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Abstract. Finding the largest linearly separable set of examples for a
given Boolean function is a NP-hard problem, that is relevant to neural
network learning algorithms and to several problems that can be for-
mulated as the minimization of a set of inequalities. We propose in this
work a new algorithm that is based on finding a unate subset of the input
examples, with which then train a perceptron to find an approximation
for the largest linearly separable subset. The results from the new algo-
rithm are compared to those obtained by the application of the Pocket
learning algorithm directly with the whole set of inputs, and show a clear
improvement in the size of the linearly separable subset obtained, using
a large set of benchmark functions.

1 Introduction

We propose in this work a new algorithm for finding a linearly separable (LS)
subset of examples for a non-linearly separable problem. Related versions of this
problem appears in different contexts as machine learning, computational geom-
etry, operation research, etc. [1,2,3,4]. In particular, the problem is very relevant
in the field of neural networks given that individual neurons can only compute
linearly separable functions. Many constructive algorithms for the design of neu-
ral architectures are based on algorithms to find a maximum cardinality set of
linearly separable examples [4]. Within the neural networks community, the very
well known perceptron algorithm [5], that works well for finding the synaptic
weights for a linearly separable problem, has been adapted several times in or-
der to be applied to the case of non-linearly separable problems [6,7]. Among
the different modifications, the most popular is the Pocket algorithm introduced
by Gallant [6]. The problem of finding the largest LS subset is NP-hard and
thus different approximate solutions and heuristics have been proposed to deal
with it [3,4,8]. In this paper we introduce an algorithm for finding an approx-
imation to the largest linearly separable subset that is based on finding a set
of unate examples. The algorithm then use this subset to train a perceptron
using the Pocket algorithm. The new and original contribution of the algorithm
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consists in a method for finding an unate approximation of the input function
to speed up and improve the process of obtaining a LS set, working as a kind
of preprocessing step before applying the Pocket algorithm,. In agreement with
this previous idea, it has been shown by Jacob & Mishchenko [9] that obtaining
a unate decomposition of a function improves its synthesis procedure in logic
design. We have compared the results of the MaxSet algorithm against the most
popular of the used algorithms, the Pocket algorithm, trained with the whole
sets of examples.

2 Mathematical Preliminaries

A Boolean function of n variables is defined as a mapping f : {0, 1}n → {0, 1}.
A Boolean function is completely specified by the output of the function, f(x),
in response to each of the 2n input examples.

A Boolean function is unate if all its variables are unate. A variable is unate
if it is only positive or negative unate but not both. A variable is positive or
negative unate according to the change on the output of the function that
a change in the variable produces, i.e., if a variable xi is positive unate then
f(x0, . . . , xi = 0, . . . , xn−1) ≤ f(x0, . . . , xi = 1, . . . , xn−1) for all xj with j �= i
(conversely, for a negative unate variable). The influence of a variable xi is
defined as the number of inputs vectors x ∈ {0, 1}n such that when the ith com-
ponent is negated (flipped from 0 to 1 or viceversa) the output of the function
changes its value. Unate variables have positive or negative influences but not
both, case in which are named binate.

It has been demonstrated that all threshold functions are unate but the con-
verse is not true (for example, the function F (x0, x1, x2, x3) = x0 x1 + x2 x3 is
unate but it is not threshold).

3 The MaxSet Algorithm

The general idea of the algorithm is to construct an unate approximation of the
input function that is as similar as possible to the original function. In order to
construct this approximation the algorithm selects a variable at a time, adding
to the unate set pair of examples those that produce a positive (or negative)
influence. The selection of the variable and the sign of the influence is decided
according to the largest number of pairs available at that time with the same
influence, in order to maximize the cardinality of the selected set. The opti-
mal solution for obtaining the unate approximation, consists in maximizing the
whole set of variables simultaneously, and it is a NP-hard multiple optimization
problem. Our method, instead, select variables each at a time, searching for the
largest possible subset at each step.

For a clear explanation of the algorithm we will follow a flow diagram shown
in Fig. 2 and an example of the application of the algorithm on a non-LS func-
tion of 4 variables. The Boolean function selected for the example is shown in the
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Fig. 1. The partially ordered set (Poset) of the Boolean function used as an example in
the text to illustrate the application of the algorithm. The input bits of the examples
are shown inside the ovals and the corresponding outputs are indicated by the color of
the oval (white corresponds to 0 and grey indicates 1). The decimal value of the inputs
is indicated outside the ovals, as it is used in the text. Links between examples connect
pair of nearest neighboring examples, whose input bits are at Hamming distance of 1.

partially ordered set (Poset) depicted in Figure 1. The Poset shows the examples
ordered in levels according to the weight of the input (number of 1’s) where links
between nearest neighboring examples are also shown. In the figure (Fig. 1), the
output value of each of the examples is indicated by the color of the boxes
(white:0, grey:1). It is also shown below each of the examples, the decimal order
of the examples used to refer to the examples.

The first step of the algorithm consists in allocating all pairs of nearest neigh-
boring examples (pairs of examples at Hamming distance 1) to one of the 4
variables of the function (the one in which the examples of the pair differ) and
to one of the three possible sets : positive, negative and neutral influence sets.
The pair is included in a given set according to the influence of the variable in
which the pair differs. For example, the pair of examples with decimal indexes
0 and 1 (inputs 0000 and 0001), with output value 0 and 1 respectively will be
included in the positive set corresponding to the the last bit variable, x0. This is
because the pair of examples defines the variable x0 as having positive influence,
because a change in the variable from 0 to 1 makes the output of the example
to change in an increasing way (positive).

As mentioned, the algorithm starts with the allocation of all possible pairs of
neighboring examples to a table in which every pair is assigned to a variable and
to a category out of the three possible ones: positive, negative and neutral, indi-
cated by (+, −, N). The allocation of the pairs of neighboring examples for the
case of the function that we are using to illustrate the method is shown in Table
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Fig. 2. Flow diagram of the MaxSet algorithm introduced in this work to find an
approximation to the largest LS subset of a non-LS input function

1. The function is defined by the truth vector (0,1,0,1,0,1,1,1,1,0,1,1,0,1,0,1), that
contains the output values of the function in response to the 16 inputs arranged
in decimal order. The table has 4 columns corresponding to the four variables
of the function and three rows for the three types of influences.

After all the pairs have been allocated into the table, the algorithm contin-
ues by selecting a set of examples belonging to a positive or negative category
with the largest cardinality. The neutral sets are only considered at the end of
the algorithm after all variables have been defined as positive or negative. For
the function that we are considering, the first selected set is the examples with
positive influence corresponding to the variable x0, as this is the largest set con-
taining 10 examples. The selected examples are then included in the LS set. For
the function of the example, this step means that examples 0,1,2,3,4,5,12,13,14
and 15 are included in the LS set. After a set of examples have been selected,
the algorithm normally checks if there are possible conflicting examples, but this
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checking step is only applied after a second variable has been selected and the
process is described below. Thus, the algorithm continues by selecting a second
variable in the same way as it was done for the first one, selecting the largest sub-
set corresponding to a negative or positive non-selected variable. For the example
under analysis, the new selected subset is the positive examples corresponding
to variable x1 that will add to the LS set a total of 3 new examples (the exam-
ples 6,9 and 11, as example 4 is already included). After the second subset (and
variable) have been selected, a checking procedure is applied in order to avoid
possible future conflicts. The checking procedure analyzes the non-selected pairs
of example with opposite influence of the selected sets that have an example
included in the LS set. For the Boolean function of the example, the variables
x0 and x1 have been already selected with positive influence, implying that we
should look for the negative sets of these two variables for probable conflicting
examples. The way to look for conflicts is to search for pairs included in these
non selected sets of variables x0 and x1 in which one of the examples of the
pair belongs to the LS set. For example, the pair 8 − 9 with negative influence
on variable x0 contains the example number 9 that has been already included
in the LS set. The checking procedure marks example 8 as a forbidden exam-
ple and includes it in the Non-LS set (avoiding its future selection), because an
eventual selection of example 8 will imply that the variable x0 would have both
positive and negative influence, and this is not possible for a unate or a LS set
of examples. The algorithm also checks for pairs of examples already included
in the LS set, that belong to non-marked variables. In the example, the pairs
3-6 and 9-13 belonging to the variable x2 with positive influence are already
included in the solution set, and also the pairs 1-9 and 6-14 corresponding to
the variable x3 with negative influence. On the contrary, the example 8 that
has been marked as a conflictive example, makes the algorithm to eliminate the
pairs 8-12 and 0-8 in the negative x2 variable and in the positive x3 variable
respectively. The main loop of the algorithm is applied again, but this time can
only consider the pre-marked variables, and thus the pre-marked positive part of
variable x2 is included to the LS set. No new examples are added to the LS set
as the examples of the pairs with positive influence for variable x2 are already
part of it. Any of the variables x2 or x3 could have been selected as they contain
the same number of possible examples, but the algorithm is set to select the
first one, in this case the x2. The checking procedure now marks example 10 as
forbidden example and thus the pair 2-10 is deleted from the positive part of
variable x3. Lastly, the algorithm marks the only left variable, x3 as negative
as it has been already pre-marked, and the main loop of the procedure finishes.
The unate set contains the examples 0, 1, 2, 3, 4, 5, 6, 9, 12, 13, 14, 15, while the
forbidden examples 8 and 10 belong to the non-LS set. Examples 7 and 11 are
not yet selected, meaning that we can include them in the unate set, as they
only involve neutral influence pairs, and thus the final solution set includes the
14 examples 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 15.

The procedure then finishes by applying the pocket algorithm with the se-
lected unate set that as a result will give a linearly separable set. If the unate
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test set was, indeed, linearly separable the pocket algorithm will then indicate so
but if the unate set happened to be unate but not linearly separable the pocket
algorithm will select only some examples of this candidate set. The procedure
ends by giving as output the LS separable set found by the pocket algorithm. If
a LS function is needed instead of a LS subset, all that is needed is just to test
the examples not already included in the LS set to find their outputs. In the case
of the function of the example, the unate set found is also linearly separable and
thus the pocket algorithm is able to learn it all.

Table 1. An example of the application of the MaxSet algorithm to a non-LS Boolean
function of 4 variables. All the 32 possible pairs of neighboring examples are included
in the table. (See text for details).

x0 x1 x2 x3

0 − 1 4 − 6 3 − 6 0 − 8
2 − 3 9 − 11 9 − 13 2 − 10

+ 4 − 5
12 − 13
14 − 15

− 8 − 9 8 − 12 1 − 9
10 − 14 6 − 14

6 − 7 0 − 2 0 − 4 3 − 11
10 − 11 1 − 3 1 − 5 4 − 12

N 5 − 7 4 − 7 5 − 13
8 − 10 11 − 15 7 − 15
12 − 14
13 − 15

4 Testing the Algorithm on a Set of Benchmark
Functions

The algorithm described above was implemented in C# and tested on different
sets of Boolean function. The efficiency of the algorithm to find large LS sets
and the computational time required for the implementation was compared to
the results obtained using the pocket algorithm applied to the original set of
examples. An initial test was carried out with all the 65536 Boolean functions of
4 variables with the aim of checking that the implementations of the algorithms
used in the test was working properly, and also to see how the new algorithms
perform with LS functions. The test confirmed that both algorithms found the
correct solution (i.e., the whole set of input examples was LS) for the 1881 LS
functions of 4 variables that exist in this case. The average size of the LS subset
across all the functions of 4 variables was 12.72 (79.5 % of the 16 examples) for
the new algorithm, while 10.79 (67.4 %) examples resulted from the application
of the Pocket algorithm (16 examples constitute the whole set of inputs for
functions of 4 variables). The Pocket algorithm was implemented for this case
setting a maximum of 200 iterations each time a new set of weights was found.
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Table 2. Results of the implementation of the MaxSet and Pocket algorithms on a set
of 54 non-LS Boolean functions used in logic synthesis (See text for details)

Function Inputs Fraction LS CPU Time Fraction LS CPU Time
MaxSet (Seconds) Pocket (Seconds)

cm82af 5 0.75 0 0.50 1
cm82ag 5 0.75 0 0.50 1
parity5 5 0.50 0 0.50 1
z4ml25 7 0.75 0 0.50 1
z4ml26 7 0.75 0 0.52 1
z4ml27 7 0.75 0 0.50 1
f51m44 8 0.80 0 0.50 1
f51m45 8 0.80 0 0.54 1
f51m46 8 0.80 0 0.53 1
f51m47 8 0.78 0 0.47 1
f51m48 8 0.81 0 0.53 1
f51m49 8 0.88 0 0.56 1
f51m50 8 0.75 0 0.50 1

9symml52 9 0.82 0 0.74 1
alu2k 10 0.53 0 0.54 1
alu2l 10 0.51 0 0.52 1
alu2m 10 0.75 0 0.50 1
alu2p 10 0.75 0 0.72 1
x2l 10 0.88 0 0.79 1
x2p 10 0.94 4 0.80 4
x2q 10 0.83 1 0.82 1

cm85am 11 0.65 3 0.96 3
cm152al 11 0.55 1 0.58 1
cm151am 12 0.79 5 0.79 5
cm151an 12 0.75 4 0.77 4

alu4o 14 0.50 59 0.46 60
alu4p 14 0.56 70 0.51 71
alu4r 14 0.53 64 0.50 65
alu4s 14 0.75 42 0.51 43
alu4u 14 0.78 90 0.73 91
alu4v 14 0.38 85 0.94 87

cm162ao 14 0.92 56 0.84 57
cm162ap 14 0.92 69 0.85 70
cm162aq 14 0.93 63 0.86 64
cm162ar 14 0.93 87 0.87 89

cup 14 0.81 41 0.88 43
cuq 14 0.81 41 0.87 43
cuv 14 0.94 380 0.93 382
cux 14 0.83 118 0.96 120

cm163aq 16 0.92 757 0.83 773
cm163ar 16 0.93 774 0.79 793
cm163as 16 0.93 793 0.86 811
cm163at 16 0.94 931 0.86 948
parityq 16 0.50 983 0.50 1000
pm1a0 16 0.94 741 0.88 758
pm1c0 16 0.97 788 0.94 806
tcona0 17 0.75 5645 0.76 5712
tconb0 17 0.79 7441 0.75 7513
tconc0 17 0.76 5294 0.75 5368
tcond0 17 0.75 6212 0.75 6287
tcone0 17 0.72 5256 0.75 5331
tconf0 17 0.75 7476 0.75 7548
tcong0 17 0.76 5877 0.75 5952
tconh0 17 0.75 5952 0.75 6015
Average 0.77 1041 0.70 1054
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Fig. 3. The fraction of incorrect classified examples vs. the number of iterations for
the function cm163aq using the MaxSet and Pocket algorithms

A further test was carried out using a set of 54 benchmarks functions used in
logic synthesis. The functions considered where all non-linearly separable, and
have a number of input variables ranging from 5 to 17. In Table 2, we report
the results for the 54 functions indicating in the first column the name of the
function, followed by the number of input variables. The rest of the columns
shows the results for the size of the linearly separable set found, indicated as
a fraction of the whole set of examples, and the CPU time in seconds used for
the calculations for the case of the new algorithm and for the application of the
Pocket algorithm directly with the whole set of examples. In 40 out of the 54
cases considered, the MaxSet algorithm found the largest LS set, while in 11
cases the best results were obtained with the original dataset using the Pocket
algorithm (In the remaining 3 functions the results were the same.) On average
the application of the MaxSet algorithm leads to LS sets that cover on average
76.7% of the total set of examples, while the result from the application of the
Pocket algorithm was 70%, this means a 10.00% improvement on the size of
the LS subset found (equivalent to a 23% reduction on the average fraction of
errors). The previous comparisons were done by selecting similar computational
times for both algorithms (1041 and 1054 seconds on average per function).

We also shown in Fig. 3 an example of the learning process for both al-
gorithms (MaxSet and Pocket) for the case of the 16 input variables Boolean
function cm163aq. It can be shown from the graph, that the MaxSet algorithm
performs better both in terms of size of the obtained set and in terms of the
number of iterations needed. Fig. 3 shows the result of the fraction of wrongly
classified examples as a function of the number of iterations, where the values
have been averaged across 100 repetitions of the learning process to eliminate
random fluctuations. Moreover, it can be seen that the dynamic of the learn-
ing process for the case of the MaxSet has a similar shape to the one obtained
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from the Pocket algorithm (trained with the whole sets of examples), but it is
a re-scaled version of it, where both the fraction of errors and the number of
iterations are reduced approximately by half.

5 Discussion

We introduced in this work a new algorithm for the problem of finding a large
subset of LS examples from a non-LS set. The new procedure works by finding
first a unate set of examples (the new contribution of this work), to then train
a perceptron through the Pocket algorithm with this unate set. The results over
a large set of benchmark functions show that for similar computational times
the MaxSet algorithm outperforms in most cases the standard Pocket algorithm
and lead to an average 11.94% improvement on the size of the LS subset found
(equivalent to a 24% reduction in the fraction of errors made). An important
aspect of the introduced MaxSet algorithm, regarding the obtention of an unate
subset, is that this part of the method can in principle be combined with any
other alternative method in order to obtain the final linearly separable solution
set.

The extension of the method to partially defined Boolean functions is not
straightforward but it is being developed under similar lines and it will be re-
ported elsewhere.
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