, there will be a distinguished worker, the “main worker”,
which will be a fixed one for each team. If a team has enough work to
share, this worker will deal with the detection of work and the selection
of the idle team with which to share out such work. When the work to
share has been detected, another worker will deal with the control of
the sharing of work and overlapping, we will call it the “work controller
worker”, and it will be the worker that created the “real choice-point”
just over the work to be shared.

If a team is in the “idle state”, the “main worker” will select the most
suitable work between the offered ones, and will reject the others. The
“work controller worker” will be notified of the work request/rejection,
the work will be shared (copied) between every worker and its counter-
part from both teams, and the “work controller worker” will be again
notified of the end of such an operation.

If overlapping occurs before the work has been committed, then the
sharing of work will be aborted, but if it occurs after such commitment
and before the end of the sharing of work, then the overlapping will be
blocked until its end.

17 Overlapping occurs when after several failures the worker that had got work to share
has to backtrack to the area selected for sharing.

18 Work is committed when the worker that owns the work receives the confirmation
for sharing the work before overlapping occurs.

5 Conclusion and Future Work

We have presented a model for implementing the Basic Andorra Model on dis-
tributed systems whose implementation is nearly finished. The model is based
on a model for exploiting OR parallelism on distributed systems presented in
an earlier paper and in a model for exploiting Dependent AND parallelism on
distributed systems explained above. The latter is based on a goal suspension
mechanism for WAM with granularity control support embedded in the execu-
tion model. Moreover, levels of neighborhood and a state machine for each level
are defined in order to get a fine control over the sharing of work. A mechanism
for dealing with unbound variables in the distributed Basic Andorra Model has
been also proposed, which is an extension to the Foster’s distributed unification
mechanism for committed choice languages. A scheme to control the change of
phases maintaining the Prolog ordering and backtracking in distributed envi-
ronments is proposed. A model for mixing both kinds of parallelism has been
proposed, however at current stage, workers are arranged in a fixed way, being
our next step to extend it using a flexible scheduler.

References

1.
2. K. A. M. Ali and R. Karlsson. The Muse Or-parallel Prolog model and its per-

formance. In North American Conference on Logic Programming, pages 757–776,
1990.

3. L. Araujo and J. J. Ruz. PDP: Prolog Distributed Processor for Independent-
AND/OR parallel execution of Prolog. In Logic Programming: Proceedings of the
11th International Conference, pages 142–156. MIT Press, 1994.

4. R. Bahgat. Pandora: Non-Deterministic Parallel Logic Programming. PhD thesis,
Imperial College. London, February 1991.

5. K. Clark and S. Gregory. Parlog: Parallel programming in logic. ACM Transactions
on Programming Languajes and Systems, 8(1):1–49, January 1986.

6. J. Crammond. The abstract machine and implementation of parallel Parlog. Tech-
nical report, Imperial College. London, June 1990.

7. D. DeGroot. Restricted AND parallelism. In Proceedings of the International
Conference on Fifth Generation Computer Systems, pages 471–478. ICOT, 1984.

8. E. W. Dijkstra and C. Scholten. Termination detection for diffusing computations.
Information Processing Letters, 11(1):1–4, August 1980.

9. I. Foster. Parallel implementation of Parlog. In International Conference on Par-
allel Processing. University Park, 1988.

10. G. Gupta and M. Hermenegildo. ACE: And/Or-parallel copying-based execution
of logic programs. In A. Beaumont and G. Gupta, editors, ICLP’91 Pre-Conference
Workshop on Parallel Execution of Logic Programs, volume 569 of Lecture Notes
in Computer Science, pages 146–158. Springer-Verlag, June 1991.

11. M. V. Hermenegildo. An Abstract Machine Based Execution Model for Computer
Architecture Design and Efficient Implementation of Logic Programs in Parallel.
PhD thesis, University of Texas, August 1986.

12. S. Janson and S. Haridi. Programming paradigms of the Andorra Kernel Language.
In Proceedings of the International Logic Programming Symposium, pages 167–186.
MIT press, October 1991.

13. H. F. Leung. Distributed Constraint Logic Programming. PhD thesis, Imperial
College. London, November 1991.

14. P. López, M. Hermenegildo, and S. Debray. Towards granularity based control of
parallelism in logic programs. In Proceedings of PASCO’94, 1994.

15. E. Lusk, D. Warren, S. Haridi, and et al. The Aurora Or-parallel Prolog system.
Technical Report 07, University of Bristol, 1990.

16. V. Santos Costa, D. Warren, and R. Yang. The Andorra-I engine: A parallel
implementation of the Basic Andorra model. In Logic Programming: Proceedings
of the 8th International Conference. MIT Press, 1991.

17. V. Santos Costa, D. Warren, and R. Yang. The Andorra-I preprocessor: Supporting
full Prolog on the Basic Andorra model. In Logic Programming: Proceedings of the
8th International Conference. MIT Press, 1991.

18. E. Shapiro. Concurrent Prolog: a progress report. IEEE Computer, 19:44–58, 1986.
19. K. Ueda. Guarded horn clauses. Technical Report 102, ICOT, Tokyo, 1986.
20. D. Warren. Or-parallel execution models of Prolog. In TAPSOFT, volume 250 of

Lecture Notes in Computer Science. Springer-Verlag, 1987.
21. R. Yang. Solving simple substitution ciphers in Andorra-I. In G. Levi and

M. Martelli, editors, Logic Programming: Proceedings of the 6th International Con-
ference, pages 113–128. MIT Press, June 1989.

