English Introduction

Nowadays, one of the most complex parts of critical systesrthe system software. It
is found in applications ranging from airplane navigatigistems [20] to train control sys-
tems [6], as well as nuclear power plants or space shuttheeng many others. Due to the
nature of this kind of system, where failures are not only sneed in financial terms, but also
in potential loss or damage to human life, the software usest ve totally reliable. Moreover,
these kind of systems are concurrent systems where thecafiqti of traditional debugging
and testing techniques is very complex.sftware engineering, tools for test case genera-
tion (testing) can only cover a small part of the space otstateded to be explored, and the
correctness and reliability of the whole system cannot lsied. On the other hand, formal
verification tools can provide methods that perform a moteastive analysis. Among the-
se techniques, we can highlight theorems prover or the eatidin of models also known as
MODEL CHECKING [17].

Today, MODEL CHECKING is one of the most commonly used formal techniques used to
establish that a system is adapted to particular requisitemally specified in some logic like
LTL [46], CTL [7, 15, 23] oru-calculus [36]. Research in this area has produced a lange nu
ber of tools, in the academic environmentr($ [32, 33] , CADP [27, 28] ,NNSMV [14]),
as well as in the business one, oriented to specificatiorubeges, which are known der-
mal description techniques (FDT), such as PROMELA, SDL or LOTOS. The adaptation
of MODEL CHECKING techniques to programming languages has become a good vimy to
prove the quality of both concurrent and critical systenmstHe last decade, this method
has been adapted to real programming languages, such as+CoICkvA . Thesesoftware
MODEL CHECKING tools are based on the same state space exploration algsridbsigned
for the formal description techniques, and some of themrpmwate additional features that
are not included in the specificaticion languages, such exgwe or dynamic memory mana-

gement.
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In this thesis, we provide a methodology to obtain modelmfpsograms that make use of
functions which are external to the language (e.g. well defiAP1s). Moreover, we present
two mechanisms that make possible the verification of pragrhat use dynamic memory and
allow the analysis of properties over dynamic structures.

Motivation

Extending explicitMODEL CHECKING to deal with programming languages involves cer-
tain problems. On the one hand, we have to choose a formatismerify the code and to
manage the external functions present in the program; oottier hand, if the program uses
dynamic memory, we have to provide an internal represemtaif dynamic structures (the
heap), and the references to it, and we must also consider howettifgpand verify the pro-
perties of these dynamic structures. In the following, wsctdbe some related work in these

areas.

Software verification and external functions

In the context of the verification of concurrents programsgsODEL CHECKING there
are two different approaches. The first is the model extractivhich consists of translating
the program that is going to be analyzed into a formal deserigechnique valid for some
existingMODEL CHECKER (see FEAVER [42] for C, and JPF1 [29] and BNDERA [18] for
Java) . The translation usually involves reducing the programaitiéabstraction) in such a way
that the final model only contains relevant information om pinoperties that will be analyzed.
That the abstraction is correct with regard to these praseis a critical aspect that must be
considered. One important point of this approach is that édfert is required to get the tools.
It is also important that future optimizations in tMeDEL CHECKERScan be used without
being implemented.

The second approach consists of implementing “specifictdloat are designed to analyze
a particular programming language (see JPF [37, 50]Aex Jand SLAM [4, 5], CMC [44]
or BLAST [9, 31] for the C language). These tools do not needtthnslation step and this
makes it easier to come back to the code from a particular. ¢fmwever, they require more
time to be spent on development and resources than the hablsse an external tool to do the
program analysis.
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Regarding the use of external functions to the languagerakdifferent approaches are
possible. So, the tool CMC requires that the user providesr&itoment including a mini-
mal functionallity of the external functions present in ttade. In JPF, the system verifies
functions that do not cause side effects, or those thatvevehdefined structures such as the
communication buffers belonging to the operating systeyrdd&ault, the tool includes a black
list of packages that will not be verified. This list is comedsdy: java.*, javaz.x Yy sun.*
containing some packages like, for examplecBETS. Otherwise, SLAM, focusses uiriver
verification using thevindows driver model (WDM) interface.

Heap representation

From the implementation point of view, the problem is how &aldwith the internal re-
presentation of the states during exploration of potemtiaram behavior. Model checking
algorithms are optimized to consider global states withedfistructure and length, and should
be modified in order to deal with states having different gpnfitions that depend on opera-
tions to allocate and free memory. There are some proposatgilling representations of the
state for C [21, 44] anda¥A [37] .

The most natural approach for dealing with dynamic strestus to allocate a heap for
every process in the state vector. In this way, the stat@reontains all the static and dynamic
variables for all the processes, although a high price h&e tpaid in terms of memory use.
This is the approach initially followed by the CMC tool , whits able to do model checking of
C and C++ programs. In order to avoid using so much memory, Qg3 a hash table where
only a signature of the state is stored. This kind of comjwessf the state vector produces
partial verification. It also uses a local heap for each meemd it implements a mechanism to
avoid checking unused parts of the allocated memory if theyat referenced from pointers.

Model checker BLAST focuses on verifying that programs aomho memory leaks. It
works by transforming the source code to include assertiggsciated to the statements that
manage dynamic memory. Errors are reported as counteréssmmp

Tool dSPIN [21] extends 8IN with new PROMELA sentences and modifies the basic
SPIN implementation. The language is extended with a notatiaddntify pointer variables,
in such a way that the operations regarding pointers (as&ghand comparison) are given
different semantics which are context-dependent. Thdiabier depends on the position (left
or right) of the pointer variable in assignments and on tipe tyf instruction on the other side.
Internally, the tool uses an extensible vector state witbpagate area for dynamic objects for
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each state. This extensible state is linearized at evepyddtéhe model checking process in
order to produce a representation compatible with thex&lgorithms to perform matching,

hashing and state compression. Apart from considering ¢la@ n every state (at least par-
tially), this linearization is a time consuming processybuer, only the relevant information

should be copied to the linear state using a canonical reptation of the heap.

JPF, a Java oriented model checker, also considers theaiepanf static and dynamic
parts of the state vector. Dynamic objects are stored asalgiool of values, and only the pool
indexes are placed in the static part of the state vectoetheg with the static variables. This
way of collapsing the state increases the time and memodedde verify large examples due
to backtracking (necessary to perform exhaustive exptoratf the bytecode corresponding to
the Java program). Therefore the authors also implementease collapse method to manage
the states.

Finally, BOGOR [48] is a framework to construct software rabdheckers. It is based
on an internal language (BIR) that supports both dynamiatime of objects and garbage
collection. The mechanisms to perform verification of dyimmemory are based on the eiS
way of representing the heap.

Verifying properties over dynamic structures

The problem of analyzing properties of dynamic structuras lbeen extensively studied
in the literature, mainly from two complementary points @w. On the one hand, following
the classic ideas of the static analysis thedngpe analysis automatically infers the shapes of
structures allocated in the program heap [45]. Extractitig information is expensive and it
usually involves analyzing data sharing or alias anal\&jisije., detecting when two different
pointers refer to the same memory location. As usual, shaplysis may be used to optimize
the code generated by the compiler prior to program exatulibe most relevant reference in
this area is the toatvLA (Three Valued Logic Analysis Engine)) [10, 38, 49].TVLA is an abs-
tract interpreter that uses an extension of predicate attiin (called canonical abstractions)
to represent program states.

On the other hand, shape information may also be obtaineddrepecification given by the
user. For instance, the notion @faph Typesintroduced by [35] provides an abstract represen-
tation of the so-calleghape invariant that is able to describe very complex dynamic structures.
An algorithmic method may be used to check whether program siisfy the shape invariant
specified. In particular, thBointer Assertion Logic Engine (PALE) [43] may express properties



MOTIVATION

described by graph types. Programs are annotated with film@selas and checked by theo-

NA tool, a theorem prover based on Hoare-triples. SimilaHgpe types [24] and ADDS [30]
(Abstract Description of Data Structures) define desaistithat may be considered as alter-
natives to Graph Types. The temporal evolution of the heapaso been described by the
so-calledEvolution Temporal Logic ETL [51]. The TVLA tool has been extended to support
ETL specifications.

In recent years, and in the context of software model checkiew proposals have ap-
peared. Bouajjani et al. [11] represent properties on pwntsing finite-state automata. They
employ regular model checking combined with abstractioresson about the dynamic struc-
tures. In addition, they introduce th@mp logic (logic of bad memory patterns) to describe
undesirable behaviors [12]. Formulas are attached to tte tosuch a way that reachability
analysis may be used to evaluate them. FurthermoregiwoVE [34] tool focuses on ma-
king the dynamic structures available to check CTL formulastead of a linear method, the
authors use a graph representation, which is more suitalmepiement efficient matching.

It is also worth noting that the introduction of tiseparation logic [47] has opened new
lines of research in the subject. Separation logic is abfertoally describe the shared infor-
mation stored in the heap. Semantic rules for statementsidiaage pointers make it possible
to prove properties of pointers using the traditional ppstgondition scheme. The combina-
tion of this logic with other proposals is a fruitful field ofsearch [22].

Regarding the use of nesting or multiple dimensions in loggweral proposals have been
made. The CaRet logic [2] extends LTL to reason about prograith nested functions, in
such a way that the logic can match each call with the respatamed. That work has been
recently extended to reason on generic nested word< [AL."™ [13] is also a multidimen-
sional logic that uses LTL as the most external formalismweleer, instead of using a model
logic like CTL to reason about dynamic structures, it hasrmbexdded separation logic. This
logic has been mainly studied from the point of view of comjtiefor model checking, but no
tool or experimental results are available as yet. A moreegdrapproach to defining spatio-
temporal logic has also been proposed in [8]. However, thigkwloes not consider dynamic
structures or model checking.

It is necessary to define new property languages to expresérements and to reason
about data structures created dynamically, such as lirikisd Model checkers usually employ

variants of temporal logic to define properties about states sequences of states. Atomic
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propositions in these logics are related to the static lbasain the program. When considering
linked structures (with anonymous nodes), a new mecharsismadded to reason about them.

Contributions

In this thesis, we address two problems of verifying in a ficat manner low-level code:
the verification of programs that use of external functianthe language and the verification
of dynamic data structures. In particular, for the first &gsue propose a methodology for the
model extraction and its verification with regards to wellided APIs. For the second issue,
we propose an efficient representation of the state vectorglverification of C programs with
dynamic structures and a new modal logicaLTL) to reason about properties on dynamic
data. Regarding the model extraction, the main contribstif this thesis are:

= A methodology for model extraction for applications thaeé weell defined AP$. The
propossed methodology is based on three main aspects: dhesiarof the source code
with respect to the control flow and program data, the forzaditon of the analyzed API,
and the transformation of the code of the programing languagpreviously established
formal description technique;

= The implementation of a model extractor for the formal diggiom technigue PROMELA,
for the verification of C code using well defined ARWith the SPIN tool.

= The implementation of a compiler that generates an imgltielled transition system
for programs written in C. This transition system acts asgut formalism to the tools
of the CADP verification enviroment [27].

Comparing our proposal with other work previously cited\NBERA and JPF are orien-
ted to the verification ofAVa programs. With regard to the tools for the C language, the mos
significant projects are: SLAM, BLAST, CMCyd#AVER. SLAM is aMODEL CHECKERSpe-
cifically designed to verify that the behaviour otlever (written in C) for the NT familly of
operating systems is safe with respect to the use of the Afteaf by the operating system.
CMC and FEAVER are oriented to C code verification with an event driven s@esa they are
suitables for verifying code for communications. The fisepCMC, is aMODEL CHECKER
tool itself and it is not supported by any other external toolthe verification process. The

Vi
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BLAST moDEL cHECKERfollows, like SLAM, a counterexample-guided abstractiefirre-
ment (CEGAR) paradigm [16].

The most significant contribution of our methodology is tihat oriented to the verification
of programs regarding the use of well defined APhdenpendly of the API being conside-
red, this method provides a guideline so that a model, destising some formal description
technique and optimized both in the variables used and imtbdeaving of statements of the
processes, can verify the correct use of the external aterbeing considered. Specifically,
following this methodology, we have implemented a modetastor for PROMELA to ve-
rify C code using the 8IN MODEL CHECKER In addition, we have developed a compiler for
translating C code into labelled transition systems tdyg@riograms in the CADP enviroment.

With respect to the heap representation, the main conifibf the paper are:

= anovel method to deal with pointers and heap managemers tottitext of C programs;
= the formalization of the method in order to prove its comess;

= the implementation of our proposal in thei® model checker.

We propose a new representation of the heap of a given C préleasconsists of using
an incremental global data structure to allocate new ahjddtis global store is not kept as a
part of the state; instead, indexes to this store are onlgf tzspoint to the store elements. The
way we generate the indexes (a hashing method) and the wayateeis managed allows us
to efficiently manage canonical representations of thestnd to implement model checkers
with this feature. This approach constitutes a hew way tdempnt state collapsing, and it
does not affect the behavior of the model checkers when zinglyprograms without pointers.

Previous works cited above only provided informal desaip of the mechanism to ma-
nage dynamic memory. We describe our proposal giving fosealantics to the operations
related to pointers and memory management. As far as we khisnis the first time that co-
llapsing related methods has been formalized. As in [18]fdhmal semantics has been useful
to check correctness and to guide the implementation.

Compared to related work, our method shares the ideas ofiehalgstore and canonical
states with [37] and [11]. However, like JPF our way of mangghe store is more efficient,
because we save memory by keeping the real data outsideatbessttor. We also save time
because: a) we do not need the linearization used mnd8nd b) we do not need a specific
mechanism to implement backtracking. This is due to the dise special hashing method

\l



ENGLISH INTRODUCTION

to manage the global store. Furthermore, our method cassiumv features such as explicit
memory deallocation and support for pointer arithmeticmPared to BLAST our method
considers the real contents of pointers and allows us teneaisout the shape of the structures
and their contents.

In connection with the verification of properties our maimgbutions are:

= A two dimensional logic that combines time (evolution of gregram, e.g., by interlea-
ving processes) and space (due to dynamic structures slistsas trees).

= Specification of the graph types with CTL, characterizing tlodes in dynamic struc-
tures in such a way that propositions on pointers and prtposion data can easily be
mixed in the same formula.

= An algorithm to perform on-the-fly model checkingmh LTL formulas. The algorithm
properly extends the standard algorithm to analyze LTL erigs (described as Bi-
chi automata) regarding the system behavior over time wifiTa algorithm to check
properties about dynamic system data, exploring the grégifealynamic structure.

= Implementation of the proposed logic as an extension to thie Bodel checker, in such
a way that we can verify properties of non-trivial C programs

Compared with other logic-based approaches, one differenour proposal is the imple-
mentation with explicit on-the-fly model checkers. The noelthin [11] and [34] are based on
BDD verification. Other logics, like separation logic [4#] mointer assertion logic [43], have
been implemented with theorem provers.

Our two proposals can be implemented in many existing tddis.implementation descri-
bed in this thesis has been performed @m&and includes both the heap management and the
model checking ofMALTL formulas.

VIII



Conclusions and future work

Conclusions

In this thesis we have researched three relevant aspetis wetification of software using
formal methods. First, we have developed a method for modedaion in programs that use
of well defined interfaces. Secondly, we have dealt with thablem of verifying programs
that use dynamic memory. In this area, we have worked in tfferdnts and complementary
ways: To provide a memory and pointer model to applyM@dEL CHECKING technique in
programs using dynamic memory, and two-level logic thaivedl us to reason about shape and
content in dynamic structures.

Regarding analysis of properties in programs that use veéithed APE, the methods pre-
sented in this thesis has facilitied the building of thiec® eTMC [19] tool to analyse programs
that uses the well known@&KEeTs interface for communication between processes. In addi-
tion, this technique has also allowed the verification witlO€eN and ANNOTATOR [25] of
applications written in C in the BENVCAESAR environment. Moreover, this environment has
been used within the FMICSETI [39, 40] platform for the integration and the use of reenot
tools.

As regards the verification of programs with dynamic memweyhave developed a model
that manages the dynamic memory in two different areasdhthat contains the logic infor-
mation of the dynamic memory being used, anddtobal store that saves the data referenced
in the heap. In this way, our method lets us to reduce the $iteecstate vector and also the
spent time during the verification process, due to thatiiehing function responsible for the
comparison between states does not need to check the glotgltsut only the heap. This ap-
proach also considers a pointer model suitable to verifydecim order to properly manage the
pointer arithmetic present in this language. Regardingyieg properties in dynamic structu-
res, we have built the two level logiea LTL. This logic, inspired by the GAPH TYPE [35]
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formalism specifying properties in data structures, aflayg to use the CTL logic to specify
properties in dynamic structures. The analysis of thesetsires is done in time and space, in
such a way that in each state during the verification of a teaigormulae, specified in the
LTL logic, we also carry out the spacial verification of dyriamata structures. Thanks to the
techniques presented in this work for the management ofrdimiaemory an the specification
of properties in structures, we have performed the verifinatf the model of a driver written
in C code for the lINUX operating system.

We should point out that from the very beginning we have sbughdevelop general
approaches that could be independent of the implementaged an suitable for any tool.
This has been shown in the implementation of the models@wrirand the dynamic memory
model. Both methods have been implemented in such diffgriattorms as 8IN [33] and
OPEN/CAESAR[26] . TheMALTL logic has only been implemented irp8\, due to its integra-
tion with CADP [27], and because with this architecture, @uld be necessary to modify the
user module entrusted to do the verification in CADP (the BdALUATOR [41]) and it is
not open source. Another option would be to build a specifer nsodule to do the temporal
analysis (the first logic level), and to integrate the sedemd! in it.

Future work

Future work will focus on including new techniques to contgleand improve, the propo-
sals presented in this thesis. On the one hand, the modat#atr methodology for programs
that use well defined interfaces need the formalization,elkas the model, of the well defined
API being used. This is complex work and may take a consideeramount of development
time. One way to simplify this process could be the use of aifipation language ajusted for
interface design (it must be understood within the contégragramming language libraries).
This will allow us to carefully and accurately describe thieiface behaviour. The combination
of a specification language with a tool that obtains an intpksm from this language, would
allow the interface models to be automatically obtainedrédger, to make this task easier
for the final user, it would be possible to provide a modeldilgrcovering a wide number of
interfaces.

Moreover, the dynamic memory model and theLTL logic can be improved in several

ways. The hashing method used in the dynamic memory manageatéough it reaches its
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goal, it does not always get the a canonical heap represemt&to, if two processes, concu-
rrently, insert elements into a sorted list, the heap coeldlifferent depending on the state-
ments interleaving. This means greater use of memory butdtification is still accurate. In
addition, representing the heap is very expensive in memsage. Although compression te-
chniques are used in the state vector and indexes are useprésent the heap and the data,
when we work with large structures, these techniques arenmaigh.

Despite of the compression techniques employed in thegtater, using indexes to repre-
sent the heap, and in the real data, using the global storen wie work with huge structures
this technigues are not enough. Therefore, we plan as futork to research another hash
function to avoid different representations for two confagions of one heap and to build an
incremental representation of the heap to save memory usd&gge structures.

Finally, the CTL logic used in the second logic levelNMaLTL, could be weak when
validating certains structures such as, for example, likeestructures, the CTL logic may
not be expressive enough to specify some properties whigcthldtbe considered in certain
elements of different branches. Although the CTL* logic d@more expressive than the
CTL, its biggest advantage is that it offers the two levetg $pacial and the temporal, in
one. However, as in our analysis we requiere the two levelsetseparate, the CTL* logic
is not suitable. Separation logic [47], on the other handlsaa separation operatdt x Q
that is satisfied if the proposition8 and @ belong to disjoint portions (i.e , that they do not
share data) in the storage structure. This is a basic apgptoastablish properties over general
structures, achieving in this way both correctness and teteness over data structures. But the
necessary madifications in thea LTL logic to introduce this operator are numerous because
it is necessary to review the formal model of the dynamic nmgraad of the logic, as well as
the implementation.
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