

Sistemas Inteligentes I

Tema 10. Problemas de Decisión José A. Montenegro Montes monte@lcc.uma.es

Resumen

- O Introducción
- O Problemas de decisión secuenciales
- O Procesos de decisión de Markov
- O Ejemplo de Entorno
- Algoritmo Iteración Valores
- O Ejercicios
- Conclusiones

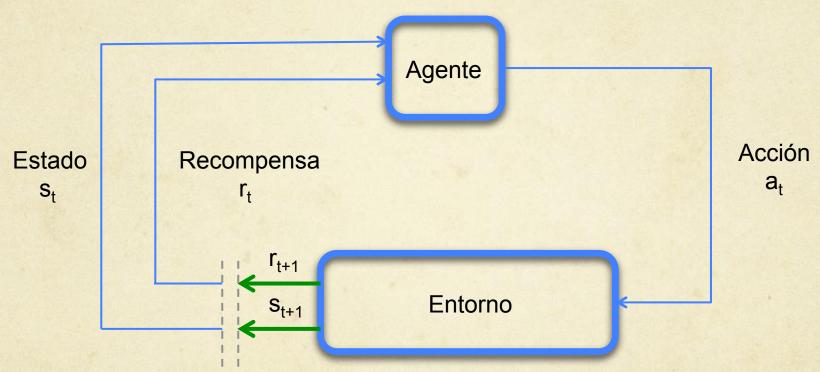
Introducción

Generalidades

- O En este tema examinamos métodos para tomar decisiones en entornos estocásticos
- Estamos interesados en los problemas de decisión secuenciales, en los que la utilidad (rendimiento) depende de una secuencia de decisiones
- O Calcularemos la utilidad de una política, es decir, una estrategia para tomar decisiones

Problemas de decisión secuenciales

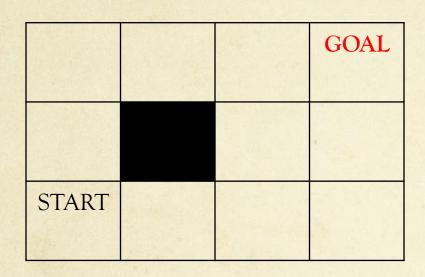
Agentes y entornos



Agentes y entornos

- O El agente debe elegir una acción en cada instante de tiempo
- O Suponemos que el entorno es completamente observable, con lo que el agente siempre sabe donde está
- O El conjunto de acciones disponibles para el agente en el estado s se denota Actions(s)

Determinista vs Estocástico

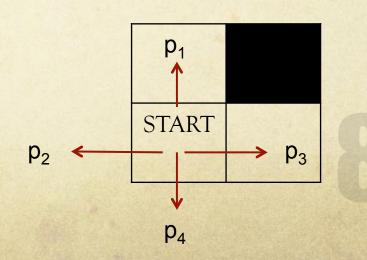


Determinista:

Posible solución:{N, N, D,D,D}

Estocástico:

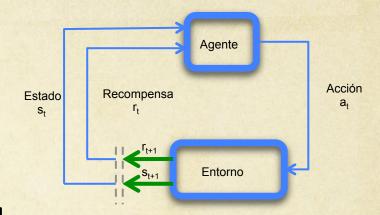
Posible solución:{N ?,?,?,?,?}



Procesos de decisión de Markov

Procesos de decisión de Markov

- Markov Decision Process (MDP)
 - O S: Espacio estados
 - A: Conjunto acciones
 - O H: horizonte
 - O T: $S \times A \times S \times \{0,1, ..., H\} \rightarrow [0,1]$
 - O Probabilidades (Propiedad de Markov)
 - $R: S \times A \times S \times \{0,1,\ldots,H\} \rightarrow R$
 - O Función de Recompensa
 - Objetivo
 - O Encontrar política. π : S x $\{0,1,...,H\} \rightarrow A$



Modelos de transición y recompensa de un estado

- O El modelo de transición describe el resultado de cada acción en cada estado
 - O P(s' | s,a) denota la probabilidad de alcanzar el estado s' si se realiza la acción a en el estado s
 - O Suponemos que las acciones son markovianas, es decir, que la probabilidad de alcanzar s' depende solamente de s y no de la historia de los estados anteriormente visitados
- O En cada estado s, el agente recibe una recompensa R(s), que es un número real

Secuencias de estados

- O Desde el estado inicial s_0 , el agente seguirá una secuencia de estados $[s_0, s_1, s_2,...]$
- O La utilidad de una secuencia obedece una ley de recompensas con descuento
 - O Depende de un factor de descuento $\gamma \in [0,1]$
 - O Si γ = 1 tenemos recompensas aditivas

$$U_h([s_0, s_1, s_2, \dots]) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots$$

Procesos de decisión de Markov

- O Proceso de decisión de Markov o MDP (Markov decision process):
 - O Un problema de decisión secuencial para un entorno estocástico y completamente observable, con un modelo de transición markoviano y recompensas aditivas

O Consta de:

- O Un conjunto de estados con un estado inicial so
- O Un conjunto Actions(s) de acciones en cada estado s
- O Un modelo de transición P(s' | s,a)
- O Una función de recompensa R(s)

Políticas

- O Una solución al problema de decisión debe especificar que debe hacer el agente en cualquier estado que no sea objetivo
 - O Una solución de este tipo se denomina <u>política</u>, y se denota π
 - σ $\pi(s)$ es la acción recomendada por π en el estado s
- La <u>utilidad esperada</u> que se obtiene al ejecutar π empezando en s viene dada por la siguiente ecuación, donde S_t es el estado al que llega el agente en el instante t:

$$U^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^{t} R(S_{t})\right]$$

Políticas óptimas y utilidad de un estado

- De entre todas las políticas que el agente podría elegir para ejecutar empezando en s, aquellas que tienen una mayor utilidad esperada que todas las demás se llaman óptimas
 - Bajo nuestras suposiciones, la política óptima es independiente del estado inicial, así que la notaremos π^*

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s' \mid s, a) \ U(s')$$

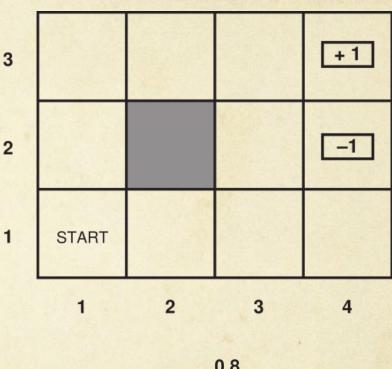
O La utilidad de un estado U(s) es la utilidad esperada que se obtiene al ejecutar π* empezando en s:

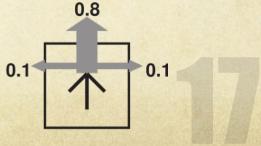
$$U(s) = U^{\pi^*}(s)$$

Ejemplo de Entorno

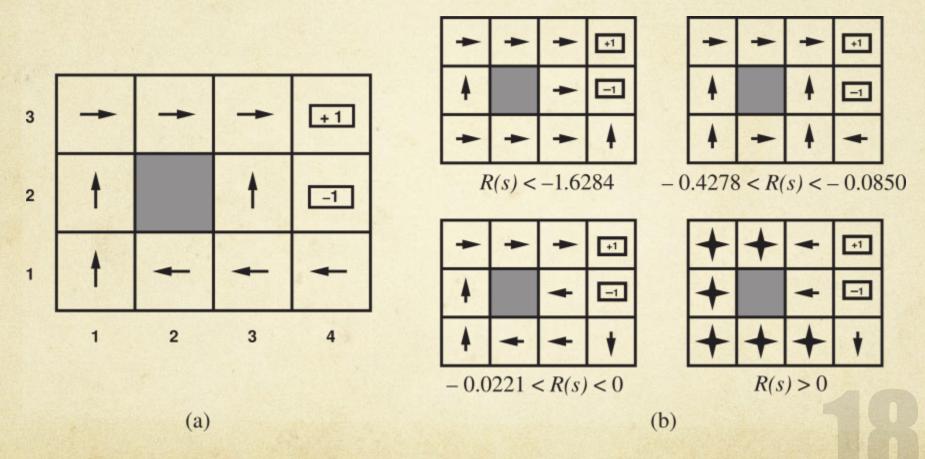
Ejemplo de entorno (I)

- O El entorno es una rejilla 4×3
- La interacción finaliza cuando el agente alcanza uno de los estados objetivo, marcados –1 o +1
- Las acciones en cada estado son Up, Down, Left y Right
- Cada acción logra el efecto pretendido con probabilidad 0.8, pero el resto de las veces la acción mueve al agente en una dirección perpendicular a la pretendida
- O Si el agente choca con un muro, permanece en el mismo cuadrado



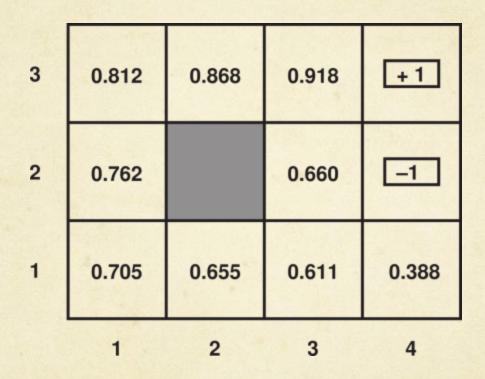


Ejemplo de políticas óptimas



(a) Política óptima para R(s) = -0.04. (b) Políticas óptimas para diferentes valores de R(s)

Utilidades de estados



Las utilidades de los estados, calculadas para $\gamma=1$ y R(s)=-0.04

Algoritmo Iteración Valores

Calcular la Política Óptima

O La política óptima es definida por:

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s' \mid s, a) \ U(s')$$

$$U(s) = R(s) + \gamma \max_{a} \sum_{S'} P(s'|s,a) U(s')$$

- O Puede ser resuelta mediante programación dinámica (Bellman)
 - O Como calcular U(i) cuando la definición es recursiva

Algoritmo simplificado Iteración Valores

inicializa U'

Repetir horizonte hasta semejantes(U,U')

U←U'

Para cada estado s hacer

$$U'(s) = R(s) + \gamma \max_{a} \sum_{S'} P(s'|s,a) U(s')$$
finPara

devolver U

Algoritmo Iteración Valores

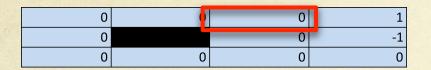
inputs: mdp, an MDP with states S, actions A(s), transition model P(s' | s, a),

```
\epsilon, the maximum error allowed in the utility of any state local variables: U, U', vectors of utilities for states in S, initially zero \delta, the maximum change in the utility of any state in an iteration repeat U \leftarrow U'; \delta \leftarrow 0 for each state s in S do U'[s] \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s,a) \ U[s'] if |U'[s] - U[s]| > \delta then \delta \leftarrow |U'[s] - U[s]| until \delta < \epsilon(1-\gamma)/\gamma return U
```

function VALUE-ITERATION (mdp,ϵ) **returns** a utility function

rewards R(s), discount γ

Cálculo iteraciones



-0,04	-0,04	0,76	1
-0,04		-0,04	-1
-0,04	-0,04	-0,04	-0,04

$$U'(s) = R(s) + \gamma \max_{a} \sum_{S'} P(s'|s,a) U(s')$$

Arriba = $0.8 \times 0 + 0.1 \times 0 + 0.1 \times 1 = 0.1$ Abajo = $0.8 \times 0 + 0.1 \times 0 + 0.1 \times 1 = 0.1$ Dch = $0.8 \times 1 + 0.1 \times 0 + 0.1 \times 0 = 0.8$ Izq = $0.8 \times 0 + 0.1 \times 0 + 0.1 \times 0 = 0$

$$U'(s) = -0.04 + 1x0.8 = 0.76$$

Convergencia en las iteraciones

	,		,	
1	-0,04		-0,04	-1
	-0,04	-0,04	-0,04	-0,04
	-0,08	0,56	0,832	1
2	-0,08		0,464	-1
	-0,08	-0,08	-0,08	-0,08
	A CALL TO SHARE			
	0,392	0,7376	0,8896	1
3	-0,12		0,572	-1
	-0,12	-0,12	0,3152	-0,12
4	0,57728	0,8192	0,90616	1
4	0,2496		0,62888	-1
	-0,16	0,18816	0,3936	0,10016

-0,04

0,76

-0,04

0,81038074	0,867748235	0,917794511	1	
0,75789833		0,660235188	-1	
0,68947023	0,618397936	0,582257012	0,356823359	

0,8110265	0,867785256	0,91780297	1
0,75988426		0,660259127	-1
0,69710548	0,635255767	0,58571028	0,361487945

_				
	0,81131928	0,867799427	0,91780621	1
	0,76079805		0,660268289	-1
	0,70114353	0,644735538	0,592801555	0,364717019

0,81145127	0,867804853	0,91780745	1
0,76121503		0,660271797	-1
0,70322635	0,649861933	0,601095414	0,370712946

14

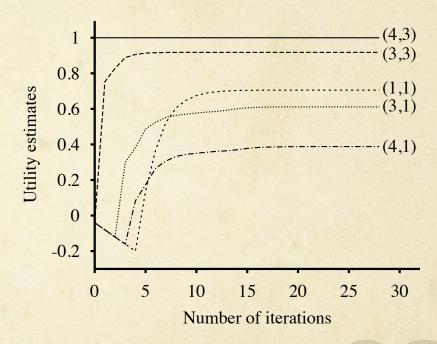
13

11

12

Efecto Horizonte

- o h=1
 - greedy, solo considera la recompensa inmediata
- h pequeño
 - o solo considera corto plazo, no considera planes a largo plazo
- O h grande
 - o sacrifica las decisiones a corto plazo por las recompensas a largo plazo



Ejercicios

Ejercicio 1



Estado (1,1)

Arriba: 0.8 * 0.762 + 0.1 * 0.705 + 0.1 * 0.655 = 0.7456

Abajo: 0.9 * 0.705 + 0.1 * 0.655 = 0.7

Izquierda: 0.9 * 0.705 + 0.1 * 0.762 = 0.7107

Derecha: 0.8 * 0.655 + 0.1 * 0.705 + 0.1 * 0.762 = 0.6707

28

Ejercicio 2

Halla la acción más adecuada para la celda (3,1) del mundo 4×3:

1		0,6	0,8	1
2			0,4	-1
3				. 10
y / x	1	2	3	4

Ten en cuenta lo siguiente:

- Las acciones en cada estado son Izquierda, Derecha, Arriba y Abajo.
- Cada acción logra el efecto pretendido con probabilidad 0'8, pero el resto de las veces la acción mueve al agente en una dirección perpendicular a la pretendida, con una probabilidad 0'1 en cada dirección.
- Si el agente choca con un muro, permanece en el mismo cuadrado

Solución Ejercicio 2

Halla la acción más adecuada para la celda (3,1) del mundo 4×3:

1		0,6	0,8	1
2			0,4	-1
3				
y / x	1	2	3	4

Solución:

Izquierda: $0.6 \times 0.8 + 0.8 \times 0.1 + 0.4 \times 0.1 = 0.6$

Derecha: $1 \times 0.8 + 0.8 \times 0.1 + 0.4 \times 0.1 = 0.92$

Arriba: $0.8 \times 0.8 + 0.6 \times 0.1 + 1 \times 0.1 = 0.8$

Abajo: $0.4 \times 0.8 + 0.6 \times 0.1 + 1 \times 0.1 = 0.48$

Acción Más Adecuada: Derecha

Ejercicio 3

Halla la acción más adecuada para la celda (3,2) del mundo 4×3:

1			0,8	1
2			0,4	-1
3			0,2	
y / x	1	2	3	4

Ten en cuenta lo siguiente:

- Las acciones en cada estado son Izquierda, Derecha, Arriba y Abajo.
- Cada acción logra el efecto pretendido con probabilidad 0'8, pero el resto de las veces la acción mueve al agente en una dirección perpendicular a la pretendida, con una probabilidad 0'1 en cada dirección.
- Si el agente choca con un muro, permanece en el mismo cuadrado

Solución Ejercicio 3

Halla la acción más adecuada para la celda (3,2) del mundo 4×3:

1			0,8	1
2			0,4	-1
3			0,2	
y / x	1	2	3	4

Solución:

Izquierda: $0.4 \times 0.8 + 0.8 \times 0.1 + 0.2 \times 0.1 = 0.42$

Derecha: $-1 \times 0.8 + 0.2 \times 0.1 + 0.8 \times 0.1 = -0.7$

Arriba: $0.8 \times 0.8 + 1 \times 0.1 + 0.4 \times 0.1 = 0.58$

Abajo: $0.2 \times 0.8 + -1 \times 0.1 + 0.4 \times 0.1 = 0.1$

Marque Acción Más Adecuada: Arriba

Conclusiones

Sumario

- O Los problemas de decisión secuenciales en entornos estocásticos, también llamados procesos de decisión de Markov, se definen mediante un modelo de transición
- La solución de un MDP es una política que asocia una decisión a cada estado que el agente podría alcanzar
- O Una política óptima maximiza la utilidad de las secuencias de estados obtenidas cuando es ejecutada
- O La programación dinámica adaptativa aprende un modelo y una función de recompensa, y obtiene las utilidades

Epílogo

- O Los procesos de decisión de Markov se han aplicado a la optimización dinámica de aplicaciones que se ejecutan en un teléfono móvil
- O Los MDP permiten a las aplicaciones incorporar las preferencias del usuario y los perfiles de usuario al proceso de decidir en tiempo real qué recursos utilizar
- O Se ha observado que las políticas obtenidas dan mejores resultados que las políticas clásicas de manejo de la batería

Sistemas Inteligentes

José A. Montenegro Montes monte@lcc.uma.es

