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Abstract—Competitive majority network trained by error cor-
rection (C-Mantec), a recently proposed constructive neural net-
work algorithm that generates very compact architectures with
good generalization capabilities, is implemented in a field program-
mable gate array (FPGA). A clear difference with most of the
existing neural network implementations (most of them based on
the use of the backpropagation algorithm) is that the C-Mantec
automatically generates an adequate neural architecture while the
training of the data is performed. All the steps involved in the
implementation, including the on-chip learning phase, are fully
described and a deep analysis of the results is carried on using
the two sets of benchmark problems. The results show a clear
increase in the computation speed in comparison to the standard
personal computer (PC)-based implementation, demonstrating the
usefulness of the intrinsic parallelism of FPGAs in the neurocom-
putational tasks and the suitability of the hardware version of the
C-Mantec algorithm for its application to real-world problems.

Index Terms—Circuit complexity, constructive neural networks
(CoNN), on-chip learning, threshold networks.

I. INTRODUCTION

A RTIFICIAL neural networks (ANNs) are the mathemati-
cal models inspired in the functioning of the brain that can

be utilized in clustering and classification problems, and which
have been successfully applied in severalfields, including pattern
recognition, stock market prediction, control tasks, medical
diagnosis, prognosis, etc. Despite years of research in the field
of ANN, selecting a proper architecture for a given problem
remains a difficult task [1]–[3].

Among the several strategies to solve or alleviate this problem,
constructive neural networks (CoNNs) offer the possibility of
generating networks that grows as the input data are analyzed,
and then they can match the complexity of the set of data [4].
Moreover, the training procedure in CoNN, considered a compu-
tationally expensive problem in the standard feedforward neural
networks, can be done online and relatively fast. Competitive
majority network trained by the error correction (C-Mantec) is a
CoNN algorithm recently introduced [5] that implements compe-
tition between the neurons permitting them to learn during the
whole training process as it does not freeze the synaptic weights

of the previous incorporated neurons as most CoNN usually do,
and also incorporates a built-in filtering scheme to avoid the
overfitting problems. These two characteristics permit the algo-
rithm to generate the compact neural architectures with very good
generalization capabilities, making the algorithm suitable for its
application to devices with limited resources such as microcon-
trollers, embedded systems, sensor networks, and field program-
mable gate arrays (FPGAs) [6].

FPGAs are the hardware devices created with the aim of pro-
totyping digital circuits as they offer flexibility and speed. In the
recent years, the advancement in technology has permitted to
construct FPGAswith a considerable amount of processing power
and memory storage, and so they have been applied in several
domains (telecommunications, robotics, pattern recognition tasks,
infrastructuremonitoring, etc.) [7]–[9]. In particular, FPGAs seem
quite suitable for neural network implementations as they are
intrinsically parallel devices as is the processing of information in
neural network models. Several studies have analyzed the imple-
mentation of neural networks models in FPGAs [10]–[12]. A
broad classification of them can be done according to whether or
not they include the learning process on-chip [3], [13]. In the
off-chip learning implementations, the training of the neural net-
work model is usually performed in a personal computer (PC),
and only the synapticweights are transmitted to the FPGA that acts
as a hardware accelerator [14]–[16]. In contrast, the on-chip
learning implementations [17]–[20] permit to train the models
autonomously, independently of a PC, consuming much more
FPGA resources but offering more flexibility and efficiency.
Among the works in this category, we highlight the recent work
byLotrič andBulić[19]where thebackprogation algorithm is fully
implemented and applied to a large set of benchmark functions,
even though there is no significant performance through the use of
an FPGA was found in comparison to the software models.

An important aspect at the time of the implementation of an
algorithm in an FPGA is the data-type representation. The nature
of the FPGAs encourages the use of an integer data type, or fixed
point representation if a fractional part is needed, because this
type of representation is more efficient. A floating point repre-
sentation might be used but this would require the utilization of
specific cores [21], [22]. In this sense, the work of Savich et al.
(2007) [23] describes an interesting analysis of the implementa-
tion of floating point neural algorithms in the fixed point
arithmetic, being the one used in this work.

Programming an FPGA is not a trivial task. A straightforward
approach would be the use of standard programming languages
(C, C++, Fortran, etc.) but unfortunately this option requires
the use of language translators that so far tends to be quite
inefficient. Instead, FPGAs are predominantly programmed
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using the hardware description languages such as VHDL or
Verilog. These languages are complex and thus its programming
is usually very time consuming. Furthermore, the existence of
several FPGAs manufacturers and a lack of a common standard
makes the situation a little bit more complicated [8].

In the present work, we have fully implemented the C-Mantec
CoNN model in a VIRTEX-5 XC5VLX110T FPGA but using a
general programming approach that may facilitate its portability
to other board models. Our aim was twofold: first, to analyze the
advantage in processing the speed that can be achieved through
the FPGA parallel processing, and second to analyze the actual
limitations in the utilization of an FPGA in terms of maximum
number of patterns that can be stored, the dimension of the
dataset, the differences in using a fixed point representation, etc.,
and, in particular, analyzing those aspects that arise only when a
real hardware implementation is carried on.

The organization of the present work is as follows. Section II
includes the details about the C-Mantec algorithm. The FPGA
implementation is described in Section III, which contains four
parts: the first three subsections describe the implementation of
the blocks in which the FPGA is divided, and the fourth
subsection deals with specific implementation details. Section IV
contains the results of testing the implementation on two sets of
benchmark functions (Boolean and real-valued problems), to-
gether with a detailed comparison of the computational speed
between the current FPGA implementation and the original
PC-based one. Finally, the paper ends with the discussion of
the results and the conclusions obtained.

II. C-MANTEC AND CONN ALGORITHM

C-Mantec [5] is a novel neural network constructive algorithm
that utilizes competition between the neurons and a modified
perceptron learning rule (thermal perceptron [24]) to build the
single hidden layer compact architectures with good prediction
capabilities for the supervised classification problems. As a
CoNN algorithm, C-Mantec generates the network topology
online during the learning phase, avoiding the complex problem
of selecting an adequate neural architecture. The novelty of the
C-Mantec in comparison to the previously proposed constructive
algorithms is that the neurons in the single hidden layer compete
for learning the incoming data, and this process permits the
creation of very compact neural architectures. The binary acti-
vation state ( ) of the neurons in the hidden layer depends on the

input signals , and on the actual value of the synaptic
weights ( ) and bias ( ) as follows:

on

off

where is the synaptic potential of the neuron defined as

In the thermal perceptron rule, themodification of the synaptic
weights is done online (after the presentation of a single
input pattern) according to the following equation:

where is the target value of the presented input and represents
the value of input unit connected to the output byweight . The
difference to the standard perceptron learning rule is that the
thermal perceptron incorporates the factor. This factor,
whose value is computed as shown in (4), depends on the value
of the synaptic potential and on an artificially introduced tem-
perature ( )

The value of decreases as the learning process advances
according to (5), similarly to a simulated annealing process

where is a cycle counter that defines an iteration of the
algorithm on one learning cycle and is the maximum
number of iterations allowed.One learning cycle of the algorithm
is the process that starts when a chosen pattern is presented to the
network and finishes after checking that all neurons respond
correctly to the input or when the synaptic weights of the neuron
chosen to learn the actual pattern (whether an existing or a new
neuron) modifies its synaptic weights.

The C-Mantec algorithm has three parameters to be set at the
time of starting the learning procedure, and several experiments
have shown the robustness of the algorithm that operates fairly
well in a wide range of parameter values. The algorithm has the
following three parameters.

1) : maximum number of learning iterations allowed for
each neuron in one learning cycle.

2) : growing factor that determineswhen to stop a learning
cycle and include a new neuron in the hidden layer.

3) : determines inwhich case an input example is considered
as noise and removed from the training dataset according to
the following condition:

where represents an input pattern, is the total number
of patterns in the dataset, is the number of times that
pattern has been presented to the network on the current
learning cycle, and and correspond to the mean and
variance of the distribution for all patterns on the number of
times where the algorithm has tried to learn each pattern in
a learning cycle, respectively. The learning procedure
starts with one neuron present in the single hidden layer
of the architecture and an output neuron that computes the
majority function of the responses of the hidden neurons
(a voting scheme). The process continues by presenting an
input pattern to the network and if it is misclassified, it will
be learned by one of the present neurons whose output did
not match the target pattern value if certain conditions are
met, otherwise a new neuron will be included in the
architecture to learn it. Among all neurons that misclassi-
fied the input pattern, the onewith the largest will learn
it but only if this value is larger than the parameter
of the algorithm, a condition included to prevent the
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unlearning of the previous stored information. If no ther-
mal perceptron meeting these criteria is found, a new
neuron is added to the network, starting a new learning
cycle that includes the resetting of all neurons’ temperature
to . Also, at the end of a cycle, the noisy patterns filtering
procedure (6) is applied. The algorithm continues its
operation iteratively by repeating the previous stages until
all patterns in the training set are correctly classified by the
network.

III. FPGA IMPLEMENTATION

FPGAs [25] are reprogrammable silicon chips, using prebuilt
logic blocks and programmable routing resources. They can be
configured to implement the custom hardware functionality, and
in this sense, FPGAs are completely reconfigurable and can
almost instantly change its behavior by recompiling a new
circuitry configuration.

The board used for the current implementation is the Virtex-5
OpenSPARC evaluation platform (ML509). This device in-
cludes a Xilinx Virtex-5 XC5VLX110T FPGA that provides
different connector devices: 2 USB (host and peripheral) ports, 2
PS/2 (keyboard, mouse) ports, RJ-45 (10/100/1000 networking)
and RS-232 (male serial port) connectors, 2 Audio inputs (line,
microphone), 2 audio outputs (line, Amp, SPDIF), video input,
video output (DVI/VGA), and single-ended and differential I/O
expansion. Table I shows some characteristics of the Virtex-5
XC5VLX110T FPGA, indicating its main logic resources. A
picture of the Virtex-5 OpenSPARC platform is shown in Fig. 1.

The VHDL [26], [27] (VHSIC hardware description lan-
guage) language is used for programming the FPGA, under the
“Xilinx ISE Design Suite 12.4” environment using the “ISim
M.81d” simulator. VHDL is a hardware description language
widely used in the electronic design automation to describe the
digital and mixed-signal systems such as FPGAs and integrated
circuits, and can also be used as a general purpose parallel
programming language. Our design strategy was to avoid the
usage of specific Xilinx cores, in order to obtain a general design
that can be potentially used in FPGAs from other manufacturers.

All computations have been performed using the fixed point
arithmetic, which is the standardway toworkwith FPGAboards.
Even iffloating point operations can be codified in anFPGA [23],
they tend to be more inefficient, as it is also the case for most
digital circuits.

The implementation of the C-Mantec algorithm in the Virtex 5
FPGA was carried by dividing the board resources in three main
blocks. Fig. 2 shows the control, pattern, and neuron blocks
created, and the flow of information between them, necessary for
the execution of the algorithm. We describe below the organiza-
tion of each one of the three blocks followed by a subsection that
comment on the specific implementations details.

A. Neurons Block

Each neuron consists of a group of look-up tables (LUTs)
containing all information to compute its output ( ), to calculate
its value, and to modify its synaptic weights. Neurons
receive the information about the input patterns from the pattern

block and compute their synaptic potential value to obtain a
neuron’s output through the following equation:

on

off

Note that this equation is similar to the original C-Mantec
equation (1) but the inequality condition for activating or not the
neuron according to the value of was modified, as now the
neuronwill be active only if and not in the case . This
change permits to compute the majority function of all neurons
(the network output) in a much faster way (see control block
section). The values of all hidden neurons are sent by the
neurons block to the control block for computing the whole
network output value that is returned back to the neurons for

TABLE I
MAIN SPECIFICATIONS OF THE VIRTEX-5 XC5VLX110T FPGA RELATED

TO ITS AVAILABLE SLICE LOGIC

Fig. 1. Picture of a Virtex-5 OpenSPARC platform used for the implementation
of the C-Mantec algorithm.

Fig. 2. Scheme of the FPGA design, where the control and pattern blocks are
shown together with the neurons.
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deciding whether to compute the values (in case the network
output does not match the pattern target value) or to wait for the
next input pattern (if network output match the pattern target
value), starting the whole process again. In case the network
output does not match the target of the current pattern, each
neuron computes its value (4), and these values are sent to the
control block that will return the information about which neuron
has the largest , so this neuronmodifies its synaptic weights if
its is larger than the value of the parameter . Synaptic
weight values are stored in the registers of the FPGA instead of
using the RAM block in order to reduce the set-up problems
because in this way they are kept close to the neurons.

B. Pattern Block

Training patterns are managed by the pattern block. Through
the serial port pattern, the values are received from the PC and
stored in the FPGA distributed RAM block. Patterns are repre-
sented using bytes, with the value of determined by the input
dimension of the patterns, noting that one extra bit is reserved for
the pattern class (the target output).

During the execution of the algorithm after a signal from the
control block is received, the pattern block sends one randomly
selected pattern to all neurons. In order to avoid repeated training
of a given pattern, the memory position of the last sent pattern is
switchedwith the one corresponding to the final eligible memory
position, whereas the number of eligible memory positions is
reduced by 1. This action is repeated until a pattern is found for
which the network output is different from its target value, as
this case involves modifying the synaptic weights and also the
beginning of a new cycle.

The C-Mantec algorithm incorporates a filtering scheme for
removing patterns considered as “noisy” samples, task also
performed by the pattern block. Every time a new neuron is
added to the architecture, patterns that needed a number of
weight updates larger than the mean plus standard deviation
of the whole set of patterns [see (6) and related text] are
considered as noise and removed from the training set. In
practice, the removal procedure works by storing these “noisy”
patterns in the last memory positions.

C. Control Block

The control block organizes the whole information process by
sending and processing the information from the neurons and
pattern blocks. Once the patterns have been loaded into the
pattern block, the control receives a signal in order to start the
execution of the algorithm. The process start by sending a signal
to the pattern block indicating that a random chosen pattern
should be sent to the neurons.

As C-Mantec is a constructive ANN model, the architecture
grows as the training phase proceeds, but as FPGA programming
needs all elements to be specified before execution, the maxi-
mum number of possible neurons in the architecture is created at
the beginning with a flag managed by the control block, which
determines whether a neuron is activated (included in the actual
architecture) or inactivated (waiting for its potential inclusion).
At the beginning of the learning process, all synaptic weights are
set to zero and the control unit activates only one neuron.

When a random chosen pattern is sent to the neurons, their
outputs ( ) are computed and the control block calculates the
majority function of these signals, which is the whole network
output in response to the presented input. This output value is
compared with the target value and if they match, the control
block sends a signal for the release of a newpattern, but if they are
different, values are obtained for each of the neurons in order
to choose the one with the largest value and in case if its is
larger than the value of parameter , start the modification of
its synaptic weights. values are received from the neurons
and the control unit chooses among the wrong ones, the neuron
with the largest . At this point, the control block sends a signal
to the chosen neuron so this unit modifies its synaptic weights.
The modification of the weights is done serially, updating every
synapse according to (3).

The control block contains two modules: the and the
(Output) modules. The former one calculates the largest of a
group of neurons, whereas the module calculates the majority
function of the outputs ( ). A detailed description of both the
modules is given in the following section.

D. Implementation Details

1) Module: This module computes the majority function
of the hidden neurons outputs ( ). A diagram showing the
schematic operation of this module is shown in Fig. 3.
Hidden neurons output ( ) are first added and then this value
is compared to the number of active neurons divided by 2, so the
majority function can be computed. The output of this module is
“1” when the number of activated neurons is larger than the
inactivated ones and “0” otherwise. Regarding the logical
operation of the circuit, half of the number of active neurons
is obtained using a right logical shift operation applied to the
number of active neurons. The operation of this module can be
performed in just one clock cycle, because computations within
this block are not synchronized.

2) Module: This module is in charge of computing the
largest value among all neurons whose output does not
match the target value for a presented pattern (“wrong” neurons).
Since it is more efficient to compute the value among all
neurons, we set this value to 0 for the “correct” neurons to obtain
the largest value among all (also the value of inactive
neurons is set to 0). The highest is calculated in blocks of
16 neurons, as this number was the largest one for which it is not
necessary to reduce the operative frequency of the system. If the
number of active neurons is larger than 16, the obtained value
of the first block is saved and compared to the one obtained from

Fig. 3. Functional diagram of the S module for computing the majority function
of the hidden neurons outputs.
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the second block, saving the largest value found so far and
proceeding in this way until all active neurons are analyzed.
Fig. 4 shows an schematic drawing of the procedure used to find
the neuron with the largest among those that incorrectly
classify the input pattern. This figure shows on its bottom left of
the clock signal that synchronizes the module operation. On top
of it, values grouped in blocks of 16 that are iteratively sent to
the logic circuit that computes the maximum of this block, taking
into account the maximum value obtained so far [indicated
by in the figure]. After all blocks are analyzed, the
module outputs the maximum value found (Max ) together
with a value (Index) that indicates the neuron for which this value
was found.

3) Product Implementation: The execution of the algorithm
requires the computation of several products, such as the
computation of the values, the obtention of the synaptic
weights, and the neuron potential ( ). In particular, the
computation of the value requires three multiplications;
one related to the calculation of , another for the
interpolation of the exponential function, and the last for
obtaining its final value [cf. (4)]. Every neuron has only one
multiplier block that is used in a time-division multiplexing
scheme to minimize the LUTs’ usage. Xilinx specific
multiplication cores are not used because we have decided to
use the exportable code, allowing its potential application to
other FPGAs. The multiplication block is based on the use of
shifters and adders, following the approach introduced in [28].
The number of LUTs required in this scheme is proportional to
the bit size of the input data, e.g., for two vectors with and
bits length, respectively, the product requires LUTs,
whereas the output has a size of bits.

4) Synaptic Weights Precision: The representation of the
synaptic weights can be chosen according to the available
resources, taking into account that obtaining a higher
accuracy may require a larger representation, which will
imply an increase in the number of LUTs per neuron
(consequently a reduced number of available neurons) and a
decrease in the maximum operation frequency of the board.
Synapticweight accuracy is important so that the resulting values
are similar to those obtained using the floating point
representation used in the PC-based code. A synaptic weight
is represented by a bit array with integer and fractional parts of
lengths and . determines the minimum and maximum
values that can be obtained as to , whereas
defines the accuracy . The number of bits needed to

represent all possible discrete values within a certain range of
positive values depends on the difference between the maximum
andminimumvalues of the interval, and can be obtained from the
following equation:

Table II shows the number of LUTs, maximum operating
frequency, number of available neurons, and accuracy
according to the number of bits used for representing the
synaptic weights , where and indicate the
integer and fractional parts of the representation, respectively.

5) Number of Inputs: The number of inputs in a C-Mantec
network is determined by the dimension of the training patterns.
The input dimension strongly influences the whole FPGA
implementation as it essentially modifies the number of LUTs
per neuron and themaximumnumber of training patterns that can
be stored in the memory board. Further, changing the number of
inputs involves a complete modification of the programming
code, and in this sense, our approach was to develop different
codes according to the maximum number of inputs needed. Of
course, one nonoptimal option is to choose the largest input code
for all cases, clearly reducing other capabilities of the board.
Table III shows the number of LUTs per neuron, the number of
RAM blocks used every 1024 patterns, the maximum number of
patterns that can be stored ( RAM blocks), and the
number of LUTs and registers of the pattern block, all as a
function of the number of inputs. The size of the inputs shown in
the table corresponds to values of a power of 2 minus 1, as the
remaining input is used for the output class.

6) Exponential Function: The calculation of the value
involves the computation of an exponential functions involving
a negative number. As there is no floating point operations
defined in the FPGA, integer fixed point arithmetic should be
used. For the exponential function, a table was created that
contains the value of the function for some selected inputs.

Fig. 4. Functional diagram of the module, which calculates the largest
value among active neurons and the index of the neuron for which this value was
obtained.

TABLE II
NUMBER OF LUTS, MAXIMUM OPERATING FREQUENCY, NUMBER OF AVAILABLE

NEURONS AND ACCURACY ACCORDING TO THE NUMBER OF BITS USED FOR

REPRESENTING THE SYNAPTIC WEIGHTS

and indicate the integer and fractional parts of the representation.

TABLE III
LUTS PER NEURON, NUMBER OF RAM BLOCKS USED, MAXIMUM NUMBER OF

PATTERNS AND NUMBER OF LUTS AND REGISTERS USED IN THE PATTERN
BLOCK AS A FUNCTION OF THE INPUT SIZE
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Storing the table values requires large amounts of memory, and
as one table per neuron is needed, only selected input values
were stored, and thus the table was built with 64 values starting
from 0 down to with 0.125 decreasing steps (values lower
than were set to 0). To increase the precision of the
exponential calculation, a linear interpolation procedure was
implemented. Fig. 5 (top) plots the real, table, and interpolated
values for the exponential function, where the inset plot shows
an enlargement of a portion of the curve. Fig. 5 (middle and
bottom graphs) shows the absolute and relative errors of the
exponential function in the range from 0.0 to .

7) : This value, which determines the maximum number
of learning modifications that a neuron can suffer in a learning
cycle, has been modified with respect to the original C-Mantec
code. As this value is employed for calculating the temperature
( ) value, through a division operation with a high associated
computational cost, was limited power of 2 values, allowing
a conversion of the division operation in a right logical shift. The
maximum allowed value of is .

IV. RESULTS

Different comparisons have been performed between the
implementation in VHDL for the selected FPGA and the
implementation of the C-Mantec algorithm in C programming
language [29], noting that this language is considered among
the fastest that can be used in a PC [30]–[32]. The CPU used for

running the C code is an Intel (R) core (TM) Quad CPU Q6600
@ 2.4 GHz.

A set of 16 single output Boolean functions was used to test
the speed and the architectures generated by the C-Mantec
algorithm. The functions used for the tests comprises two sets of
arithmetic logic unit (ALU) functions that include 6 Alu2
functions of 10 inputs and 8 Alu4 functions of 14 inputs, both
from the MCNC (Microelectronics Center of North Carolina)
benchmark [33], together with the exclusive disjunction func-
tion (XOR) of two and three inputs. The C-Mantec algorithmwas
run with the following parameter values: and

. (No noise elimination step was applied in this
case, i.e., .) Also, a phase-locked loop (PLL) block has
been used to set the frequency of the system to 72.72 MHz for
all tests. Table IV shows the number of neurons and time (s)
needed by the VHDL–FPGA and the C-PC implementations,
computed as themean over 20 simulations run for each function
[the standard deviation ( ) is also shown]. A comparison of
the learning times is displayed in Fig. 6 using a logarithmic
-axis. All the results shown in Table IV were obtained using a
16-bit fixed point representation for the synaptic weights
( ), except the values for function Alu4r for
which a larger representation was needed ( )
in order to avoid the saturation effects.

We have also computed the time (s) that the system employs for
three important tasks involved in a learning cycle: computing the
majority function of the hidden neurons’ responses, determining
the largest value, and modifying the synaptic weights. For
obtaining themajority function, the systemneeds cycles,
for determining the largest , and for modi-
fying the synaptic weights cycles ( is the number of
inputs and is the number of neurons). Fig. 7 shows a graphical
representation of the running times for the values of and

.
We further computed the execution times related to the

addition of a new neuron as the constructive network grows,
comparing the times needed by the FPGA and PC-based im-
plementations using the 10-input function alu2l (30 repetitions

Fig. 5. Exponential function and approximated value (top graph). Absolute
(middle) and relative errors (bottom) committed in the approximation of the
exponential function (see text for more details).

TABLE IV
MEAN AND STANDARD DEVIATION OF THE NUMBER OF NEURONS IN THE GENERATED

ARCHITECTURES AND THE TIME (IN SECONDS) NEEDED BY THE ALGORITHM FOR A SET OF

16 BOOLEAN FUNCTIONS, BOTH FOR FPGA AND PC IMPLEMENTATIONS
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were performed in order to obtain an average value). Fig. 8 (top)
shows the time needed by the FPGA and PC implementation,
whereas Fig. 8 (bottom) shows the relative speed increase
between the two platforms. The two curves in Fig. 8 (bottom)
corresponds to the relative time needed by the algorithm to
achieve the shown number of neurons (cumulative), whereas
the upper curve (per neuron) corresponds to the comparison
when the algorithm is executed with a constant number of
neurons. The cumulative comparison clearly shows that the
relative performance of the FPGA (in comparison to the PC
implementation) increases almost linearly as the number of
neurons in the architecture increases.

In another experiment, we analyzed the implementation of
real-world functions, using a set of eight binary output bench-
mark problems from the UCI1 repository. Table V shows the
results for the FPGA and PC implementations of the C-Mantec
algorithm. The first two columns of the table show the name and
number of inputs of the used benchmark problems. The third and
fourth columns show the number of neurons obtained for both the
implementations, and in the last two columns the generalization
ability is shown for both the approaches. The generalization
ability was computed using a 10-fold training/test scheme with
the following parameters for the C-Mantec algorithm:
( , , ).

V. DISCUSSION AND CONCLUSION

We have presented and analyzed in this work an FPGA
on-chip learning implementation of the recently introduced
C-Mantec neural network constructive algorithm. One of the
main advantages of using this new algorithm is the fact that in
comparison to backpropagation training (the standard choice in
the ANN field) it avoids the problem of selecting the adequate
architecture, as this process is done automatically according
to the complexity of the input data. A further advantage of
C-Mantec is its robustness regarding the parameter settings [5].

Several tests carried on two well-known benchmark datasets
(cf. Tables IVand V) show that the fixed precision representation

Fig. 8. Execution times needed by the FPGA and PC implementations of
C-Mantec related to the addition of a new neuron. Absolute times (top graph)
and relative times (bottom graph) computed for the alu2l function (see the text for
more details).

TABLE V
RESULTS OF THE IMPLEMENTATION OF EIGHT BENCHMARK PROBLEMS IN THE FPGA

VERSION OF THE C-MANTEC ALGORITHM

Thefirst two columns showname andnumber of inputs of the function and the rest
of the columns shows the number of neurons and the generalization ability
obtained with both platforms.

Fig. 7. Run time of computing themajority function, determining the largest
andmodifying the synaptic weights in a learning cycle (see text for more details).

Fig. 6. Mean and standard deviation of the learning times (in seconds, logarith-
mic scale) for a set of 16 Boolean functions for VHDL–FPGA and C-PC
implementations of the C-Mantec algorithm (these values are also represented
in Table IV).

1www.ics.uci.edu/ mlearn/.
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used (16 bits fixed point) for most cases is enough to achieve the
results comparable to the floating point original PC-based exe-
cution of the algorithm, as almost indistinguishable results were
obtained for the size of the generated architectures and for the
generalization ability of the algorithm.

Regarding the advantage of using the FPGA version of the
algorithm instead of standard software, a clear significant speed
increase has been observed, noting that this increase grows
approximately linear as the complexity of the problem augments
(cf. Fig. 7 bottom graph), thus obtaining a factor increase of up to
47 times in the case of the most complex function analyzed
(function Alu4r in Table IV).

In the light of the observed results, we can conclude that the
present analysis demonstrates the suitability of the C-Mantec
algorithm for its application in the real-world industrial problems
in which FPGAs are commonly used [34], such as industrial
motor control [35], machine vision [36], industrial networking
[37], robotics [38], etc. Further, the experiments carried out
confirm the great potential that FPGAs have for neurocomputa-
tional tasks given its intrinsic parallel processing.
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