
English Introduction

Nowadays, one of the most complex parts of critical systems is the system software. It

is found in applications ranging from airplane navigation systems [20] to train control sys-

tems [6], as well as nuclear power plants or space shuttles, among many others. Due to the

nature of this kind of system, where failures are not only measured in financial terms, but also

in potential loss or damage to human life, the software used must be totally reliable. Moreover,

these kind of systems are concurrent systems where the application of traditional debugging

and testing techniques is very complex. Insoftware engineering, tools for test case genera-

tion (testing) can only cover a small part of the space of states needed to be explored, and the

correctness and reliability of the whole system cannot be ensured. On the other hand, formal

verification tools can provide methods that perform a more exhaustive analysis. Among the-

se techniques, we can highlight theorems prover or the verification of models also known as

MODEL CHECKING [17] .

Today,MODEL CHECKING is one of the most commonly used formal techniques used to

establish that a system is adapted to particular requisites, normally specified in some logic like

LTL [46] , CTL [7, 15, 23] orµ-calculus [36]. Research in this area has produced a large num-

ber of tools, in the academic environment (SPIN [32, 33] , CADP [27, 28] ,NUSMV [14]),

as well as in the business one, oriented to specification languages, which are known asfor-

mal description techniques (FDT), such as PROMELA, SDL or LOTOS. The adaptation

of MODEL CHECKING techniques to programming languages has become a good way toim-

prove the quality of both concurrent and critical systems. In the last decade, this method

has been adapted to real programming languages, such as C, C++ or JAVA . Thesesoftware

MODEL CHECKING tools are based on the same state space exploration algorithms designed

for the formal description techniques, and some of them incorporate additional features that

are not included in the specificaticion languages, such as pointers or dynamic memory mana-

gement.
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In this thesis, we provide a methodology to obtain models from programs that make use of

functions which are external to the language (e.g. well defined APIs). Moreover, we present

two mechanisms that make possible the verification of programs that use dynamic memory and

allow the analysis of properties over dynamic structures.

Motivation

Extending explicitMODEL CHECKING to deal with programming languages involves cer-

tain problems. On the one hand, we have to choose a formalism to verify the code and to

manage the external functions present in the program; on theother hand, if the program uses

dynamic memory, we have to provide an internal representation of dynamic structures (the

heap), and the references to it, and we must also consider how to specify and verify the pro-

perties of these dynamic structures. In the following, we describe some related work in these

areas.

Software verification and external functions

In the context of the verification of concurrents programs using MODEL CHECKING there

are two different approaches. The first is the model extraction, which consists of translating

the program that is going to be analyzed into a formal description technique valid for some

existing MODEL CHECKER (see FEAVER [42] for C, and JPF1 [29] and BANDERA [18] for

JAVA ) . The translation usually involves reducing the program detail (abstraction) in such a way

that the final model only contains relevant information on the properties that will be analyzed.

That the abstraction is correct with regard to these properties is a critical aspect that must be

considered. One important point of this approach is that less effort is required to get the tools.

It is also important that future optimizations in theMODEL CHECKERScan be used without

being implemented.

The second approach consists of implementing “specific tools” that are designed to analyze

a particular programming language (see JPF [37, 50] for JAVA , and SLAM [4, 5] , CMC [44]

or BLAST [9, 31] for the C language). These tools do not need the translation step and this

makes it easier to come back to the code from a particular error. However, they require more

time to be spent on development and resources than the tools that use an external tool to do the

program analysis.

II



MOTIVATION

Regarding the use of external functions to the language, several different approaches are

possible. So, the tool CMC requires that the user provides anenviroment including a mini-

mal functionallity of the external functions present in thecode. In JPF, the system verifies

functions that do not cause side effects, or those that involve undefined structures such as the

communication buffers belonging to the operating system. By default, the tool includes a black

list of packages that will not be verified. This list is composed by:java.∗, javax.∗ y sun.∗

containing some packages like, for example, SOCKETS. Otherwise, SLAM, focusses indriver

verification using thewindows driver model (WDM) interface.

Heap representation

From the implementation point of view, the problem is how to deal with the internal re-

presentation of the states during exploration of potentialprogram behavior. Model checking

algorithms are optimized to consider global states with a fixed structure and length, and should

be modified in order to deal with states having different configurations that depend on opera-

tions to allocate and free memory. There are some proposals describing representations of the

state for C [21, 44] and JAVA [37] .

The most natural approach for dealing with dynamic structures is to allocate a heap for

every process in the state vector. In this way, the state vector contains all the static and dynamic

variables for all the processes, although a high price has tobe paid in terms of memory use.

This is the approach initially followed by the CMC tool , which is able to do model checking of

C and C++ programs. In order to avoid using so much memory, CMCuses a hash table where

only a signature of the state is stored. This kind of compression of the state vector produces

partial verification. It also uses a local heap for each process and it implements a mechanism to

avoid checking unused parts of the allocated memory if they are not referenced from pointers.

Model checker BLAST focuses on verifying that programs contain no memory leaks. It

works by transforming the source code to include assertionsassociated to the statements that

manage dynamic memory. Errors are reported as counterexamples.

Tool dSPIN [21] extends SPIN with new PROMELA sentences and modifies the basic

SPIN implementation. The language is extended with a notation toidentify pointer variables,

in such a way that the operations regarding pointers (assignment and comparison) are given

different semantics which are context-dependent. Their behavior depends on the position (left

or right) of the pointer variable in assignments and on the type of instruction on the other side.

Internally, the tool uses an extensible vector state with a separate area for dynamic objects for
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each state. This extensible state is linearized at every step of the model checking process in

order to produce a representation compatible with the SPIN algorithms to perform matching,

hashing and state compression. Apart from considering the heap in every state (at least par-

tially), this linearization is a time consuming process; however, only the relevant information

should be copied to the linear state using a canonical representation of the heap.

JPF, a Java oriented model checker, also considers the separation of static and dynamic

parts of the state vector. Dynamic objects are stored as a global pool of values, and only the pool

indexes are placed in the static part of the state vector, together with the static variables. This

way of collapsing the state increases the time and memory needed to verify large examples due

to backtracking (necessary to perform exhaustive exploration of the bytecode corresponding to

the Java program). Therefore the authors also implement a reverse collapse method to manage

the states.

Finally, BOGOR [48] is a framework to construct software model checkers. It is based

on an internal language (BIR) that supports both dynamic creation of objects and garbage

collection. The mechanisms to perform verification of dynamic memory are based on the dSPIN

way of representing the heap.

Verifying properties over dynamic structures

The problem of analyzing properties of dynamic structures has been extensively studied

in the literature, mainly from two complementary points of view. On the one hand, following

the classic ideas of the static analysis theory,shape analysis automatically infers the shapes of

structures allocated in the program heap [45]. Extracting this information is expensive and it

usually involves analyzing data sharing or alias analysis [3], i.e., detecting when two different

pointers refer to the same memory location. As usual, shape analysis may be used to optimize

the code generated by the compiler prior to program execution. The most relevant reference in

this area is the toolTVLA (Three Valued Logic Analysis Engine)) [10, 38, 49].TVLA is an abs-

tract interpreter that uses an extension of predicate abstraction (called canonical abstractions)

to represent program states.

On the other hand, shape information may also be obtained from a specification given by the

user. For instance, the notion ofGraph Types introduced by [35] provides an abstract represen-

tation of the so-calledshape invariant that is able to describe very complex dynamic structures.

An algorithmic method may be used to check whether program data satisfy the shape invariant

specified. In particular, thePointer Assertion Logic Engine (PALE) [43] may express properties
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described by graph types. Programs are annotated with theseformulas and checked by theMO-

NA tool, a theorem prover based on Hoare-triples. Similarly, shape types [24] and ADDS [30]

(Abstract Description of Data Structures) define descriptions that may be considered as alter-

natives to Graph Types. The temporal evolution of the heap has also been described by the

so-calledEvolution Temporal Logic ETL [51]. The TVLA tool has been extended to support

ETL specifications.

In recent years, and in the context of software model checking, new proposals have ap-

peared. Bouajjani et al. [11] represent properties on pointers using finite-state automata. They

employ regular model checking combined with abstraction toreason about the dynamic struc-

tures. In addition, they introduce theLBMP logic (logic of bad memory patterns) to describe

undesirable behaviors [12]. Formulas are attached to the code in such a way that reachability

analysis may be used to evaluate them. Furthermore, theGROOVE [34] tool focuses on ma-

king the dynamic structures available to check CTL formulas. Instead of a linear method, the

authors use a graph representation, which is more suitable to implement efficient matching.

It is also worth noting that the introduction of theseparation logic [47] has opened new

lines of research in the subject. Separation logic is able toformally describe the shared infor-

mation stored in the heap. Semantic rules for statements that manage pointers make it possible

to prove properties of pointers using the traditional pre-post condition scheme. The combina-

tion of this logic with other proposals is a fruitful field of research [22].

Regarding the use of nesting or multiple dimensions in logic, several proposals have been

made. The CaRet logic [2] extends LTL to reason about programs with nested functions, in

such a way that the logic can match each call with the responsereturned. That work has been

recently extended to reason on generic nested words [1].LTLmem [13] is also a multidimen-

sional logic that uses LTL as the most external formalism. However, instead of using a model

logic like CTL to reason about dynamic structures, it has an embedded separation logic. This

logic has been mainly studied from the point of view of complexity for model checking, but no

tool or experimental results are available as yet. A more general approach to defining spatio-

temporal logic has also been proposed in [8]. However, this work does not consider dynamic

structures or model checking.

It is necessary to define new property languages to express requirements and to reason

about data structures created dynamically, such as linked lists. Model checkers usually employ

variants of temporal logic to define properties about statesand sequences of states. Atomic
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propositions in these logics are related to the static variables in the program. When considering

linked structures (with anonymous nodes), a new mechanism is needed to reason about them.

Contributions

In this thesis, we address two problems of verifying in a practical manner low-level code:

the verification of programs that use of external functions to the language and the verification

of dynamic data structures. In particular, for the first issue, we propose a methodology for the

model extraction and its verification with regards to well defined APIS. For the second issue,

we propose an efficient representation of the state vector during verification of C programs with

dynamic structures and a new modal logic (MA LTL) to reason about properties on dynamic

data. Regarding the model extraction, the main contributions of this thesis are:

A methodology for model extraction for applications that use well defined APIS. The

propossed methodology is based on three main aspects: the analysis of the source code

with respect to the control flow and program data, the formalization of the analyzed API,

and the transformation of the code of the programing language to previously established

formal description technique;

The implementation of a model extractor for the formal description technique PROMELA,

for the verification of C code using well defined APIS with the SPIN tool.

The implementation of a compiler that generates an implicitlabelled transition system

for programs written in C. This transition system acts as an input formalism to the tools

of the CADP verification enviroment [27].

Comparing our proposal with other work previously cited, BANDERA and JPF are orien-

ted to the verification of JAVA programs. With regard to the tools for the C language, the most

significant projects are: SLAM, BLAST, CMCy FEAVER. SLAM is aMODEL CHECKERspe-

cifically designed to verify that the behaviour of adriver (written in C) for the NT familly of

operating systems is safe with respect to the use of the API offered by the operating system.

CMC and FEAVER are oriented to C code verification with an event driven scheme, so they are

suitables for verifying code for communications. The first one, CMC, is aMODEL CHECKER

tool itself and it is not supported by any other external toolfor the verification process. The
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BLAST MODEL CHECKER follows, like SLAM, a counterexample-guided abstraction refine-

ment (CEGAR) paradigm [16].

The most significant contribution of our methodology is thatit is oriented to the verification

of programs regarding the use of well defined APIS. Indenpendly of the API being conside-

red, this method provides a guideline so that a model, described using some formal description

technique and optimized both in the variables used and in theinterleaving of statements of the

processes, can verify the correct use of the external interface being considered. Specifically,

following this methodology, we have implemented a model extractor for PROMELA to ve-

rify C code using the SPIN MODEL CHECKER. In addition, we have developed a compiler for

translating C code into labelled transition systems to verify programs in the CADP enviroment.

With respect to the heap representation, the main contributions of the paper are:

a novel method to deal with pointers and heap management in the context of C programs;

the formalization of the method in order to prove its correctness;

the implementation of our proposal in the SPIN model checker.

We propose a new representation of the heap of a given C process that consists of using

an incremental global data structure to allocate new objects. This global store is not kept as a

part of the state; instead, indexes to this store are only used to point to the store elements. The

way we generate the indexes (a hashing method) and the way thestore is managed allows us

to efficiently manage canonical representations of the states and to implement model checkers

with this feature. This approach constitutes a new way to implement state collapsing, and it

does not affect the behavior of the model checkers when analyzing programs without pointers.

Previous works cited above only provided informal descriptions of the mechanism to ma-

nage dynamic memory. We describe our proposal giving formalsemantics to the operations

related to pointers and memory management. As far as we know,this is the first time that co-

llapsing related methods has been formalized. As in [19], the formal semantics has been useful

to check correctness and to guide the implementation.

Compared to related work, our method shares the ideas of the global store and canonical

states with [37] and [11]. However, like JPF our way of managing the store is more efficient,

because we save memory by keeping the real data outside the state vector. We also save time

because: a) we do not need the linearization used in dSPIN and b) we do not need a specific

mechanism to implement backtracking. This is due to the use of a special hashing method
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to manage the global store. Furthermore, our method considers new features such as explicit

memory deallocation and support for pointer arithmetic. Compared to BLAST our method

considers the real contents of pointers and allows us to reason about the shape of the structures

and their contents.

In connection with the verification of properties our main contributions are:

A two dimensional logic that combines time (evolution of theprogram, e.g., by interlea-

ving processes) and space (due to dynamic structures such aslists or trees).

Specification of the graph types with CTL, characterizing the nodes in dynamic struc-

tures in such a way that propositions on pointers and propositions on data can easily be

mixed in the same formula.

An algorithm to perform on-the-fly model checking ofMA LTL formulas. The algorithm

properly extends the standard algorithm to analyze LTL properties (described as Bü-

chi automata) regarding the system behavior over time with aCTL algorithm to check

properties about dynamic system data, exploring the graph of the dynamic structure.

Implementation of the proposed logic as an extension to the SPIN model checker, in such

a way that we can verify properties of non-trivial C programs.

Compared with other logic-based approaches, one difference in our proposal is the imple-

mentation with explicit on-the-fly model checkers. The methods in [11] and [34] are based on

BDD verification. Other logics, like separation logic [47] or pointer assertion logic [43], have

been implemented with theorem provers.

Our two proposals can be implemented in many existing tools.The implementation descri-

bed in this thesis has been performed on SPIN and includes both the heap management and the

model checking ofMA LTL formulas.
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Conclusions

In this thesis we have researched three relevant aspects in the verification of software using

formal methods. First, we have developed a method for model extraction in programs that use

of well defined interfaces. Secondly, we have dealt with the problem of verifying programs

that use dynamic memory. In this area, we have worked in two differents and complementary

ways: To provide a memory and pointer model to apply theMODEL CHECKING technique in

programs using dynamic memory, and two-level logic that allows us to reason about shape and

content in dynamic structures.

Regarding analysis of properties in programs that use well defined APIS, the methods pre-

sented in this thesis has facilitied the building of the SOCKETMC [19] tool to analyse programs

that uses the well known SOCKETS interface for communication between processes. In addi-

tion, this technique has also allowed the verification with C.OPEN and ANNOTATOR [25] of

applications written in C in the OPEN/CÆSAR environment. Moreover, this environment has

been used within the FMICS-JETI [39, 40] platform for the integration and the use of remote

tools.

As regards the verification of programs with dynamic memory,we have developed a model

that manages the dynamic memory in two different areas: theheap that contains the logic infor-

mation of the dynamic memory being used, and theglobal store that saves the data referenced

in the heap. In this way, our method lets us to reduce the size of the state vector and also the

spent time during the verification process, due to that thematching function responsible for the

comparison between states does not need to check the global store, but only the heap. This ap-

proach also considers a pointer model suitable to verify C code, in order to properly manage the

pointer arithmetic present in this language. Regarding verifying properties in dynamic structu-

res, we have built the two level logicMA LTL. This logic, inspired by the GRAPH TYPE [35]
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formalism specifying properties in data structures, allows us to use the CTL logic to specify

properties in dynamic structures. The analysis of these structures is done in time and space, in

such a way that in each state during the verification of a temporal formulae, specified in the

LTL logic, we also carry out the spacial verification of dynamic data structures. Thanks to the

techniques presented in this work for the management of dynamic memory an the specification

of properties in structures, we have performed the verification of the model of a driver written

in C code for the LINUX operating system.

We should point out that from the very beginning we have sought to develop general

approaches that could be independent of the implementationused an suitable for any tool.

This has been shown in the implementation of the models extractor and the dynamic memory

model. Both methods have been implemented in such differentplatforms as SPIN [33] and

OPEN/CÆSAR [26] . TheMA LTL logic has only been implemented in SPIN, due to its integra-

tion with CADP [27], and because with this architecture, it would be necessary to modify the

user module entrusted to do the verification in CADP (the toolEVALUATOR [41]) and it is

not open source. Another option would be to build a specific user module to do the temporal

analysis (the first logic level), and to integrate the secondlevel in it.

Future work

Future work will focus on including new techniques to complete, and improve, the propo-

sals presented in this thesis. On the one hand, the model extraction methodology for programs

that use well defined interfaces need the formalization, as well as the model, of the well defined

API being used. This is complex work and may take a considerable amount of development

time. One way to simplify this process could be the use of a specification language ajusted for

interface design (it must be understood within the context of programming language libraries).

This will allow us to carefully and accurately describe the interface behaviour. The combination

of a specification language with a tool that obtains an implentation from this language, would

allow the interface models to be automatically obtained. Moreover, to make this task easier

for the final user, it would be possible to provide a model library covering a wide number of

interfaces.

Moreover, the dynamic memory model and theMA LTL logic can be improved in several

ways. The hashing method used in the dynamic memory management, although it reaches its
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goal, it does not always get the a canonical heap representation. So, if two processes, concu-

rrently, insert elements into a sorted list, the heap could be different depending on the state-

ments interleaving. This means greater use of memory but theverification is still accurate. In

addition, representing the heap is very expensive in memoryusage. Although compression te-

chniques are used in the state vector and indexes are used to represent the heap and the data,

when we work with large structures, these techniques are notenough.

Despite of the compression techniques employed in the statevector, using indexes to repre-

sent the heap, and in the real data, using the global store, when we work with huge structures

this techniques are not enough. Therefore, we plan as futurework to research another hash

function to avoid different representations for two configurations of one heap and to build an

incremental representation of the heap to save memory usagein huge structures.

Finally, the CTL logic used in the second logic level inMA LTL, could be weak when

validating certains structures such as, for example, tree-like structures, the CTL logic may

not be expressive enough to specify some properties which should be considered in certain

elements of different branches. Although the CTL* logic canbe more expressive than the

CTL, its biggest advantage is that it offers the two levels, the spacial and the temporal, in

one. However, as in our analysis we requiere the two levels tobe separate, the CTL* logic

is not suitable. Separation logic [47], on the other hand, adds a separation operatorP ∗ Q

that is satisfied if the propositionsP andQ belong to disjoint portions (i.e , that they do not

share data) in the storage structure. This is a basic approach to establish properties over general

structures, achieving in this way both correctness and completeness over data structures. But the

necessary modifications in theMA LTL logic to introduce this operator are numerous because

it is necessary to review the formal model of the dynamic memory and of the logic, as well as

the implementation.
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