Journal of Progranuming Languages 2 (1994) 109—124

Implementation and evaluation of
OR parallel Prolog models on
distributed systems

V. BENJUMEA, M. ROLDAN-and J. M. TROYA

Dpto Lenguajes y Ciencias de la Computacion, Universidad de Mdlagn, Flaza el Ejide sin. 29013
Madlaga, Spain

Received 1 March 1993

A Prolog paraliel interpreter with which to evaluate several approaches in distributed OR parallel
implementations is shown. Two execution models based on a process tree, which differ mainly in the process
granularity, are considered. Furthermore, two memory management sirategies based on a closed environment
are examined. The evaluation method consists of comparing real results obtained after running four different
versions which combine the different issues.

The interpreter has been implemented on a 16 transputers Parsys Supernode, using Oeccam as the
development language. The process and memory management have been implemented in a dynamic way,
allowing improvement of the system's efficiency and reduction in memory waste. A dynamic load balancing
mechanism has been implemented. Some statistics made using the interpreter show a speed-up of 3.75 for 4
processors and 12.57 for 16 processors.

Keywords: Paralle! interpreter, logic programming, AND parallelism, OR parallelism, distributed memory
systems, closed environment memory model

1. Introduction

Logic programming was a crucial advance in computer science, allowing programmers to focus on
specifying the relationships between problem constituents, and raising the programming
abstraction level. However, its practical applications were conditioned to obtain efficient
languages and implementations. This was achieved with the development of the Prolog language
and efficient sequential implementation techniques [1]. This can be improved using the advantages
of the new parallel architecture. This approach is highly appropriate, since logic programs have a
significant amount of implicit paralielism. This can be exploited transparently as it is unnecessary
to declare it explicitly. '

There are two main sources of parallelism in Prolog: AND parallelism (which executes in
parallel a conmjunction of goals) and OR parallelism (which explores in parallel the different
branches in the Prolog search tree).

AND parallelism has been exploited in languages keeping the Prolog syntax and semantic
0963-9306 © 1994 Chapman & Hall

110 : Benjumea et al.

[2—4], and logic languages based on communication between concurrent processes, such as Parlog
[3], GHC [6] and Concurrent Prolog [7].

OR parallelism has been widely studied since the first works achieved by Ciepielewski and
Haridi [8] and others. There are several approaches, including the process tree model [3}
(usually used with AND parallelism), multisequential models such as Aurora Prolog [9] and Muse
[10], and data flow models [11].

The main studies on exploiting parallelism in logic programs have been based on shared
memory systems [9, 12]. However, distributed systems are becoming more and more important,
while logic programming is an almost unexplored field in this kind of architecture. The main issues
to be considered in order to correctly exploit some kind of parallelism are the execution and
memory management models, and their suitability to the underlying architecture.

This paper deals with the evaluation of two execution models based on the process model.
One model is based on the classic OR tree. The other model uses the OR tree combined with
all-solutions AND paralielism [13, 14]. However, the last model is just a way to exploit small-grain
OR parallelism. In this model, processes are linked, constituting a pipeline of solutions. Another
goal is the evaluation of memory management strategies which will be affected by two aspects, the
execution model (based on processes) and the distributed architecture, in which remote memory
accesses are very expensive, Therefore it is convenient that the information a process needs is
stored in the processor where the process is running, Because of this, we have studied two
strategies, the closed environment model [15] and a variation of this based on the use of local
memory to the processes.

It is proposed that these goals are achieved by following a practical approach, that is, the
implementation of different versions in which only the aspect to be evaluated is changed, and to
compare directly the real results obtained from the same Prolog programs. To achieve this goal in a
simple and reliable way, the implementation has been developed using a layer architecture, so that
each version just differs in the layer affected by the aspect to evalnate, ensuring that the part of the
system which has not changed always has the same influence on the run times.

The distributed system was built using the transputer as the basic processing unit,
since it is specially adapted to the desired characteristics. Occam was used as the
programming language since it was specially designed to exploit transputer characteristics.
Transputer meshes with I, 4, 8 and 16 processors have been implemented on a Parsys
Supernode. To use the processor resources in an efficient way, dynamic memory and process
management were emulated. Other implementations with similar characteristics use the
resources in a static way, with an excessive waste of resources, restricting the system’s
capacity.

Because communication between processors is a significant source of delay, an important design
goal was to reduce the passing of messages through the interconnection network. To have suitable
load balancing, a dynamic load distribution mechanism based on process creation was used, since
process migration is very expensive in distributed systems.

The rest of the paper is organized as follows: Section 2 describes system architecture
characteristics, and its different layers; Section 3 presents the dynamic load balancing mechanism
used; Sections 4 and 5 describe respectively the execution and memory managsment models used;
Section 6 shows some results among the different versions, and draws comparisons with other
similar implementations. Finally, Section 7 presents the conclusions.

Implementation and evaluation of OR parallel Prolog models 111
2. System architecture

The interpreter has been developad for a system made up of one processor (master transputer)
. running as a.user interface and N processors (fransputers} whose main goal is to look for solutions
to a specified query.

The system can be in two different phases: analysis and resolution. In the analysis phase, the
source code for the Prolog program is checked and internal code is generated for its later
interpretation. The internal code is broadcast to each processor in the network. This allows
dynamic load balancing, whereas a static distribution of code is unsuitable for this. The analysis
task is carried out by the master transputer. The remaining processors broadcast the internal code
through the network. During the resolution phase, the network processors traverse the search tree,
seeking solutions for the specified query. The master transputer repoerts to the user about the
solutions found.)

The resolution system is made up of a processor network, where each processor will have the
same internal configuration (Fig. 1). It consists of two main modules, the resolution module, whose
goal is to solve the problem in each processor, and the network interface, which deals with the
communication between processors, isolating the resolution module from the underlying
architecture characteristics (communication and network topology). Occam processes are used
to implement the network interface and the resolution module. However, to achieve flexible
process management, the processes which make up the execution model during the resolution of
a Prolog program are not mapped on Occam processes. It is the implemented system which pro-
vides primitives for the creation and scheduling of logic processes, placed in the layer relating to
this task.

The system is made up of four layers, as shown in Fig. 2. Each layer offers services to the
adjacent ones. This organization allows independence between the different functions that manage
the processes and communications. The function of each layer is described below.

The aim of the interpretation layer is to execute the process that achieves the
problem resolution. It is a state machine implementing the chosen execution model
(OR. parallelism or all-solutions AND/OR parallelism). It uses the services provided by the
next layer. '

Processing Lnit .. Processing Unit-

Resolution - . Resalution
- Module

Interpretation Lzyer

Processing Layer

Cemmunicatios Leyer

Network Layer

Fig. 1. The resolution system Fig. 2. The system layers

112 : : ‘ Benjumea et al.

The processing layer is made up of three functional units:

@ process control unit
@ inter-process commimication unit
@ local memory management unit.

The process control unit deals with local and remote process creation, and their scheduling. The
inter-process communication unit manages the communication between local and remote
processes, providing -buffered asynchronous communication. In the case of remote processes it
will use the services provided by the lower layer. The local memory management unit provides
services to access the local memory and manages the memory model that supports the OR parallel
execution. o

The tommunication layer handles méssage management between processors, regardiess of the
network topology. It centralizes the communications between processes in different processors
(remote process activation, goal solution, environment, load balancing, etc.), and creates the
messages that will be delivered to the destination processor. -

The network layer manages and routes the message passing between processors, hiding the
network topology from the upper layers. It knows the path to deliver a message to its
destination.

It is important to note that communication between layers is implemented by means of calls to
the services provided, except between the communication and the network layers, where it is
achieved by message passing, since such layers belong to different Occam processes.

An example of the interaction between the layers can be seen in Fig. 3a. The interpretation layer
is executing a process which wants to create new processes. It calls the process creation service
provided by the process control unit. This will apply the load balancing algorithm to see where
to create the new processes. If these must be created in the local processor, the process control unit
asks the memory management unit for the local process creation service, which allocates the new
process status in the system memory. If the new processes must be created in a remote processor,

Interpretation Layer

proe, . msg.
detiv.

Tem.
msg.
deliv, deliv.

23 ed e it Vi it b

Communication Layer

remoie pesses rmnle. processes 5 reuLe. process
creation message W message creation message f| message
TO INTERCONECTION NETWORK FROM INTERCONECTION NETWORK

Fig. 3. Examples of interaction between layers

Implementation and evaluation of OR parallel Prolog models 113

the process control unit asks the communication layer for the remote process creation service,
which sends that message to the network. The message is delivered through the network layer
and the interconnection network up to the communication layer in the destination processor
(Fig: 3b). It is processed and the memory management unit is asked for the local process creation
service.

Let us suppose that the process running in the interpretation layer wants to send a message to
another process (Fig. 3a). It asks the inter-process communication unit for the message delivering
service, which calls the local message delivering service provided by the memory management unit,
if the destination process resides in the same processor. The memory management unit allocates the
message in the process associated buffer. If the destination process resides in a remote processor,
the inter-process communication unit requires the communication layer to send the appropriate
message to the network through the remote message delivering service. This message will get to the
communication layer in the destination processor (Fig. 3b). It-is processed and the memory
management unit is asked for the local message delivering service.

3. Load balancing

Load balancing is based on process creation, which is carried out in the most suitable
processor according to an evaluation function. When the time required for process migration isa
significant proportion of the average execution time of a process, it is not advisable to allow
process migration. These models have medium and fine granularity and, therefore, in this
system, process migration does not exist, and a process will be executed on the processor where
it was created.

When a process needs to create child processes, such a creation is made in a local or remate
processor, depending on the estimated cost of each case and, furthermore on the load in each
candidate processor. Since remote creation has a high cost in a distributed system, the local
creation of processes is favoured.

Creation and communication costs depend on the distance, on the interconnection network,
between the processors involved in such a communication. Distant processors obtain unfavour-
able results from the evaluation function, and are never selected.

Since there is no process migration and adjacent processors are the preferred candidates, when a
message is generated it will always be directed to the local processor or to some processor directly
accessible on the interconnection network, so that the traffic on the network is not very high, and is
carried out with a very low routing cost.

Because the load balancing algorithm is dynamic, the selected processor will depend on the
system state at the process creation time. Such a selection is based on two parameters:

N, the number of active processes N, plus inactive processes Ny in the candidate processor;
and Cj;, the estimation of the cost that a process located in processor { has to pay to create
& process in processor j.

Each processor must know the parameter N of the candidate processors. To achieve this, it sends
information periodically about active and inactive processes to its neighbour processors.

114 . , Benjumea et al.

The cost matrix C is a constant of the system that will be estimated depending on how much
either the process spread by the network or its local creation is to be favoured.
To get the results shown in section 6, the following evalnation function is used.

F(i,j) = ((N4{j]"weight) + N;[j])"Cy; where i = local processor; and
} = destination processor
with parameters
weight =2)
ij =1 (i =])
2 (i and are neighbours)

oo (otherwise)

4, OR parallelism models

Two execution models based on process tree have been implemented. In these, the program is
solved using concurrent processes commumnicating to one another through message passing.
Both models differ mainly in the process granularity. The model with larger granularity has less
overhead. However, this may be a drawback with regard to the exploited parallelism, as it increases
the probability of a processor being idle since there wiil not be available active processes to be
executed. To evaluate that behaviour, execution models based on the classical OR tree, using
medium granularity processes, and on the OR/AND all-solutions tree, which reduces the process
granularity, have been implemented.

4.1 OR execution model

In this model, a process tries to solve a clause body. So, when it is activated, it receives the clause
whose body must be solved and its variable bindings (environment). A process tries to solve the
first goal, so it creates as many processes as there are unifiable clauses (exploiting OR parallelism)
and it waits for the first clause solution. Then it tries to solve the second goal of the solution and so
on until the last goal. When it receives the solutions from the last goal, it sends them to its father as
clause solutions. When the former obtains the next solution from the previous goal, it will look for
further poal selutions, and so on.) '

This is explained in more detail in the example in Fig. 4, where process P1 tries to solve the initial
query by receiving its initial environment. It tries to solve the first subgoal, creating P2 and P3. It
gets the solution {rom P2 and activates P4 (which tries to solve the clause that unifies with the
second subgoal). When it receives the solution from P4, it activates P35 and P6. Meanwhile, the
other processes go on searching for more solutions. When it receives the solution from P35, this will
be the first solution to the initial query. The solution from P6 will be the second one. Since there are
no more solutions for the last subgoal, it will get another solution from the previous one (P4).

Implementation and evaluation of OR parallel Prolog models 115

L, Salution 2nd. Salution

Fig, 4. OR execution model

However this hasn't got any solution, so it has to go back to the next solution for the first subgoal,
which comes fram P3. With this it will activate P7 (which tries to solve the second subgoal). With
its solution it will create P8 and P9, whose solution will be the third and fourth solutions for the
query respectively. The solution flow is shown by a thick line.

4.2 All-sclutions AND/OR execution model

‘We have started from a basic model, which uses the AND/OR tree (Fig. 5a). In this madel AND
processes, which dezl with the solutions of the body in a clause, can be distinguished from OR
processes, which deal with each literal in a clause. The a/l-solutions AND paralielism is exploited by
the AND processes, which manage, in parallel, different solution flows. The OR parallelism is
exploited by the OR processes, solving different clauses in parallel. Figure 5a shows that direct
communication between sibling processes is not possible. It is the father process which deals
with such communication.

A very modified version of this has been implemented here, with the following main
differences.

@ The communication scheme of the basic model is not flexible, since all messages must be
managed by AND processes. To improve it, the model proposed allows direct communi-
cation between sibling OR processes, so many unnecessary messages are avoided.

® The proposed model only uses one kind of process. AND processes are not used, but its
functionality is subsumed by OR processes, so that the process granularity is increased.

@ To manage backtracking in the basic model, many processes have to be destroyed, whereas it
is probabie that they will be needed later, and will therefore frequently have to be recreated.
To aveid this, processes are not destroyed but suspended. They are activated when they
receive a new environment with which to obtain more solutions. So, the time spent on
process management is reduced,

The Fig. 5b shows the execution tree resulting from the proposed model.

118 ' Benjumen et al.

Fig. 5a. Process tree and messages in the original Fig. 5b. Process tree and messages in the proposed
model model

4.3 General behaviour

In the proposed model, a process tries to solve a goal. To achieve this, the process receives the
goal environment. For each clause that unifies with the goal fo be solved, it creates processes to
solve the goals belonging to the clause body, linking them in a pipeline of processes where the
goal solutions are environments for the next one. The process solving the first goal receives the
environment from its father, and the process that solves the last goal will send the solutions to its
father.

An example may be found in Fig. 6, where P1, P2 and P3 processes are created to sclve the
query subgoals, These wait to get the environment(s) in which they will look for scluticus.
So, P1 receives the initial query environment and it creates P4 and P35 to solve the body of the cl
clause, and P6 and P7 for ¢2. The solution obtained from P5 is sent to P2 (after a closing operation)
and, with this, it creates P8, The solution coming from P8 is passed to P3, which creates P9,
P10, P11 and P12. The solutions from P10 and P12 are the first and second selutions for the
query respectively. Because there are no more solutions, it gets the next one from P2, which
creates a new process, P20, from the solution sent by P7 to Pl and from this to P2. The
solution found by P20 is passed to P3, which creates P21, P22, P23 and P24. The solutions from
P22 and P24 are the third and fourth solutions for the query. The solution flow is shown by a
thick line,

In both execution models, a process will be created with information regarding the goal
or clause to be solved, and then it will wait for the environment from which it will seek solutions.
In the latest model, a process will receive several environments from which it will generate suitable
solutions. Therefore, just one creation is necessary.

Implementation and evaluation of OR parallel Prolog models 117

2nd. Selutlen Pl

Fig. 6. All-solutions AND/OR execution model

5. Memory management

Implementing the execution model in an efficient way requires 2 memory management strategy
suited to the execution model and to the underlying architecture (shared memory or distributed
memory). In distributed systems, it is advisable that each process be able to get the information
necessary to solve its goal from the local processor memory, since accesses to remote memories are
very expensive. Because of this, we have chosen the closed environment model proposed by Conery
[15] and a variant of this as memory models. In these models, all the information necessary to
achieve the unification is kept in two environment frames in such a way that these frames are
isolated from the rest and are in the processor where the process is running. These models are
oriented to an execution model based on processes, since each environment frame keeps the
information needed by a process.

Two implementations based on Conery's model have been developed, as follows.

@ Local model: each process has its own local stack and heap. These are kept in an adjacent
space in the processor memory.

® Global model: it follows the main guidelines described in [15], in which there is a stack and
heap per processor shared for all the local processes, so that the structures created in the heap
can be shared by several environment frames.

5.1 Closed environment model

This model was proposed by Conery [15] to solve variable binding conflict in OR parallelism on
non-shared memory architecture using a process-tree execution model. The binding environment
seen by a process is restricted to one or two frames. These are organized in such a way that they
hold all the information needed for unification.

118 : : Benjumea et al,

Stack Heap
The
X ELEDS <LEl'%>

11
Y <Al A"
Z | <P@>

7 p(a,f00).
p(Y.Z) .

Fig. 7. Example of unification and closing

A closed frame is such that no link originating in it de-references into slots belonging to other
frames.

To guarantee that the two frames that will be unified are closed, it is necessary to follow several
rules, as follows.

@ If two closed frames, one from the goal environment (top frame) and one from the candidate
clause (bottom frame), are unified, the environment closing operation can transform them so
that one will remain closed with respect to the other one.

@ The bottom {rame for a candidate clause will initially hold only unbound variables. Therefore
it is a closed frame. The frame of the initial goal statement holds unbound variables, so that it
is a closed frame.

@ After unifying a goal with the head of a unit clause, the top frame must be closed. This frame
can be used to solve siblings of the goal or it can be used, if the goal is the latest in the clause,
as a solution for the clause,

@ After unifying a goal with the head of a non-unit clause, the bottom frame will be closed with
respect to the top frame. This bottom frame becomes the top frame for the first goal in the
body of the clause.

@ After solving the last goal in the body of a clause, the calling goal's frame will be closed with
respect to the bottom framé made for the clause.

General characteristics

In each processor, the system memory keeps information about process status and messages.
Process status and message heads are fixed size structures (managed as a stack with a hole list)
holding pointers to an area where variable size structures are stored (managed as a stack with
holes). Every local process can have access to these areas, so if a process wants to send a message
to another process in the same processor, it is an operation in the local memory, which is more
efficient than message passing between Occam processes.

In addition to those structures, both models use several areas to hold the data generated
during the Prolog program execution. In the local model the stack and heap of each process
are stored in the area of variable size structures. However, in the global model, together with

Implementation and evaluation of OR parallel P‘rolog models 119

the above areas, there is a global memory area, shared by all the processes allocated in the same
processor, holding their stack and heap.

Global model implementation

The closed environment model, as proposed by Conery, is implemented. System memory is
composed of three areas: stack, heap and process control.

@ The stack holds frames generated during program execution. Each frame holds a frame
identifier, and a slot for each variable of the clause that it represents, and for those that
are newly created during execution time.

@ The heap holds dynamic structures generated during execution time. All the processes
allocated in the same processor may access to this area. Therefore, structures may be shared
by several frames of the stack.

@ The process control area holds the auxiliary and process control structures.

When a process receives a frame, it will make as many copies of it as there are clauses that unify
with the literal corresponding to such a frame. It requires copying of frame variables and of the
structures pointed from that frame.

The unification algorithm will work with the copied frame and the candidate frame, which
initially will have unbound variables, Since the heap is shared among the processes allocated in
a processor, to unify a variable with a structure does not reqmre acopy operatlon However it does
requlire an operation to bind the variable to the structure in the heap.

De-referencing and frame management

The memory management requires frequent frame duplications and consequently, duplication
of related structures. This operation must be carried out guaranieeing a later unambiguous
de-referencing. To differentiate the original frame from the copies, a different frame identifier could
be used in each frame. However, that implies traversing the referenced structures to change
references to the original frame for references to the copied frame, which is an inefficient operation.

The proposed de-referencing mechanism uses the same frame identifier in the original and copied
frames. It is only necessary that the top and bottom frames have a different identifier. We use two
tables that always allow the access to the requested frame address.

Ref_top is a table with as many slots as the body of a clause has literals. Each slot contains a
pointer to the top table that allows access to all the frames related to the literal.

Top is a table with as many slots as there are clauses that unify with a literal. Each slot contains
the address of the implied frame in such unification.

The de-referencing mechanism is very fast since during unification the absolute addresses of
impilied frames are known.

Local model implementation

The local stack of processes is assigned as a structure, which holds a slot for each variable in the
clause. The heap, stored adjacent to the stack, will hold dynamic structures. The stack and heap

120 . Benjumea et al.

Goal Frame Clause Frame (Initial)
Xof g 1 wol[TUNB
Y1l @ 3 Stack V1 UNB
Z 2 _UNE_] Clause Frame

i EIDN]r[l;le (Afer Unifying)
s@ & Heap WO[@ 2
6[EUNCT g V1 UNB |
LB 0 2[FONCT T |
A[CINT 3
X=7 I @ 5
- -5 [FORCT
Y =1(3,g(X)) & Er——
?- ..., a{¥), ...
a{W) - ..
UNB - Unbound Variable.
INT - Constant.

LB - ReF. to local variable.
FB - Ref. to goal frame variable.
@ - Ref. to heap object.

Fig. 8. Example of unification

reside in the processor system memory, which is accessible to local processes. This allows the local
memory to be shared, so the size of the local stack and heap is not static, but it is allocated in a
dynamic way according to needs.

The process receives the clause environment in which it will try to solve its subgoal. It will try to
unify a copy of the clause environment with the new environment created for the candidate clause.
Puring the unification, dynamic structures involved in it will be copied from one environment to
the other. The references between variables will always be from the new environment to the old
one. If the unification succeeds, the newly created environment will hold the bindings for the
unified clause (references to variables in the older environment are treated as unbound variables)
and it will be sent to the first subgoal process for the clause. Solutions for the clause are received
from the last subgoal process. The bindings for the variables that referenced unbound variables in
the clder environment are copied to this one. This environment will now be the environment
solution for the subpoal that tries to solve the process, and it will be sent to the siblings if
there are more subgoals in the clause or, if this is not the case, it will be sent to the father as a
clause solution.

To illustrate the unification mechanism in this model, we can see in Fig. 8 an example of unifying
a(Y) with a(W). The goal environment will be a copy of the clause environment whose body the
process is trying to solve. An environment will be created for the clause that is being unified.
Initially it will hold slots for the variables, which are unbound, and the heap will be empty.

As shown in Fig. 8, Y refers to a heap structure, and W is unbound. Since each environment has
its own local heap, it is not possible to assign a reference to the structure in the goal environment to

Implementation and evaluation of OR parallel Prdlog models 121

Table 1. Results for four system versions

Number of OMGM OMLM OPMGM OPMLM
transputers Result type systent (V1) system (V2} system (V3) system (V4)
1 Timeé (ms) 188.69 152.56 218.03 179.13
Speed-up ratio 1 13 1 1
4 Time (ms) 85.08 65.94 72.59 47.68
Speed-up ratio 2.21 2.18 3.00 3.75
8 Time (ms) 41.53 34.74 41.18 25.68
Speed-up ratio 4.54 4,34 5.29 6.97
16 Time (ms)} 24.22 18.73 23.65 14.25
Speed-up ratio 7.79 8.14 9.21 12.57

W, but the structure will be copied in the unified clause environment heap, and W will reference to
this. After copying, the references to local variables (LB) in the copied structures will be replaced
for references to variables in the source environment (FB),

After unifying, the unified clause environment must be a closed environment, therefore a closing
procedure that guarantees that all references are local is necessary. This closed environment, which
will hold all the information needed, can be sent to a child or sibling process. The closing procedure
is achieved during the unification.

In this model, garbage collection is not necessary since used local environments are de-allocated
automatically.

6. Results

Two execution models and two memory management strategies have been combined, resulting in
four different versions of the system:

& OR execution mode] and global memory management {(OMGM)

© OR/AND pipeline execution model and global memory management (OPMGM)
© OR execution model and local memory management (OMLM)

@ OR/AND pipeline execution model and local memory management (OPMLM)

Layered architecture aliows the comparison of different models in a reliable way since each
version has only modified the appropriate layer.

Table 1 shows some results of running a Prolog program to solve the 7 Queens problem on
networks with 1, 4, 8 and 16 processors, for the four system versions.

To evaluate a parallel execution model, the overhead that is introduced in comparison with a
sequential model, and the speed-up in the multiprocessor implementation must be taken into
account. Since Tv2 < Tv4 and Tvl < Tv3, we can say that the execution model based on the-
OR tree has less overhead. However, the speed-up results are the opposite, Tv4 < Tv2
and Tv3 < Tvl, hence the OR/AND all-solutions model seems more suitable for this kind of
architecture.

122 Benjumea et al.

Table 2. Execution time comparisons

Execution time (ms)

Number of Program being OPMLM DIALOG CRAI
processors executed V4
1 Transp database 286.2 780.6
appendl 85 762
append2 620 ’ 1290
gsort 5304 54805
na_rev 3318 46612
4 Transp database 292.6 234.1
appendl 89 248
append2 617 619
gsort 5330 20930
na_rev 3354 13333 .
16 Transp database 202.2 208.9
appendl 90 194
append?2 618 617
gsort 5385 16680
na_rev 3439 7137

Memory management models may be compared by running different versions for the same
execution model on one processor implementation. We have observed that Tv4 < Tv3 and
Tv2 < Tvl. In both cases, the time used by the local memory model is 20% less than the global
memory model. That is because the structure duplication cost is lower in the local model, where
data structures are adjacent in the heap, and such duplications are frequently used to keep the
independence between the different search paths.

6.1 OPMLM vs. other implementations

Most work on parallel Prolog implementations has been carried out on shared memory
architecture. In recent years, studies on distributed implementations have increased. It is not
known how many works gave numerical results, however Table 2 shows the execution times
compared with implementations in CRAI [16] and DIALOG [17].

CRATI describes an interpreter using an OR parallel model on a network of transputers. Those
characteristics are similar to the system proposed here, but implemented in a static way. DIAT.OG
is an implementation of a dataflow model simulation on transputers.

Used programs are not suitable to compare the implementations, since they do not have enough
work, and so, the computation time doesn't justify the parallel execution. However, studying
Table 2 it can be seen that the OPMLM monoprocessor version is better than the others, but on
multiprocessor versions, the proposed system does not offer a speed improvement. This is because
the time spent on creating a remote process is time consuming with respect to the global execution
time, whereas a static implementation does not waste time in remote process creation. On real

Implementation and evaluation of OR parallel Prolog models 123

programs, the execution time is longer, and remote process creation time is not significant, whereas
a static focus has an excessive memory waste. Results of comparing monoprocessor versions prove

that the proposed system has less overhead, and its speed-up for more suitable programs is
satisfactory.

7. Conclusions

A parallel Prolog implementation prototype to exploit QR parallelism on distributed systems has
been developed. The underlying system is a Parsys Supernode with 16 transputers. _

The closed environment model is a suitable memory management stratepy on disiributed
systems. A new version using local memeory in the processes has been implemented. It is faster
(about 20%) for both execution models (the OR tree model and the OR model combined with
all-solutions AND).

Both execution models have been studied to compare their suitability for parallel execution. The
results indicate that the former has less overhead, however the latter is a better choice for parallel
execution, since it has better speed-up.

The implementation is dynamic, hence it has more flexibility and its utilization of resources is
better than models with a static point of view. Layer architecture allow results to be obtained in an
gasy and reliable way.

Acknowledgements

This work was supported by project CICYT TIC 340/90.

References

1. D. H. B, Warren. 4An dbsiract Prolog Instruction Set, Technical Note 309, SRI International, 1983,
2. D. DeGroot. Restricted AND-parallelism, Proceedings of the Infernational Conference on Fifth-
Generation Computer Systems, ICOT Tokyo 1984, pp. 471-478.
3. I. 5. Conery. AND parallelism and nondeterminism in logic programs, New Generation Computing, 3
{1985) 43-70.
4. M. V. Hermenegildo. An abstract machine based execution model for computer architecture design and
efficient implementation of logic programs in parallel, PhD. Thesis, University of Texas, 1986.
3. K. L. Clark and S. Gregory. PARLOG: parallel programming in logic, ACM Transactions on
Programming Languages and Systems, 1986. '
. K. Ueda. Guarded Horn Clauses, TR-102, ICOT, Tokyo, 1986.
. E. Shapiro. Concurrent prolog; a progress report, JEEE Computer 19, (1986) 4458,
. A. Ciepielewski and S. Harldi. A formal model for OR parallel execution of logic programs, IFIP, 1983,
. E. Luske, D. Warren and S. Haridi. The aurora OR-parallel Prolog system, University of Bristol,
TR-90-07.
10. K. Ali and R. Karlsson. The Muse OR-parallel Prolog model and its performance, NACLP 90, pp.
757-776.

D 00 -0 Oh

124

11.

13,

14.

135,

I6.

17.

Benjumea et al. .

P. Kacsuk. A parallel Prolog abstract machine and its multi-transputer implementation, The Computer
Journal, 34, (1991) 52-63. .

. D. H. D. Warren. The SRI model for OR-parallel execution af Prolog—abstract design and implementation

issues, Proceedings of the 1987 Symposium on Logic Programming.

M. Tamure and Y. Kaneda. hinplementing parallel Prolog on a multi-pracessor machine, Proceedings of the
{EEE International Symposium on Logic Programming, 1984,

V. Benjumea. M. Roldan and J. M. Troya. A Prolog interpreter for OR parallelism evaluation on
distributed systems, Ewromicro PDP, 1993,

. Conery. Binding environments for parallel logic programs in non-shared memory multiprocessors, IEEE,
1987. - '
M. Cannataro, G. Spezzano and D. Talia. A parallel logic system on 2 multicomputer architecture, Future
Generation Computer Systems, North Holland, 1991.

K. Zhang and R. Thomas. DIALOG—A dataflow model for paralle] execution of logic programs, Future
Generation Computer Systems, North Helland, 1991, 373-388.

Further reading

INMOS. Transputer Reference Manual, Prentice Hall, 1988,
D. Pountain and D. May. 4 Tutorial Introduction to Occam Pragranmuning, BSP, 1988.

