THE UNIVERSITY OF MALAGA
DEPARTMENT OF COMPUTER SCIENCE

MASTER THESIS

Measuring the Similarity of Service Protocols

Master of Software Engineering and Artificial Intelligence

Supervisors:
Author: Dr. Gwen SALAUN
Meriem OUEDERNI Dr. Carlos CANAL

Dr. Ernesto PIMENTEL

September 2008



Contents

1 Introduction
2 Model of Services

3 Compatibility and Mismatch
3.1 Compatibility Definition . . . . . . .. .. .. o
3.2 Behavioural Mismatches . . . . . . .. .. ... o

4 Measuring Protocol Similarity
4.1 State Similarity . . . . . ... e
4.2 Label Similarity . . . . . . . . .. e
4.3 Depth and Graph Similarity . . . . . . . . . ... ... .. ... .. .. .
4.4 Protocol Similarity . . . . . . .. L
4.5 Prototype Tool: ITACA::Sim . . . . . . . . .. .. .. .
4.6 Applicationtoour Case Study . . . . . . . . ... Lo

5 Applications: Adaptation and Re-engineering
5.1 Software Adaptation . . . . . . . . ..
5.2 Software Re-engineering . . . . . . . . . . . . ...

6 Related Work

7 Concluding Remarks



Abstract

Composition of components or services is a crucial issue in Software Engineering. However, direct
reuse and composition of existing services is in most of cases impossible because their interfaces
present some incompatibilities. Here, we assume service interfaces described using signatures and
protocols. Protocols are essential because, even if services match from a signature point of view,
their combination can behave erroneously and lead the system into deadlock situations. In this thesis,
we propose a global similarity measure between two service interfaces to detect how compatible they
are. This measure is automatically computed by a prototype tool we have implemented. We also
show how such a result can be used in areas such as software adaptation or re-engineering in order to
solve composition issues.



This work was conducted at the department of Languages and Computer Sciences (Depto. de
Lenguajes y Ciencias de la Computacion), School of Computer Engineering (E.T.S. de Ingenieria
Informaética), University of Méalaga, Spain.

DEPTO. DE LENGUAIJES Y CIENCIAS DE LA COMPUTACION
ETSI INFORMATICA

UNIVERSIDAD DE MALAGA

CAMPUS DE TEATINOS

29071 - MALAGA, ESPANA



Acknowledgements

This master internship was first proposed to me by Gwen Salaiin, Carlos Canal and Ernesto Piementel.
They offered me the opportunity to prepare my master thesis at the department of languages and com-
puter sciences at the university of Mdlaga, this is why I address them my first thanks. I am particularly
grateful for their support and assistance all along this period. Their constructive comments, ideas and
propositions of new perspectives were of invaluable support. It has been a great pleasure to work
with them, both from a professional and a personal point of view.

I would like to thank the people with whom I shared the office room. We have had some great
time together, and I am sure that there is still a lot more to come. My deep gratitude go to every
member of the team for their support, formation and most of all patience. All were to me of an
invaluable help and allowed me to acquire or increase my knowledge in the domain.

My thanks go to the external members of the jury for their careful reading of my work.

My final and warmest thanks naturally go to my family, and particularly my parents for their
support and help. I would probably not have gone so far in my studies without their encouragements
and the education that they gave me.

i



" If you find that you’re
spending almost all your time on
theory, start turning some
attention to practical things; it
will improve your theories. If
you find that you’re spending
almost all your time on practice,
start turning some attention to
theoretical things; it will
improve your practice. "

Donald Knuth



Chapter 1

Introduction

Composition of components or services is a central issue in Software Engineering. Reuse of existing
entities is mandatory not to implement once and again the same blocks of software, and it helps
developers to reduce development time, respect delays, and have their companies save money by
diminishing software design costs. However, direct reuse and composition of existing services is in
most of cases impossible because their interfaces present some incompatibilities.

Services are accessed through their interfaces that usually distinguish four interoperability lev-
els [3]: signature level (service names and types), behavioural level (interaction protocols), service
level (non-functional properties such as quality of service), and conceptual or semantic level (func-
tional specification of what the service actually does). Here, we consider services described using
signatures and protocols. Protocols give the application order of method calls and exchanged mes-
sages. This interoperability level is essential [31] because, even if services match from a signature
point of view, their combination can lead to erroneous behaviours or deadlock situations if the de-
signer is not aware of their execution flows. More than only considering messages exchanged in
protocols, it is important to include value passing coming with messages (data exchanged between
services) since this feature may raise composition issues too (mismatching number of parameters,
different ordering, non corresponding types, etc).

In this paper, we first present a model of service interfaces which takes their signatures and
protocols into account. Next, we present a notion of compatibility between two interfaces described
in our model. The main contribution of this paper is a global measure of similarity between two
service interfaces wrt. the compatibility definition. The goal of this measure is twofold: pointing
out mismatches between two protocols, but also detecting parts of them which turn out to be similar.
To do so, we compare successively states (i.e., their nature — initial, intermediate, or final —, and
the number of incoming/outgoing transitions), labels (message names, directions, parameters), and
protocols (depth and graph structure). Our measure returns a similarity value for each pair of states
in the two service protocols, and this result is computed automatically thanks to a prototype tool we
have implemented.

Such a similarity measure can have several applications while composing entities. Particularly, in
order to make services work correctly together in spite of possible mismatches, we will present how
this can be used to generate automatically coordinator or adaptor specifications, or how it can help to
automate code re-engineering of services.

The remainder of this paper is structured as follows. Chapter 2 formalises our model of ser-
vices. Chapter 3 introduces our definition of compatibility. In Chapter 4, we present our approach
to measure similarity of two service protocols. Chapter 5 shows some applications, namely soft-
ware adaptation and re-engineering. Finally, Chapter 6 compares our approach to related work, and
Chapter 7 ends the paper with some concluding remarks.



Chapter 2

Model of Services

In this chapter, we present our service interface model. We assume that service interfaces are given
using both a signature and a behavioural interface (or protocol).

Definition 1 (Signature). A signature is a set of provided and required operation profiles. An opera-
tion profile is the name of an operation, together with its argument types, and its return types.

Signatures usually correspond in component-based frameworks (e.g., INET or J2EE) to operation
profiles described using an Interface Definition Language (IDL). For instance, WSDL is the accepted
standard in the Web services area.

Additionally, we propose that behavioural interfaces are represented by means of it Symbolic
Transition Systems (STSs). In this paper, STSs are Labelled Transition Systems (LTSs) extended
with value passing (data parameters coming with messages). Communication between services is
represented using events relative to the emission (!) and reception (?) of messages corresponding
to operation calls. Events may come with a set of data terms whose types respect the operation
signatures.

Definition 2 (Label). In our model, a label is either the internal action t' or a tuple (M,D,PL)
where M is the message name, D stands for the direction (!,?), and PL is either a list of data terms, if
the message corresponds to an emission, or a list of variables, if the message is a reception.

Definition 3 (STS). A Symbolic Transition System (STS) is a tuple (A,S,I,F,T) where: A is an
alphabet which corresponds to the set of labels associated to transitions, S is a set of states, I € S
is the initial state, F € S are final states, and T € S X A X § is the transition function (see [22] for
semantic aspects).

This formal model has been chosen because it is simple, graphical, and can be easily derived
from existing implementation platforms languages, see for instance [19, 34, 18, 13] where such
abstractions for Web services were used for verification, composition or adaptation purposes. In
some cases, for conciseness reasons, a textual notation is better than a graphical one. Thus, a process
algebra with value passing (such as value-passing CCS or LOTOS) could be used as a higher level
language to specify behavioural interfaces. STSs can be automatically obtained from these processes
using the operational rules of the process algebra semantics. In the following we will describe service
interfaces using STSs only. Signatures will be left implicit, yet they can be inferred from the typing
of arguments (made explicit here) in STS labels.

Example. We will use throughout this paper a car rental service as running example. First of
all, let us present the service behavioural interface, and an example of end-user requirements also

! An internal action stands for an abstraction of the service behaviour. This is used to encode in the service protocol a
(non-deterministic) local choice, or an internal computation.

3



CHAPTER 2. MODEL OF SERVICES

specified using an STS (Fig. 2.1). Service CarRental can receive a car rental request (request?),
and returns availability of the specified car for the given dates ( request!). Such a request can be
received and replied several times until termination (timeout in the service) or reservation ( book?).
In the latter case, the service confirms the reservation (book!) by sending back an identifier. In this
example, the user requirements start with the search of a car (searchCar!). Then, some dates are
submitted to check availability of a car for this period (searchDate!). After reception of an answer
( reply?), the user can give up (quit!), can submit another search (searchCar!, searchDate!), or can
reserve the car (resp. reserve! and confirmation with reserve?).

request!resp:tresp

request?car:tcar,dl:tdate,d2:tdate

book?numCard:int

reply?resp:bool

usd

searchCarl!car:tcar searchDate!dl:tdate,d2:tdate

reservelcard:int

Figure 2.1: STS interfaces of CarRental (top) and User (bottom) services



Chapter 3

Compatibility and Mismatch

3.1 Compatibility Definition

In this subsection, we define the concept of compatibility we rely on in this paper. Compatibility
depends on the model of entities, and numerous compatibility notions have already been proposed
for automata-based descriptions of services, see for instance [36, 14, 20, 10, 31, 5]. Most of them
match all visible labels (labels which are different of 7), and therefore rely on bisimulation-based
notions [35]. However, these definitions are too restrictive in some situations. As an example, when
two services meet on the Web, they may be able to interact correctly even when one has slots for
receptions which the other one does not intend to use. Thus, in this paper, we took inspiration from
the definition originally stated by Brand and Zafiropulo [7] who consider two protocols compatible if
any emitted message has a matching reception in the mate service, and this works in both directions.
Consequently, this definition accepts unspecified receptions that are additional receptions which do
not have any corresponding emission in the other component. This notion means that services are
able to cooperate in a satisfactory way even if they have additional slots for receptions. Thus, services
can provide more than required by their partners, but they must be ready to accept all the messages
sent by them.

We define below compatibility of two services by setting successively compatibility of labels,
states, and finally protocols.

Definition 4 (Label compatibility). Two labels || and I, are compatible if they have the same message
names, opposite directions, and matching parameters, that is both lists of parameters have the same
number of elements, and each pair of parameters have identical types.

Definition 5 (State compatibility). Given two Symbolic Transition Systems STS| = (A1,S1,1,F1,T})
and ST Sy = (A2,82, 5, F>,T»), two states s| € S| and sy € Sy are compatible if:

e cither both states are initial (resp. final) or none of them is, and

e for each transition t outgoing from state sy (resp. s») whose label | corresponds to an emission,
there is in the other state an outgoing transition t' with label l', and both labels | and I" are
compatible wrt. Def. 4.

Two transitions with matching labels are called complementary. A pair of states belonging to two
STSs is said to be reachable if from their respective initial states, there exists a path with comple-
mentary transitions that lead to this couple of states.

Definition 6 (Protocol compatibility). Two Symbolic Transition Systems are compatible if their initial
states are compatible, all pairs of states reachable from their initial states are compatible, and both

5



CHAPTER 3. COMPATIBILITY AND MISMATCH

STSs end up in final states. In addition, compatibility imposes that all transitions holding an emission
have a complementary reception.

Example. Let us illustrate our notion of compatibility using a simplified version of the CarRental
service (Fig. 3.1) introduced in Chapter 2. The left hand side protocol can receive and reply requests
for both cars and motorbikes whereas the user requirements on the right hand side can only submit
requests for cars. These two protocols are compatible wrt. Def. 6 stated before, because all emissions
have matching labels in the partner (for both services) , and only the reception reqMoto?info:tinfo
has no matching emission.

reqCar?info:tinfo

reqCar?info:tinfo reqCarlinfo:tinfo

reply!r:tresp
A

>

reply?r:tresp

regMoto?info:tinfo

reqMoto?info:tinfo

Figure 3.1: Example of compatible STS interfaces

3.2 Behavioural Mismatches

In this subsection, we give an overview of all mismatches that can occur between two service pro-
tocols specified using our model wrt. the compatibility definition presented in Def. 6. We organize
mismatch cases following the three different levels in which they can arise, namely labels, states, and
protocols.

A pair of labels may present the following mismatches:

label type (Im;): an input/output label (message, direction, parameters) vs. a T action;

label direction (Imj3): labels with same directions, since matching labels must have opposite
directions;

label name (/m3): labels with different message names;

parameter number (/m4): unmatching number of parameters;
e parameter order (/ms): wrongly ordered parameters;

e parameter type (Img): parameters with different types.

The three kinds of mismatch for parameters focus on different aspects, and therefore neither of
them overlaps with the others.
A couple of states may present the following mismatches:

e state nature (smy): states with different natures, the nature of a state being either initial, final,
or intermediate;

e outgoing transitions (smy): all emissions must be matched;

6



CHAPTER 3. COMPATIBILITY AND MISMATCH

e incoming transitions (sm3): all emissions must be matched.

As regards the comparison of outgoing (resp. incoming) transitions, a mismatch occurs wrt. the
compatibility notion defined in Section 3.1 when there are more emissions on one side than receptions
on the other. Indeed, the compatibility definition states that every emission must have a reception as
counterpart.

A couple of protocols may present the following mismatches:

e additional states (pm;);
e additional transitions (pm;);

e order of transitions (pm3): not respected in both protocols.

At the level of the protocol, especially in the last point mentioned above, a reordering mismatch'
is detected by taking into account the protocol but also the labels associated to the involved transi-
tions.

Last, let us point out that label and state mismatches are detected while computing the similarity
measure (Chapter 4) whereas protocol mismatches are more difficult to find out at this stage. They
will be only discovered when analysing similarity results (Chapter 5).

Example. Our running example presents various cases of mismatch at the three levels mentioned
before. For instance, message names do not match, e.g., book in CarRental vs. reserve in User (Im3),
or requests sent by the user are split into two messages searchCar and searchDate whereas CarRental
expects a single one, request (pm1, pm2). Consequently, parameters of these labels present also some
differences (Im4, Im5, Im6). Note also the explicit termination quit in User which has an implicit
counterpart in CarRental, state c2 (pm1, pm?2).

We will see in the next chapter how similarity is computed on protocols and these mismatches
are automatically detected.

'Reordering of transitions is needed in some communication scenarios to ensure a correct interaction when two
communicating entities have transition labels which are not ordered as required.

7



Chapter 4

Measuring Protocol Similarity

In this chapter, we will present our techniques to measure similarities of two service interfaces de-
scribed as STS| = (A1,S1,1,F1,T1) and STS, = (A2, 82,5, F>, T>). We choose a divide-and-conquer
approach, therefore our similarity measure is split into comparisons of states, labels, depth and
graphs. We will show how these four elements are compared, and how an overall measure is com-
puted from them. In the following, we distinguish graphs and protocols. Graphs focus on the struc-
ture of the protocol, i.e., states without nature associated (all are considered as intermediate) and
transitions without labels, whereas the protocol corresponds to the whole STS. We will introduce
our prototype tool that automates completely the processing, and illustrate our similarity measure
on our running example. In the following, each similarity measure (on states, labels, etc) belongs
to [0,1]. We start computing scores by assuming that all elements perfectly match (initial similarity
score equals to 1). Then, values are decremented every time a mismatch is encountered!. Our simi-
larity computation relies on generic weights written using identifiers starting by W (see Section 4.6
for instantiations of these weights).

4.1 State Similarity

Let us start with the similarity measure (simS) between two states s; € S7 and s; € S>. Function simS
contains two processings. First, it compares state nature and penalises the measure by weight Wsm if
their nature is different (function sType). Second, function emDi f computes the number of emissions
outgoing from state s; (resp. from s;) which have no corresponding reception in state s; (resp. in s;).
Next, this value is multiplied by Wsm;, and the state measure is finally decremented by this result.
Note that incoming transitions are compared in a similar way to outgoing transitions. Nevertheless,
although they have been taken into account in our prototype tool presented in Section 4.5, we do not
introduce them in this paper for simplification purposes.

0 if(siell/\sj'EIz)V(SiEFl/\SjEFz)
where sType(s;,s;) = V(si¢hUFiAsj€hUF,)
1 otherwise

0 ifcard(em(s)) < card(rec(s))
abs(card(em(s)) — card(rec(s’))) otherwise

emDif(s,s') = {

!Our computations may make similarity scores become negative. In this section, for readability purposes, we will not
make explicit in the formulas the function that sets back to 0 negative measures.



CHAPTER 4. MEASURING PROTOCOL SIMILARITY

em(s) = {l|(s,1,s') € T Ndir(l) =!}, rec(s) = {l|(s,1,s') € T Ndir(l) =?}, abs computes the
absolute value, card returns the set cardinality (we use this function to compute list cardinality as
well in the following), and dir indicates the direction of a label.

4.2 Label Similarity

The similarity measure between two labels /; € Ay and /; € A takes four cases into account. First,
two labels with 7 perfectly match. Second, if only one label is a T action, the result is penalised using
weight Wimy. Third, if directions are the same, we decrement the initial label measure by weight
Wlim;, and we do not compare message names and parameter lists. Last, if labels have opposite
directions we compare the message names (function sem with weight Wim3) and parameter lists
(functions pNb, pOrd, pType with respective weights Wimy, Wims, Wimg).

/

| if(l; = T) A (l; = 1)
1—Wim elif(l,-:‘c)@(lj:’c)
simL(l;,l;) = ¢ 1 —Wimy elif dir(l;) = dir(l;)

1 — (Wims xsem(m;,mj)) — (Wlmg* pNb(tl;,t1}))
| —(Wlms* pOrd(tl;,tl)) — (Wlme x pType(tl;,tl;)) else

where @ stands for the XOR operator, m; and m; are message names of /; and [}, tl; and tl;
are type lists extracted from parameter lists of /; and /;. Function sem uses the WordNet::Similarity
package [30] to measure the semantic similarity of message names. Particularly, we chose the Hirst
& St-Onge measure which works by finding lexical chains linking the two word meanings.

As regards parameter lists, function pNb returns the difference between the element number in
both parameter lists:

pPNb(tl;,tlj) = abs(card(tl;) — card(tl}))

Function pOrd returns the number of unordered parameter types in both lists:

pOrd(tly 1) pOrd'(tl;,tl;) if card{tl,-) < card(tl})
pOrd'(tlj,tl;) otherwise
pOrd'(tl;,tl;) = cmp(0,tl;,tl;) + ...+ cmp(n,tl;, 1)

where 7 is the length of the smallest list 7/;. Function cmp returns 1 if the k' parameter type in t/;
belongs to the 7/; list?, and if types do not appear in the same positions in the lists:

1 if (el k] # tli[k]) A (1K) € t1;)

cmp(k,tl;,tl;) = {0 otherwise

Finally, function pType counts the number of types that appear in one list but not in the other.

2The presence of the type in the other list is checked here because such mismatch is considered as a type number issue
(see function pType), and not as an order problem.



CHAPTER 4. MEASURING PROTOCOL SIMILARITY

Function typeDif computes the set of types that belong to the first list but not to the second one. We
call typeDif twice to detect additional types in both lists.

pType(tl;,tl;) = card(typeDif (tl;,tl;)) + card(typeDif (tl;,tl;))
typeDif (tly,tly) = {type|type € tl} Ntype € t],}

4.3 Depth and Graph Similarity

In order to compare protocol structures, we take into account two measures, namely depth and graph
similarity.

Depth measures the number of transitions to be traversed to reach a state from the initial one.
To avoid infinite values for depth due to looping protocols, we compute this measure by searching
the shortest path (function depth takes inspiration from Dijkstra’s algorithm [16]). A pair of states
(si,8;) is compared it wrt. depth similarity using the following formula:

simD(s;,sj) = 1 — (Wdepthxabs(depth(s;) — depth(s;)))

As regards graph similarity, the idea is to compare how similar are two states wrt. their positions
in both graphs. This measure is computed by reusing the approach proposed in [4]. In this paper,
the authors compute a similarity matrix (function simG) between vertices of two directed graphs
(denoted by G| and G; in the following, which are derived from ST'S| and ST'S; respectively). To
do so, they start with a matrix whose entries are all equal to one. Next, they apply several iterations
and refine similarities scores by using adjacency matrices. The processing stops when matrix values
converge towards a limit. More formally, simG is computed using the following formula:

(AM) ® AMa + AMT @ AMY) x simGy(Gy,G2)
| (AM} @ AM, + AMT @ AMYT) x simGy (G, G2) ||

simGy+1(G1,G2) =

where k denotes successive iterations, AM,; is the adjacency matrix for graph G;, M is the trans-
posed matrix, ® computes the tensorial product, + (resp. x) returns the sum (resp. product) of two
matrices, and ||| computes the Euclidian norm.

The limit used to stop iterations is computed from the initial similarity matrix (all entries equal
to one), denoted [1] below, as follows:

(AMy @AM, + AMT @ AMT)% x [1]
| (AM; @ AM, +AMT @ AMT)2k x [1] ||

simG_lim(G1 y Gz) = limk_m
The reader interested in more details may refer to [4].

4.4 Protocol Similarity

In the former subsections, we have presented how similarities are computed on the different con-
stituents of our STSs. Here, we present our method for computing the overall similarity measure
(function sim) which results in a matrix S; x S;. Each entry of this matrix corresponds to a similarity

10



CHAPTER 4. MEASURING PROTOCOL SIMILARITY

score for a couple of states (s;,s;) obtained by computing the average of the different measures intro-
duced before. More precisely, each score respectively takes into account state similarity (with weight
W), similarity of all labels associated to transitions outgoing from states s; and s; (with weight W1),
and depth and graph similarity (with weight Wdg). Similarly to Section 4.1, incoming transitions are
not made explicit in the following formulas.

(simS(s;,s;) * Ws) + (simLs(s;,s;) * WI) + (simDG(s;, s ;) * Wdg)
Ws+ Wi+ Wdg

sim(s;, ;) =

where simLs and simDG are defined below.
Function simLs considers all associations of transition labels outgoing from states s; and s;, and
computes the average of their corresponding similarity measures obtained using function simL.

(V(l, l/) el x Lz) ZSil’l’lL(l, l/)
card(Ly) % card(L;)

simLs(s;,s ) =

where Ly = outlabels(s;, T1), L, = outlabels(s;,T»), and outlabels(s,T) = {I|(s,l,s') € T}.
Function simDG computes the average for depth and graph similarity as follows:

simD(si,s ;) +mGlsi, s;]
2

simDG(s;,s ) =

where mG = simG(G1,G3).

4.5 Prototype Tool: ITACA::Sim

We have implemented our approach in a prototype tool called ITACA::Sim. This tool accepts as input
two XML files corresponding to service interfaces, and returns the detailed measure (states, labels,
depth, and graph) for each couple of states as well as the matrix giving the overall similarity measure
(as shown in Table 4.1). Note that for each couple of states, our tool also returns a list of mismatches
(identified as presented in Section 3.2).

ITACA::Sim is implemented in Python, and uses the Numerical Python library (NumPy) to han-
dle matrices. The tool also employs the external package WordNet::Similarity implemented in Perl
for measuring the semantic similarity between message names. In the first experiments we carried
out, we applied ITACA::Sim on several examples such as a memory manager, an SQL server, an
e-commerce system, etc.

4.6 Application to our Case Study

In the former subsections, we have presented our measure using generic weights. We will show
in this subsection how these weights can be instantiated. Their instantiation has been obtained by
many experimentations on examples, and by respecting the following rules. As far as labels are
concerned, mismatch of label direction should be strongly penalised (W/m2) whereas message name
(Wim3) is not considered as an important one. Label parameters are essential (Wilm4, WimS, Wim6).
However, parameter weights should not be too high because these mismatches are cumulative and
takes the number of parameters into account, therefore penalisation will increase with the number of
parameters. Last, while computing the overall similarity result, we should give more importance to

11



CHAPTER 4. MEASURING PROTOCOL SIMILARITY

up ul u2 u3 ud ub ub u7

c00.68 053 028 037 046 0.26 0.23 0.23
cl1]020 031 077 0.18 026 026 0.71 0.21
c2 058 054 036 0.58 053 045 029 041
c3 1015 026 076 0.21 029 032 0.87 0.27
c4 020 023 034 0.17 034 051 041 047

Table 4.1: Similarity measure between CarRental and User interfaces

labels (W) than states and graphs (Ws and Wdg) because services interact through labels and then
the semantics of an STS derives mainly from them.

The similarity results obtained on our running example have been computed with the following
concrete weights: Wsml = 0.3, Wsm2 = 0.2, Wim2 =0.95, Wim3 = 0.1, Wim4 = 0.1, Wim5 = 0.1,
Wim6 = 0.1, Wdepth = 0.2, Ws =1, Wl =2, and Wdg = 1. Table 4.1 shows the matrix giving
the global similarity measure obtained for our running example. This measure allows to point out
mismatches between both CarRental and User protocols as well detecting parts of them which turn
out to be similar. Let us comment some similarity scores returned by our tool. For instance, state u0
has a high similarity value with c0, and ITACA::Sim returns the following measures:

states cO (carRental-v7) u0 (user-v7):

States: (1.0 [1)

Labels: (request?car:tcar,dl:tdate,d2:tdate searchCar!car:tcar 0.6
[’LM3’, °LM4’, °LM6°]) -> Labels average: 0.6

Protocol: Depth [0] [0] 1.0 Graph 0.0621 -> Average: 0.53

Total: 0.68

We can see that states have the same nature and matching outgoing transitions (one emission on
one side and one reception on the other). At the label level, there are three mismatches, respectively
different message names (/m3), different number of parameters (Im4 — two more parameters are
expected by the car rental service), and some types (tdate) that do not exist in both parameter lists
(Im6). Depth is the same, and the measure returned by graph similarity is pretty low. There are two
explanations: first, the algorithm used for this measure always returns low values; second, the algo-
rithm does not use initial and final states, and experiments show that it always encounters difficulties
to match them correctly.

State u0 has its lower value with state c3, and this is the smallest value of the whole table:

states ¢3 (carRental-v7) u0 (user-v7):

States: (0.3 [’SM1’, ’SM2’])
Labels: (book!id:int searchCar!car:tcar 0.05 [’LM2°])
-> Labels average: 0.05
Protocol: Depth [3] [0] 0.4 Graph 0.0207 -> Average: 0.21
Total: 0.15

For this couple of states, they first present nature mismatch (sm1), but also mismatches at the
level of outgoing transitions (sm2) because on both sides transitions involve emissions which are not
matched by the partner. Labels are not compared since they present same directions (Im2). Last,
there is a low depth value (difference of three between both states), and graph similarity measure is
low as well.

12



Chapter 5

Applications: Adaptation and
Re-engineering

5.1 Software Adaptation

Software Adaptation [3] is a promising solution to compose in a non-intrusive way black-box compo-
nents or (Web) services whose functionality is as required for the new system, although they present
interface mismatches. Adaptation techniques aim at automatically generating new components called
adaptors from an adaptation contract which is an abstract description of how mismatches can be
worked out. All the messages pass through the adaptor which acts as an orchestrator, and this en-
ables it to compensate mismatches by matching exchanged information (messages, arguments, etc)
as defined in the contract. As a result, in spite of the mismatches, the adaptor makes the involved
services work correctly together.

Adaptor generation techniques rely on the adaptation contract. However, most of the approaches
(see for instance [6, 11, 17, 27]) require the contract to be written, which induces that a designer
has to understand the subtleties of the services at hand, and specify manually how services interact
and how existing mismatches can be corrected. In this section, we will sketch some ideas on how
by analysing the results computed by our similarity function we can automate the generation of the
adaptation contract.

Since our model deals with value passing, we have to consider an adaptation contract notation
that maps not only messages but also data parameters. Thus, we rely on the vector-based notation
advocated in [6] and reused for instance in [25]. A vector involves at most one label from each service
at hand, and results in an interaction between them. Sometimes, a vector contains a single label when
this label does not have any counterpart in the partner. This corresponds to an independent evolution
of this service. Last but not least, being given an adaptation contract specified using this notation,
approaches as those proposed in [6, 25] can be used to generate automatically adaptor protocols.

Let us illustrate on our running example how the similarity results can be used for adaptation
purposes. The analysis step aims at relating states in both protocols: for each service, each state is
associated to a state in the partner protocol whose similarity is the highest. Then, from Table 4.1 we
obtained correspondences in Figure 5.1 where we can notice that some states match in both directions
(solid lines), that is from the user point of view but also from the car rental one, and the others states
match only in one direction (dashed line).

In a second step, we consider couples of states connected with solid lines, and for each couple we
build vectors that match labels associated to transitions outgoing from these states. In case if several
associations of labels are possible (it e.g., two transitions outgoing from c2 and three transitions
outgoing from u3, see Figure 2.1), the label similarity is used (see Section 4.2), and only best matches

13



CHAPTER 5. APPLICATIONS: ADAPTATION AND RE-ENGINEERING

® @ 6 @O @ O @

) OOk © @

Figure 5.1: Analysis and matching the states of our running example

are preserved. Vectors introduced below can be generated automatically from our similarity measure
and its analysis. Multiple occurrences of the same vector are detected and removed (vg. below).

(u0,c0) ~» vy = (User:searchCar! ; CarRental:request?)
(u2,cl) ~  veep = (Userireply? ;  CarRental:request!)
(u3,c2) ~ W= : I :

viest = (User:reserve! ; CarRental:book?)

Vquit = (User:quit!)
(ub,c4) ~» no outgoing transitions
(u6,c3) ~>  Vres2 = (User:reserve? ; CarRental:book!)

Next, the message searchDate! in the user does not have a clear correspondence (see ul and
u4 in Figure 5.1), then a vector with this label is generated: vgg = (User:searchDate!l). Last, the
contract relates messages but also parameters by using placeholders. The idea is that for each vector,
parameters with same type are related using the same placeholder name, and respecting their order
in the list if there are several parameters with the same type (see vg. below where request? in the
CarRental involved two parameters of type tdate). Here are the previous vectors extended with

parameter matching:
vgc = (User:searchCar!C ; CarRental:request?C,D1,D2)

Vrepl = (User:reply?T ;  CarRental:request!B) ~» type conversion needed
Vres1 = (User:reservelll ; CarRental:book?I1)

Vquit = (User:quit!)

vies2 = (User:reserve?l2 ; CarRental:book!I2)

vsa = (User:searchDate!D3,D4) ~» vgq = (User:searchDate!D1,D2)

Let us give some comments on the contract obtained above. First, in the very final step, a manual
adjustment is needed to make dates in vy and in vgq match in spite of the initial erroneous matching.
Last, in some cases ( Vrep) SOme type mismatch prevent to match some message parameters, and this
is still an open issue in software adaptation.

5.2 Software Re-engineering

As we have seen in the former subsection, adaptation is a promising solution to compose black-box
entities. However, the process is still quite complicated and adaptor generation is costly (algorithms
are exponential [11, 32]). Thus, we will see in this subsection a second application of our similarity
measure, namely software re-engineering [2], which is an alternative to service adaptation.
Re-engineering assumes entities’ code is accessible, and such assumption, yet rather strong,
makes sense in the area of software components [9, 21, 33]. Indeed, no Interface Description Lan-
guage tackling more than the signature level has never become widely accepted, and the designer does

14



CHAPTER 5. APPLICATIONS: ADAPTATION AND RE-ENGINEERING

not have at his disposal a sufficiently expressive description of the component during its integration.
Accordingly, the black-box assumption is not always meaningful, and white-box components might
be assumed while building systems to allow a better understanding of new entities being integrated.

Software re-engineering aims at modifying the code of one or several components to be reused for
a new system under construction in order to solve existing mismatches and make them compatible.
This leads one to rely on a formal definition of compatibility, and automate as most as possible the
code’s modifications. As far as services are concerned, re-engineering consists in modifying user
requirements since services are already deployed and cannot be modified. The main limitation of re-
engineering is the validation need that becomes mandatory due to the code’s component modification.

Let us illustrate on our running example how re-enginering can be guided by using our similarity
measure. The final goal is to make both protocols compatible wrt. Def. 6. Since we are dealing
with services in this paper, we will apply modifications only on the user requirements. Note that the
method should indicate modifications of both the interface and the code corresponding to it.

The re-engineering process relies on Figure 5.1 and works in two steps. First, states in the user
without clear matching with the car rental, namely ul and u4, are removed ( u7 is kept because no
transition goes out from this state). Second, for each couple of states strongly related in Figure 5.1,
we focus on labels appearing on outgoing transitions, and we use mismatch lists generated by our
tool and presented in Section 3.2 to modify them.

As an example, state u0 matches with state c0. These two states only have one outgoing transi-
tion. However, the mismatch list indicates different message names (/m3), and a different number
of parameters (/m4) as well as missing types (/Im6). Therefore, searchCar is renamed in request,
and two parameters with type tdate are added. Let us consider now state u3 where three transitions
go out from this state. By using values returned for label comparison, we can deduce that search-
Car matches with request, consequently the same re-engineering that presented for state u0 has to
be applied. Next, reserve matches with book, and the only re-engineering needed here is that mes-
sage names have to be unified. Last, quit does not have any counterpart in the CarRental service,
therefore this transition (and its target state ub) is cut away. As a result, the interface obtained after
re-engineering is described in Figure 5.2.

request?resp:tresp
request!car:tcar,dl:tdate,d2:tdate

book!card:int

Figure 5.2: User requirements protocol obtained after re-engineering

Note that the re-engineering process ensures that user requirements and the service are compat-
ible. However, this process yet automated still needs a human validation to be sure that the final
objective of the user is preserved from a semantic point of view. Indeed, modifications performed
during the re-engineering stage may not respect this objective (e.g., by cutting too many transitions).
A way to automate this would be to add a composition goal (using a temporal formula for example)
as input to the process, and this goal would guide the re-engineering steps.

Some re-engineering steps may be quite complicated, especially when type re-engineering is re-
quired as it is the case when the user receives the reply to his request (request?) since in this situation

15



CHAPTER 5. APPLICATIONS: ADAPTATION AND RE-ENGINEERING

parameter type has to be adjusted to make labels match correctly (tresp instead of bool before). Last,
re-engineering does not always generate a mirror protocol as it is the case with our running example:
some additional receptions may appear and be maintained to respect the compatibility definition.

16



Chapter 6
Related Work

The contribution of this work fall into two categories: protocol compatibility and measuring the
similarity of service protocols wrt. to our compatibility definition.

Compatibility is an issue intensively studied in Software Engineering, and areas such as software
components [36, 10, 14], coordination [8, 37], or (Web) services [26, 24, 5], in which the authors
have used Petri nets, process algebra or automata-based formalisms to describe interfaces. How-
ever, in most of cases, these approaches return a Boolean that indicates whether two interfaces are
compatible. Our goal here was more ambitious since we presented an approach giving a measure of
similarity between two service interfaces described using protocols with value passing. More than
computing protocols’ similarity, our approach identifies the set of differences encountered between
service protocols. Being aware about these differences eases the adaptation process as well as the
system reconfiguration, i,e re-engineering.

In the field of Case Based Reasoning (CBR), Champin and Solnon [12] address the similarity
measure of labeled graphs by searching a best mapping (correspondence) between graphs vertices.
Their approach relies on Tversky’s formula [1] which aims, in the field of psychology, at measuring
the similarity between two objects by comparing the amount of features which are common to both
objects, to the total amount of their features. In [12], the authors consider a much simpler model,
for instance value passing is not taken into account. Furthermore, they target as application area
CBR that consists in solving new problems based on the solutions of similar problems, whereas our
purpose is tackling compositional issues while constructing software by reuse of existing services or
components.

To the best of our knowledge, the work the most related to ours is the recent paper by Nejati et
al. [28]. In this paper, the authors present two operators, namely match and merge, to be applied
to specifications described using Statecharts. Therefore, the goal of their work is to compare State-
charts to merge them in a second step, whereas we focus on the compatibility issue between similar
models. As far as similarity computation is concerned (referred as match in their work), although we
share some similarities with them, such as the use of the WordNet::Similarity package for message
comparison, our proposal differs in several aspects. First, they employ a depth measure as we do,
but they do not further compare protocol structures whereas we reuse a recent graph similarity algo-
rithm [4] to this purpose. As regards label comparison, beyond semantic comparison of messages,
we additionally compare parameter types (see Section 4.2). Last, our similarity measure is supported
by a tool we have implemented.

17



Chapter 7

Concluding Remarks

In this paper, we have presented a similarity measure between a couple of protocols. More than stat-
ing whether two interfaces are compatible or not, our approach computes the similarity of all states
involved in both protocols. In a second step, such a result can be used to ease their composition
by relating similar states and pointing out protocol differences. Thus, at last, mismatch cases can
be corrected by using an intermediate adaptor which compensates mismatches, or by re-engineering
interfaces to make them compatible. The computation of our similarity measure is completely au-
tomated by the ITACA::Sim tool we implemented. Our tool is currently used as an external module
in the context of other research to help the construction of adaptation contracts (by indicating best
correspondences between states and labels) through a graphical interface.

Perspectives of this work are the following. First of all, we plan to use machine learning in our
experiments to compute concrete weights on which rely our similarity measure. Another perspective
aims at refining our similarity measure by improving label comparison (e.g., keeping best matches, or
considering cyclic comparison of parameters), and experimenting other graph similarity algorithms.

As an alternative, to our divide-and-conquer approach, we would like to study the computation
of similarity by taking states, labels, and protocols all together into account at the same time (i.e.,
traversing the protocol and comparing states and labels). To make that more concrete, we are thinking
about several alternatives. A first alternative could be an implementation of an ad-hoc algorithm.
Then, it seems promising to reuse existing approaches and adapt them to our problem. Actually, we
are studying two existing approaches namely the probabilistic processes, i,e Markov processes [15]
and the partitioning algorithms [23, 29].

Finally, we plan to work thoroughly on the application and use of our similarity results for soft-
ware adaptation and re-engineering.

18



Bibliography

[1] T. Amos. Features of Similarity. Psychological Review, 84:327-352, 1977.
[2] R. S. Arnold. Software Reengineering. IEEE Computer Society Press Los Alamitos, 1993.

[3] S. Becker, A. Brogi, I. Gorton, S. Overhage, A. Romanovsky, and M. Tivoli. Towards an
Engineering Approach to Component Adaptation. In Architecting Systems with Trustworthy
Components, volume 3938 of Lecture Notes in Computer Science, pages 193-215. Springer-
Verlag, 2006.

[4] V. D. Blondel and P. Van Dooren. Similarity Matrices for Pairs of Graphs. In Proc. of the
30th International Colloquium on Automata, Languages and Programming (ICALP’03), vol-
ume 2719 of Lecture Notes in Computer Science, pages 739—750. Springer, 2003.

[5] L. Bordeaux, G. Salaiin, D. Berardi, and M. Mecella. When are Two Web Services Compatible?
In Proc. of 5th Int. Workshop on Technologies for E-Services (TES 04), volume 3324 of Lecture
Notes in Computer Science, pages 15-28. Springer-Verlag, 2004.

[6] A. Bracciali, A. Brogi, and C. Canal. A Formal Approach to Component Adaptation. Journal
of Systems and Software, 74(1):45-54, 2005.

[7] D.Brand and P. Zafiropulo. On Communicating Finite-State Machines. J. ACM, 30(2):323-342,
1983.

[8] A. Brogi, E. Pimentel, and A. M. Roldan. Compatibility of Linda-based Component Interfaces.
In Proc. of workshop on Formal Methods and Component Interaction (FMCI’02), volume 66(4)
of Elec. Notes on Theor. Comput. Science, 2002.

[9] M. Buchi and W. Weck. The Greybox Approach: When Blackbox Specifications Hide Too
Much. Technical Report 297, Turku Center for Computer Science, 1999.

[10] C. Canal, E. Pimentel, and J. M. Troya. Compatibility and Inheritance in Software Architec-
tures. Sci. Comput. Program., 41(2):105-138, 2001.

[11] C. Canal, P. Poizat, and G. Salaiin. Synchronizing Behavioural Mismatch in Software Compo-
sition. In Proc. of the 8th IFIP WG 6.1 International Conference on Formal Methods for Open
Object-Based Distributed Systems (FMOODS’06), volume 4037 of Lecture Notes in Computer
Science, pages 63—77. Springer-Verlag, 2006.

[12] P.-A. Champin and C. Solnon. Measuring the Similarity of Labeled Graphs. In Proc. of the
Sth International Conference on Case-Based Reasoning (ICCBR’03), volume 2689 of Lecture
Notes in Computer Science, pages 80-95. Springer-Verlag, 2003.

19



BIBLIOGRAPHY

[13] J. Cubo, G. Salaiin, C. Canal, E. Pimentel, and P. Poizat. A Model-Based Approach to the
Verification and Adaptation of WE/.NET Components. In Proc. of the 4th International Work-
shop on Formal Aspects of Component Software (FACS’07), Electronic Notes in Theoretical
Computer Science (ENTCS) series. Elsevier, 2007. To appear.

[14] L. de Alfaro and T. Henzinger. Interface Automata. In Proc. of the 8th European Software
Engineering Conference held jointly with the 9th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (ESEC/FSE’01), pages 109-120. ACM Press, 2001.

[15] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics for Labelled Markov
Processes. Theoretical Computer Science, 318(3):323-354, 2004.

[16] E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische Mathematik,
1:269-271, 1959.

[17] M. Dumas, K. W. S. Wang, and M. L. Spork. Adapt or Perish: Algebra and Visual Notation
for Service Interface Adaptation. In Proc. of 4th International Conference on Business Process
Management (BPM’06), volume 4102 of Lecture Notes in Computer Science, pages 65-80.
Springer-Verlag, 2006.

[18] H. Foster, S. Uchitel, and J. Kramer. LTSA-WS: A Tool for Model-based Verification of Web
Service Compositions and Choreography. In Proc. of 28th International Conference on Soft-
ware Engineering (ICSE’06), pages 771-774. ACM Press, 2006.

[19] X. Fu, T. Bultan, and J. Su. Analysis of Interacting BPEL Web Services. In Proc. of the 13th
International Conference on World Wide Web (WWW’04), pages 621-630. ACM Press, 2004.

[20] N. Hameurlain. Flexible Behavioural Compatibility and Substitutability for Component Proto-
cols: A Formal Specification. In Proc. of the 5th IEEE International Conference on Software
Engineering and Formal Methods (SEFM’07), pages 391-400. IEEE Computer Society, 2007.

[21] J. Henriksson, F. Heidenreich, J. Johannes, S. Zschaler, and U. ABmann. How Dark Should a
Component Black-box Be? The Reuseware Answer. In Proc. of the 12th International Work-
shop on Component-Oriented Programming (WCOP’07), 2007.

[22] A. Ingolfsdottir and H. Lin. A Symbolic Approach to Value-passing Processes, pages 427-478.
Handbook of Process Algebra. Elsevier, 2001.

[23] P. C. Kanellakis and S. A. Smolka. CCS expressions finite state processes, and three problems
of equivalence. Inf. Comput., 86(1):43-68, 1990.

[24] A. Martens. On Compatibility of Web Services. Petri Net Newsletter, 65, 2003.

[25] R. Mateescu, P. Poizat, and G. Salaiin. On-the-Fly Adaptation of Services with Value-Passing
Protocols. Submitted to ASE’08.

[26] M. Mecella, B. Pernici, and P. Craca. Compatibility of E-services in a Cooperative Multi-
platform Environment. In Proc. of VLDB satellite workshop on Technologies for E-Services
(TES’01), volume 2193 of Lecture Notes in Computer Science, pages 44-57. Springer, 2001.

[27] H. R. Motahari-Nezhad, B. Benatallah, A. Martens, F. Curbera, and F. Casati. Semi-Automated
Adaptation of Service Interactions. In Proc. of the 16th International Conference on World
Wide Web (WWW’07), pages 993—-1002. ACM Press, 2007.

20



BIBLIOGRAPHY

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

S. Nejati, M. Sabetzadeh, M. Chechik, S. M. Easterbrook, and P. Zave. Matching and Merging
of Statecharts Specifications. In Proc. of 29th International Conference on Software Engineer-
ing (ICSE’07), pages 54-64. ACM Press, 2007.

R. Paige and R. E. Tarjan. Three partition refinement algorithms. SIAM J. Comput., 16(6):973—
989, 1987.

T. Pedersen, S. Patwardhan, and J. Michelizzi. WordNet::Similarity - Measuring the Relat-
edness of Concepts. In Proc. of the 19th National Conference on Artificial Intelligence, 16th
Conference on Innovative Applications of Artificial Intelligence (AAAI’04), pages 1024—1025.
American Association for Artificial Intelligence, 2004.

F. Plasil and S. Visnovsky. Behavior Protocols for Software Components. IEEE Transactions
on Software Engineering, 28(11):1056-1076, 2002.

P. Poizat and G. Salaiin. Adaptation of Open Component-based Systems. In Proc. of the 9th
IFIP International Conference on Formal Methods for Open Object-Based Distributed Systems
(FMOODS’07), volume 4468 of Lecture Notes in Computer Science, pages 141-156. Springer-
Verlag, 2007.

F. Puntigam. Black & White, Never Grey: On Interfaces, Synchronization, Pragmatics, and
Responsibilities. In Proc. of the 12th International Workshop on Component-Oriented Pro-
gramming (WCOP’07), 2007.

G. Salaiin, L. Bordeaux, and M. Schaerf. Describing and Reasoning on Web Services us-

ing Process Algebra. International Journal of Business Process Integration and Management,
1(2):116-128, 2006.

R. J. van Glabbeek. The Linear Time - Branching Time Spectrum I, chapter 1, pages 3-99.
Handbook of Process Algebra. Elsevier, 2001.

D. M. Yellin and R. E. Strom. Protocol Specifications and Component Adaptors. ACM Trans.
Program. Lang. Syst., 19(2):292-333, 1997.

J. M. Zaha and A. Albani. Compatibility Test for Coordination Aspects of Software Compo-
nents. In Proc. of the 17th Australian Software Engineering Conference (ASWEC’06), pages
41-48. IEEE Computer Society, 2006.

21



