
Mutations in ATL Transformations and their
Identification with Matching Tables

–Technical Report–

Javier Troya1, Loli Burgueño2, Manuel Wimmer1, and Antonio Vallecillo2

1 Business Informatics Group, Vienna University of Technology, Austria
{troya,wimmer}@big.tuwien.ac.at

2 Dpto Lenguajes y Ciencias de la Computación, Universidad de Málaga, Spain
{loli,av}@lcc.uma.es

Abstract. In this technical report we explain with detail the exper-
iments realized in the context of tractable fault localization in model
transformations with regards to the different mutations performed in
different model transformations. For each mutation realized, we show
the computed matching tables as well as how to identify the guilty rule.

1 Introduction

This document reports different mutations, and how such mutations affect the
matching tables and the identification of the guilty rule, in different model trans-
formation scenarios. It is created to backup part of the assertions presented in
our paper [3]. In such work, a light-weight approach to automatically checking
model transformations is presented. It is based on matching functions that estab-
lish alignments between specifications and implementations using the metamodel
footprints, i.e., the metamodel elements used. The approach is implemented
for the combination of Tracts and ATL, both residing in the Eclipse Modeling
Framework, and is supported by the corresponding toolkit3.

When a transformation is mutated, the types extracted from such transfor-
mation might be different, producing a different alignment between such types
and those obtained from the Tracts. The purpose of a mutated transformation is
to emulate a possible mistaken transformation that could have been created by
the user. Then, by analyzing the matching tables obtained with our approach,
we would like to obtain the rule(s) that make certain constraints fail.

In order to identify possible mutations of an ATL transformation, we have
used the information presented in a paper focused on co-evolution of model
transformations [2]. In such paper, an evolution in an ATL model transforma-
tion is classified according to several changes performed in different elements
of the ATL metamodel – in fact, we have considered the subset of classes and
relationships that represent the declarative part, as shown in Figure 1. Table 1

3 This toolkit is available from http://atenea.lcc.uma.es/index.php/Main Page/Resources/MTB

2

Fig. 1. Simplified ATL metamodel (from [2])

displays all the possible mutations as well as what they would mean in the out-
put models in terms of elements that are missing or that should not be there.
In the table, in order to keep the explanation short, we only mention elements,
although of course relationships between them must also be taken into account.

Table 1. Possible Mutations

Concept Mutation Meaning in the Produced Models

MatchedRule
Addition More elements than necessary are created
Deletion There are some elements that are not created
Modification (name
feature)

It does not affect the output model, only the trace model

InPatternEl.
Addition

More elements than necessary are created by the rule
where it is added

Deletion
Less elements than necessary are created by the rule
where it is added

Modification (class
feature)

This means changing the type of an InPatternElement.
It is the same as removing one and adding a different
one. For this reason, there will be a higher or lower num-
ber of elements created and all of them with the features
improperly set

Modification (name
feature)

It does not affect the output model, only the trace model

Filter
Addition

This makes the matching of the rule more restrictive, so
less elements than expected are generated

Deletion
This makes the matching of the rule less restrictive, so
more elements than expected are generated

Modification (con-
dition feature)

This makes the matching of the rule either more or less
restrictive, having the same consequence as one of the
situations described above

OutPatternEl.
Addition More elements than expected are created
Deletion Less elements than expected are created
Modification (class
feature)

This is considered as the Deletion and Addition of an
OutPatternElement

Modification (name
feature)

It does not affect the output model, only the trace model

Binding

Addition
The feature represented by the binding is initialized and
it should not be

Deletion A feature that should be initialized is not
Modification (value
feature)

The feature represented by the binding is improperly
initialized

Modification (fea-
ture feature)

This is considered as the Deletion and Addition of the
binding

3

2 Mutation Experiments

As mentioned in the introduction, and in order to identify possible mutations of
an ATL transformation, we have used the information presented in a paper fo-
cused on co-evolution of model transformations [2]. In such paper, an evolution in
an ATL model transformation is classified according to several changes (Table 1).
These changes are described according to the addition/modification/deletion of
several concepts in a simplification of the ATL package of the ATL metamodel4

that represents the declarative part of the rules (Fig. 1).

2.1 CPL2SPL Case Study

This transformation deals with behavioral models. Models conforming to CPL
(Call Processing Language) [8] are transformed to models conforming to SPL
(Session Processing Language) [5] (the transformation is called CPL2SPL for
short). The CPL2SPL transformation [7] is a relatively complex example avail-
able from the ATL zoo5. It consists of 15 rules and 6 helpers. In total, they mean
348 lines of code, and they use 497 elements, 1114 links and 73 bindings.

The matching tables obtained for the original transformation are presented in
Figure 2 – the cells that are below the threshold have been set to 0. As reported
in [3], they have a precision of 0.8 and recall of 0.97 with the constraints used 6.
In the following subsections, when we write Cn we refer to constraint number
n, and same thing for the rules, Rn.

Mutation CPL2SPL 1: Addition of a SimpleInPatternElement in R1. In this
mutation, we have added a SimpleInPatternElement to the first rule (CPL2Program).
The result is that, now, more than one Program are created for each CPL. The
excerpt of the rule which is modified is shown in the Listing below.

rule CPL2Program { -- R1
from

s : CPL ! CPL ,
n : CPL ! NodeContainer -- SimpleInPatternElement added

to . . .

Since the first rule has been modified, now there are some variations in the
column representing such rule in the matching tables (Figure 3(a) – the values
that change with respect to the original tables have been highlighted). By check-
ing the constraints with our TractsTool [1,4,3], we observe that C1, C2, C3 and
C11 are not satisfied. The first one checks if the number of CPL and Program

instances is the same. By looking at the CC table, we easily check that R1 is

4 A snapshot of the ATL package of the ATL metamodel is available from http:

//atenea.lcc.uma.es/Descargas/ATL.png (the references to the OCL package are
not displayed)

5 http://www.eclipse.org/atl/atlTransformations
6 Such constraints can be found in http://atenea.lcc.uma.es/index.php/Main_

Page/Resources/MTB/CPL2SPL

http://atenea.lcc.uma.es/Descargas/ATL.png
http://atenea.lcc.uma.es/Descargas/ATL.png
http://www.eclipse.org/atl/atlTransformations
http://atenea.lcc.uma.es/index.php/Main_Page/Resources/MTB/CPL2SPL
http://atenea.lcc.uma.es/index.php/Main_Page/Resources/MTB/CPL2SPL

4

Fig. 2. Matching tables for the original CPL2SPL transformation

causing the failure of this constraint – since it is actually the only rule that cov-
ers such constraint. Same thing happens with C2. There is only a value in cell
C2/R1 for this constraint, so we can again quickly realize that R1 is causing the
non compliance. As for C11, there are three candidate guilty rules (according
to its row in the CC table). R1 has the highest value, so we start checking this
rule and realize that it is the one making the constraint fail. Finally, the value
of cell C3/R1 is below the threshold, having a false negative. In this case, we
cannot directly realize that the non satisfaction of C11 is due to R1. However,
by having already checked that R1 is the guilty one in the other constraints,
C11 can have been already resolved too.

Mutation CPL2SPL 2: Modification of the value feature of a Binding in
R3. In this mutation, there is an attribute that has been incorrectly initialized
in a Binding (see Listing below), making C4 fail. In this case, the matching tables
are the same as those in the correct transformation (Figure 2). By looking at
the CC table, the user can quickly check that R3 is the guilty one. In this case
R3 is also covered by C11, as shown in table RC, but the constraint is satisfied
in this case.

rule Incoming2Method { -- R3
from s : CPL ! Incoming
to t : SPL ! Method (

. . .
direction <− #" out " , -- Binding modified
. . .

5

(a) Mutation CPL2SPL 1 (b) Mutation CPL2SPL 3

Fig. 3. Mutation CPL2SPL 1: Addition of a SimpleInPatternElement in R1. Mutation
CPL2SPL 3: Modification of the Filter in R5

Mutation CPL2SPL 3: Modification of the Filter in R5. Here, we have
modified the condition feature of the Filter in R5 by making the matching of this
rule more restrictive. This is, now, a lower number of elements of type Proxy

satisfy the condition that matches this rule. The code is shown in the Listing
below.

rule Proxy2Select { -- R5
from

s : CPL ! Proxy (-- Filter modified
not s . isSimple and not s . busy . contents . oclIsUndefined ())

to . . .

Figure 3(b) shows the values that have been modified in the three tables for
column R5. In this mutation, constraints C5, C6 and C14 are not satisfied. The
highest value in the rows C5 and C6 in the CC table are C5/R5 and C6/R5,
respectively (Figures 2 and 3(b)). Consequently, the user would start checking
R5 in both cases and would realize that this one is the guilty rule. Regarding
C14, it is only covered by R5, so, again, the user quickly discovers which the
guilty rule is.

Mutation CPL2SPL 4: Modification of a Binding and addition of a Sim-

pleOutPatternElement in R6. The first change in this mutation is the modi-
fication of the value feature of a Binding of the SimpleOutPatternElement of type
SPL!SelectCase. This modification consists of the addition of a new element of
type SPL!Constant in a sequence. Such element is actually added as a SimpleOut-

PatternElement of type SPL!StringConstant, along with its Binding. This mutation
is shown in the Listing below.

rule Busy2SelectCase { -- R6
from s : CPL ! Busy
to . . .

t : SPL ! SelectCase (
commentsBefore <− Sequence { ’// busy ’} ,

6

values <− Sequence {v , sc } , -- Binding modified
statements <− Sequence {s . contents . statement }) ,

. . .
sc : SPL ! StringConstant (-- SimpleOutPatternElement added

value <− ’ unspecified ’)

The modifications reflected in the matching tables caused by this mutation
are shown in Figure 4(a). Although, as shown in Figure 2, R6 covers constraints
C6 and C12, this mutation over R6 only causes C12 to fail. By having a look at
the row for C12 in the CC table (Figures 2 and 4(a)), we see that cells C12/R5
and C12/R6 have the highest value, 0.56. Since there is a draw, we need to have
a look at table RCR, where the value of C12/R6 is higher. Thereby, the user
would start checking if R6 is the rule that has caused C12 to fail, discovering
that it is.

(a) Mutation CPL2SPL 4 (b) Mutation CPL2SPL 5

Fig. 4. Mutation CPL2SPL 4: Modification of a Binding and addition of a SimpleOut-
PatternElement in R6. Mutation CPL2SPL 5: Deletion of a Binding and a SimpleOut-
PatternElement, along with its Binding, in R8.

Mutation CPL2SPL 5: Deletion of a Binding and a SimpleOutPatternEle-

ment, along with its Binding, in R8. This mutation emulates the circumstance
in which the user has forgotten to create an element of type SPL!RedirectionErrorResponse

in a rule, and there is a constraint that identifies this mistake. In this way, the
mutation consists of the deletion of a SimpleOutPatternElement, along with its
Binding, and yet a second Binding, as shown in the Listing below.

rule Redirection2SelectCase { -- R8
from s : CPL ! Redirection
to

t : SPL ! SelectCase (. . .) ,
v : SPL ! ResponseConstant (

-- response <- r -- Binding deleted)
--r : SPL ! RedirectionErrorResponse (-- SimpOutPattElement deleted

-- errorKind <- OclUndefined -- Binding deleted)

7

This modification changes some values of the columns belonging to R8, as
shown in Figure 4(b). Out of the three constraints covered by R8 – C6, C12
and C15 –, only the last one is not satisfied when this mutation is applied. By
looking at row C15 in table CC, the user would first check whether R11 is the
guilty one. After she realizes it is not, the next rule to check is R8, which is in
this case the guilty one.

Mutation CPL2SPL 6: Addition of a Filter in R9. In this mutation we
insert a Filter in R9, as shown in the Listing below. By doing so, we are making
the condition to match this rule be more restrictive, so less elements will be
created in the output model.

rule Default2SelectDefault { -- R9
from

s : CPL ! Default (s . contents . oclIsUndefined ()) -- Filter added
to . . .

R9 covers both C5 and C13, and they are both not satisfied in this case.
The effects of this mutation in the matching tables is shown in Fig. 5(a). If the
user starts having a look at row C5 in the CC table, she first starts checking
R5 and realizing it is not the one that made the constraint fail. Then, C5/R9
and C5/R14 have the same value, so we check the RCR table to resolve the tie.
In such table, the value of the latter cell is slightly higher, so the user checks
R14 and realizes it is not the one causing the non compliance of the constraint.
Thereby, she ends up discovering the guilty rule, in the third step. As for the
other constraint, C13, there are three rules that could be making it fail: R9, R12
and R14. Cell C13/R12 has the highest value, so it is the one the user would
check in the first place, realizing it is not the guilty one. The cells in the other
two rules have the same value, so we need to check the RCR table, where the
value of C13/R14 is a bit higher. Consequently, the user would realize which the
guilty rule is in the first step.

Mutation CPL2SPL 7: Modification of Class feature in a SimpleOutPat-

ternElement and deletion of Binding in R11. In this mutation, we have modi-
fied the class feature of a SimpleOutPatternElement of type SPL!HeadedMessageField,
being the new type SPL!ReasonMessageField, and have removed a binding because
the attribute initialized in it is not included in the new type. The transformation
still works properly because, even if this SimpleOutPatternElement is referenced
from a Binding of another SimpleOutPatternElement, both classes have a common
super type. The mutated rule is shown in the Listing below.

rule Redirect2Return { -- R11
from . . .
to . . .

withExp : SPL ! WithExp (
exp <− v ,
msgFields <− Sequence { reason , contact }) ,

. . .
contact : SPL ! ReasonMessageField (-- SimpOutPattElement modified

-- headerId <- ’# contact :’, -- Binding deleted
exp <− contactConstant) ,

. . .

8

(a) Mutation CPL2SPL 6 (b) Mutation CPL2SPL 7

Fig. 5. Mutation CPL2SPL 6: Addition of a Filter in R9. Mutation CPL2SPL 7: Mod-
ification of class feature in a SimpleOutPatternElement and deletion of Binding in R11.

The columns of the matching tables affected by the changes performed are
shown in Fig. 5(b). The modified rule covers C10 and C15, although the changed
applied only makes the former be non complied. By having a look in table CC
to row C10, we see we need to check first R11, so we quickly discover the guilty
rule.

Mutation CPL2SPL 8: Deletion of R1. This is a particular case of mutation
that has side effects on the shape of the matching tables.

The procedure to detect the guilty rule is different because there is no con-
straint violated. In order to detect the guilty rule, the CC and RCR matching
tables have to be checked to make sure that there is no constraint that do not
match any rule.

In CPL2SPL 8, R1 is removed and, therefore, the matching tables shown in
Figure 2 are missing their first column. The sign that alerts the user that there
is a mistake in the transformation is that, in tables CC and RCR, the rows that
involve C1 and C2 do not have any value.

2.2 UML2ER Case Study

This transformation consists of the project that resides in the field of struc-
tural modeling and deals with the generation of Entity Relationship (ER) Dia-
grams from UML Class Diagram Models. The transformation receives simplified
versions of UML class diagrams as inputs and generates entity-relationship di-
agrams as output. We have extended the metamodels for the UML2ER case
study presented in [10]. They are illustrated in Fig. 6. This transformation can
be considered as one of size between medium and small, consisting of 8 rules and
no helper. In total, the rules involve 77 lines of code, and they use 86 elements,

9

Fig. 6. The UML and ER metamodels.

201 links and 5 bindings. Finally, there are many rules inheriting others in this
example. In fact, all rules are either an abstract rule or extend an abstract one.

The matching tables obtained for the original transformation are presented
in Fig. 7 – the cells that are below the threshold have been set to 0. As we have
reported in [3], they have a precision of 0.84, recall of 1, f-measure of 0.91 and
utility average of 0.9, with the constraints used 7. In the following subsections,
when we write Cn we refer to constraint number n, and same thing for the rules,
Rn.

In the following we present the different mutations that we have applied on
this example. For each of them, we only show those columns of the matching ta-
bles where the values change – we have highlighted those values. The constraints
that are violated for each mutation are computed with our TractsTool [1,4,3].
Please not that this transformation has a high degree of inheritance between
rules. For this reason, a small mutation in one rule may cause the failure of
several constraints.

Mutation UML2ER 1: Modification of the value feature of a Binding

in R1. In this mutation, the only attribute that is initialized in R1 has been
modified. Concretely, now the value in the Binding is always set to “name” (see
Listing below).

abstract rule NamedElement { -- R1
from s : SimpleUML ! NamedElement
to t : ER ! Element (name <− ’ name ’) -- Binding modified

}

7 Such constraints can be found in http://atenea.lcc.uma.es/index.php/Main_

Page/Resources/MTB/UML2ER

http://atenea.lcc.uma.es/index.php/Main_Page/Resources/MTB/UML2ER
http://atenea.lcc.uma.es/index.php/Main_Page/Resources/MTB/UML2ER

10

Fig. 7. Matching tables for the original UML2ER transformation

Since many rules in the transformation inherit from this one, this mutation
makes more than half of the constraints fail, specifically C1, C2, C3, C8, C9
and C10. Figure 8(a) shows the variations in the columns of the first rule in
the matching tables. For C1, C2 and C3, the cell in the first column contains
the highest value, so the user quickly identifies the guilty rule. For C8, the user
would first check R4, after which she would check the guilty rule, R1. For C9
and C10, there are three cells with the same value – the ones for R1, R6 and R7.
For this reason, the user needs to check the RCR table. She would first check
R7 and realize it is not the guilty rule. After this, she would check either R1 or
R6, since they have the same value in the three tables.

Mutation UML2ER 2: Addition of an OutPatternElement with two Bind-

ings in R3. In this situation, now two elements of type EntityType are created
for each Class. The features assigned to the new EntityType are those of the super
classes of the input Class. The new rule is shown in the listing below.

rule Class extends NamedElement { -- R3
from s : SimpleUML ! Class
to t : ER ! EntityType (

features <− s . ownedProperties) ,
t2 : ER ! EntityType (-- Added OutPatternElement and Bindings

features <− s . superClasses −> collect (sc | sc . ownedProperties) ,
name <− ’ fromSuper ’
)}

This mutation makes some values of the third column in the matching tables
change, as shown in Fig. 8(b). Also, with the addition of the OutPatternElement,

11

(a) Mutation UML2ER 1 (b) Mutation UML2ER 2

Fig. 8. Mutation UML2ER 1: Modification of the value feature of a Binding in R1.
Mutation UML2ER 2: Addition of an OutPatternElement with two Bindings in R3

C6 fails. Having a look at the CC table, we observe that in the row corresponding
to C6 there are four cells with the same value, 1. These are R1, R2, R3 and R6.
Consequently, we then need to have a look at the RCR table, where we can see
that the highest value is in the cell corresponding to R3, so the guilty rule is
found.

Mutation UML2ER 3: Modification of a Filter in R8. In this mutation
we have modified the Filter of the last rule. With this change, we make the
application of this rule more restrictive, i.e., now less elements of type Property

will fire the rule. In particular, we add to the previous constraint that the name
of the Property has to begin with the character ‘s’. It is shown in the next Listing.

rule StrongReferences extends References { -- R8
from

s : SimpleUML ! Property
(s . isContainment and not s . name . oclIsUndefined () -- Modified Filter

and s . substring (1 , 1) = ’ c ’)
to t : ER ! StrongReference }

The modification in this rule makes four constraints fail: C3, C4, C7 and
C10. Having a look at the matching tables (Fig. 9(a)), we see that for C3 and
C10, the user quickly finds the guilty rule, since it has the highest value in table
CC. Regarding C4, the cells belonging to four different rules, none of them being
the guilty one, have the highest value, so they are checked first. Then, the cell
in R4, R7 and R8 share the same value, so the user has to check the RCR table.
There, R8 has the lowest value, so the guilty rule is found in this case after 7
steps. Finally, for C7, four rules check the highest value in the CC table: R4,
R6, R7 and R8. After consulting the RCR table, the guilty rule is identified in
the first step, after having a look at R4 and R7

Mutation UML2ER 4: Modification of the class feature in an OutPatter-

nElement and deletion of a Binding in R5 This mutation consists of changing

12

(a) Mutation UML2ER 3 (b) Mutation UML2ER 4

Fig. 9. Mutation UML2ER 3: Modification of a Filter in R8. Mutation UML2ER 4:
Modification of the class feature in an OutPatternElement and deletion of a Binding in
R5

the class feature of the only OutPatternElement in R5. This way, instead of creat-
ing elements of type Attribute, elements of type WeakReference are created. The
original Binding has also been deleted, since the attribute it was initializing does
not exist in elements of type WeakReference. The new rule is shown below.

rule Attributes extends Property {
from s : SimpleUML ! Property (not s . primitiveType . oclIsUndefined ())
to t : ER ! WeakReference (-- OutPatternElement modified

-- type <- s. primitiveType Binding deleted
)}

This mutation makes C8 fail. Having a look at the CC matching table
(Fig. 9(b)), we can see that the cell with the highest value is precisely the one
belonging to R5. Consequently, the guilty rule is quickly found.

2.3 BibTex2DocBook Case Study

The BibTex2DocBook transformation, from here on BT2DB for short, is a model
transformation that does not operate on modeling languages but on markup
languages. This transformation is present in the ATL zoo. BibTeXML is an XML-
based format for the BibTeX bibliographic tool, whose metamodel is shown in
Fig 10(a). DocBook, in turn, is an XML-based format for document composition,
its metamodel is shown in Fig. 10(b). The transformation consists of 9 rules and 4
helpers, what involve 286 lines of code, 449 elements, 1052 links and 25 bindings.

The matching tables for the original transformation are shown in Fig. 11 –
the cells that are below the threshold have been set to 0. The accuracy of this
case study is worse than for the previous ones [3]. Thus, it has a precision of 0.24,
recall of 0.97, f-measure of 0.39 and utility-average of 0.54 8. In the following
subsections, when we write Cn we refer to constraint number n, and same thing
for the rules, Rn.

8 This case study, results, and the constraints used can be found in http://atenea.

lcc.uma.es/index.php/Main_Page/Resources/MTB/BibTeXML2DocBook

http://atenea.lcc.uma.es/index.php/Main_Page/Resources/MTB/BibTeXML2DocBook
http://atenea.lcc.uma.es/index.php/Main_Page/Resources/MTB/BibTeXML2DocBook

13

(a) BibTex Metamodel

(b) DocBook Metamodel

Fig. 10. Metamodels in the BibTex2DocBook case study

In the following we present the different mutations that we have applied on
this example. For each of them, we only show those columns of the matching ta-
bles where the values change – we have highlighted those values. The constraints
that are violated for each mutation are computed with our TractsTool [1,4,3].

Mutation BT2DB 1: Modification of the value feature of a Binding and
deletion of an OutPatternElement together with its two Bindings in R1.
This mutation emulates the circumstance where the user forgets to create one of

14

Fig. 11. Matching tables for the original BT2DB transformation

the sections of a new book. The modifications made in the first rule are shown
in the Listing below.

rule Main { -- R1
from bib : BibTeX ! BibTeXFile
to . . .

art : DocBook ! Article (
title <− ’ BibTeXML to DocBook ’ ,
sections_1 <− Sequence {se1 , se3 , se4} -- Binding Modified

) ,
. . .

-- se2 : DocBook ! Sect1 (-- OutPatternElement deleted
-- title <- ’ Authors list ’, -- Binding deleted
-- paras <- thisModule . authorSet -- Binding deleted

--) ,
. . . }

This mutation makes C2, C3 and C4 fail. However, with this mutation the
matching tables do not change, so they are the same as with the original trans-
formation (Fig. 11). Regarding C2, it is only covered by R1, so the guilty rule
is quickly found. As for C4, the user would first check if R2 is the guilty rule,

15

after which she would check R1. In the cell C3/R1 there is a false negative, what
means that the utility of such row is 0. Consequently, in this case the guilty rule
cannot be found.

Mutation BT2DB 2: Modification of the value feature of a Binding in
R4. In this mutation, the value of a Binding is modified, so that the string which
is initialized in such Binding contains now more data, as shown in the Listing
below.

rule TitledEntry_Title_NoArticle { -- R4
from . . .
to . . .

title_para : DocBook ! Para (
content <− e . title + e . id -- Binding modified

)}

Many constraints check for the correct initialization of the content attribute
of different classes. Due to the high level of inheritance in this case study, a lot
of constraints are not satisfied after this simple mutation. In particular, they
are C6, C7, C8, C9, C10, C11, C12, C13, C14 and C15. For some of these
constraints, the guilty rule is found in only one step, like for C12 for instance.
There are others where the user would need two steps, as is the case of C6, or
three steps, as with C10. They are all summarized in Table 2, explained in the
Conclusion section.

Mutation BT2DB 3: Modification of the Filter in R6. This mutation
implies the modification of the Filter in R6, by making the matching of the rule
more restrictive. Now, less elements of type Article are going to fire the rule.
Thus, al those Articles with only one author will not cause the firing of this rule.
The rule is shown in the Listing below.

rule Article_Title_Journal { -- R6
from

e : BibTeX ! Article (
thisModule . titledEntrySet−>includes (e) and
thisModule . articleSet−>includes (e)
and e . authors −> size () >= 2 -- code added

)
to . . . }

The modification of this rule makes the constraint C16 fail. In this case, the
highest value in the CC table for row C16 is in R6, so the guilty rule is found
only in one step.

2.4 Ecore2Maude Case Study

This transformation is integrated in the e-Motions [9] tool. e-Motions is a Domain-
Specific Modelling Language (DSML) that supports the specification, simulation
and formal analysis of real-time systems. Internally, e-Motions runs Maude [6],
a reflective language and system supporting both equational and rewriting logic
specification and programming. As e-Motions deals with models conforming t

16

(a) Mutation BT2DB 2 (b) Mutation BT2DB 3

Fig. 12. Mutation BT2DB 2: Modification of the value feature of a Binding in R4.
Mutation BT2DB 3: Modification of the Filter in R6

the Ecore metamodel, they need to be transformed to the Maude specification
by means of the Ecore2Maude model transformation.

The Ecore2Maude transformation has 40 rules, where 7 of them are lazy rules
and 27 are called rules, and 40 helpers in a total of 1397 lines of code.

Due to the size of the metamodels, they cannot be shown in this technical
report but they can be accessed and downloaded, as well as the transformation
and the constraints, on our webpage9. We have only written three constraints
for this example that focus in a subset of the whole model transformation.

The matching tables for the original transformation and its constraints are
the shown in Figure 13 where only the columns for those rules affected by the
constraints (i.e., the columns with a value different from zero) are shown.

Fig. 13. Matching tables for the original E2M transformation

9 http://atenea.lcc.uma.es/index.php/Main Page/Resources/MTB/Ecore2Maude

17

Mutation E2M 1: Addition of a SimpleInPatternElement in R9. In this mu-
tation, a SimpleInPatternElement has been added to rule Class2Sort so that for every
combination between Class entities and EObject entities, the elements specified in
the to part are created in the output model.

rule Class2Sort { -- R9
from

clazz : Ecore ! EClass ,
mutation : Ecore ! EObject -- SimpleInPatternElement added

to . . .

The changes are reflected in the corresponding column (R9 – Class2Sort) in
the matching tables. Figure 14(a) shows the values that have changed in bold.
The increase in the number of types in the rule is reflected by the decrease of
the metrics for the first constraint. In spite of that, the guilty rule for C1 is
still detected on the first attempt because in its row, R9 is the cell with the
higher value. C2 has not been affected by the mutation so its situation remains
the same. As R10 is now more related to C2 (for R9 and C1 CC is 0.75, RC is
0.5 and RCR is 0.43; while for R9 and C2 CC is 0.75, RC is 0.15 and RCR is
0.14), R10 will be checked first and, secondly, R9, which is the guilty rule, will
be checked.

(a) Mutation E2M 1 (b) Mutation E2M 2

Fig. 14. Mutation E2M 1: Addition of a SimpleInPatternElement in R9. Mutation
E2M 2: Modification of a binding in Sort in R9.

Mutation E2M 2: Modification of a Binding in R9. In this mutation, the
binding name has been modified in rule Class2Sort and now the string “mutation”
is assigned to it instead of the name of the Class from which it is created. The
following excerpt of code presents the code that has been modified.

rule Class2Sort { -- R9
. . .
to

sort : Maude ! Sort (
name <− ’ mutation2 ’ , -- Binding modified
. . .

Figure 14(b) presents the columns from the matching tables that have changed
after having done the mutation. Given that R9 is the guilty rule, C1 fails as well
as C2. Both constraints are checked on the first attempt as their corresponding
values to R9 in the CC table are the highest in their row.

18

Mutation E2M 3: Filter condition removed from R10. This mutation
consists on the removal of the filter condition in the tenth rule. This means that
not only the entities that fulfil the condition exposed in the filter match the
left-hand side of this rule but all the entities of type EClassifier. Thus, the target
model will contain elements that should not have been created.

unique lazy rule createSort { -- R10
from

class : Ecore ! EClassifier -- Filter condition removed
to . . .

Figure 15(a) presents the columns that correspond to R10, where the num-
bers that have changed have been emphasized. C3 has not been affected by the
mutation. CC value for C2 decreased from 0.75 to 0.67 and RCR from 0.38 to
0.43, while the RC increased from 0.5 to 0.53. When C2 reports a failure, R10,
which is the guilty rule, is checked in second place. And when C3 fails, it is the
first or second rule to be checked, followed or preceded by R32 that has the same
value in the CC table (0.4).

(a) Mutation E2M 3 (b) Mutation E2M 4

Fig. 15. Mutation E2M 3: Filter condition removed from a SimpleInPatternElement in
R10. Mutation E2M 4: SimpleOutPatternElement added with one binding in R20.

Mutation E2M 4: SimpleOutPatternElement added to R20 with one bind-
ing. The Listing below shows the SimpleOutPatternElement that has been inserted.
After the mutation, for every Reference in the input model, an Operation is added
to the output model as it should be, but in addition to that, a Parameter is added
too.

rule Reference2Operation { -- R20
. . .
to

. . .
mutation : Maude ! Parameter (

label <− ’ mutation ’
)
. . .

In Figure 15(b) the columns for the rule affected by the mutation are shown.
Only the constraint C1 has a match with R20. CC did not suffer any change,
RC went from 0.38 to 0.30 and RCR from 0.16 to 0.14. In spite of the differences
in the values for the matching tables, the guilty rule is detected as it was before
introducing the mutation, since table CC has not changed.

19

Mutation E2M 5: SimpleOutPatternElement deleted from R29. This muta-
tion consists of removing a SimpleOutPattern from rule 29 which means that
there will be missing elements in the output model. The following Listing shows
the lines of code that have been commented.

rule Attribute2Operation { -- R29
. . .
to

-- opAtt : Maude ! Operation (
-- name <- att . maudeName () ,
-- " module " <- thisModule . sModule ,
-- coarity <- thisModule . sortAtt

--)
. . .

The side effects in the matching tables after the mutation are presented in
Figure 16(a) where we can see that the relation between C1 and R29 is missing.
This leads to a false negative (FN) and the impossibility to detect the guilty rule.
This happens in this concrete case because R29 has very few types, so removing
some of them implies a significant loss of information.

(a) Mutation E2M 5 (b) Mutation E2M 6

Fig. 16. Mutation E2M 5: SimpleOutPatternElement removed in R29. Mutation E2M 6:
SimpleOutPatternElement removed in R1.

Mutation E2M 6: SimpleOutPatternElement deleted from R1. This muta-
tion represents the same case as E2M 5 but the SimpleOutPatternElement is re-
moved from rule 1, which has much more types in comparison with R29. The
aim of E2M 6 is to show that not only the concrete mutation affects the results
but also the concrete case in which it is applied. In the Listing below, the code
that has been commented can be found.

entrypoint rule Initialize () { -- R1
. . .
to

-- mSpec : Maude ! MaudeSpec (
-- els <- Sequence { sModuleEcore },
-- printableEls <- Sequence {}
--) ,

. . .

R1 is related to C3, and as they have plenty of types in common. The loss of
several of them is barely reflected in the tables, so the results still allow the user
to find the guilty rule. The value for CC went from 1 to 0.8, in the case of RC
from 0.20 to 0.19 and RCR from 0.18 to 0.20. While the alignment is missing in

20

E2M 5, in this case the guilty rule is the first one to be checked despite having
removed the SimpleOutPatternElement.

Mutation E2M 7: Filter added to R39. The mutation E2M 7 adds a filter
condition to rule 39. This mutation is translated into missing entities in the
output model because some of the elements that should match the left-hand
side of the rule and create entities in the output element will not fulfil the filter
so the rule will not be applied to them. The following Listing shows the filter
added.

rule EnumLiteral2Operation { -- R39
from

enumLit : Ecore ! EEnumLiteral (Ecore ! EAttribute . allInstances−>select (
↪→att | att . iD)

. . .

The new values for the matching tables are in Figure 17 where we can see
that after the mutation, the CC value for the guilty rule has increased and,
therefore, it is detected even more clearly. The only inconvenience is that a false
positive appears for C3, but as it is not higher than any other value in the row,
it does not introduce noise when finding the guilty rule.

Fig. 17. Mutation E2M 7: Filter condition added to R39.

3 Conclusion

In Table 2 we show all the mutations that have been carried out. For each of
them, we show which constraints are violated when applied such mutation, if it
was able for the user to find the guilty rule, and the number of steps for finding
such rule. By number of steps we mean the number of rules that the user needs
to check in order to find the guilty one (including the latter).

As a summary, we injected a total of 21 mutations, causing 48 constraints to
fail. All mutants were killed, i.e., all guilty rules were correctly identified by our
approach. Only for three constraints that failed we could not identify the rule
causing it but, in all cases, these rules caused the violation of several constraints,
and the guilty rule was already identified as the one responsible for the violation
of a different constraint that failed with the same mutation, such is the case with
C3 in CPL2SPL 1, so the guilty rule was eventually identified. Regarding how
many rules need to be checked before identifying the guilty one, our proposed
approach needed an average of 1.78 rules to be checked.

21

Table 2. Table with the summary of mutations

References

1. Atenea Research Group (Universidad de Málaga) in collaboration with Business
Informatics Group (Vienna University of Technology): TractsTool (2013), http:
//atenea.lcc.uma.es/index.php/Main_Page/Resources/Tracts

2. Bergmayr, A., Troya, J., Wimmer, M.: From Out-Place Transformation Evolution
to In-Place Model Patching. In: 29th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2014) (2014), accepted for publication

3. Burgueno, L., Troya, J., Wimmer, M., Vallecillo, A.: Static Fault Localization in
Model Transformations. Submitted for Publication (2013)

4. Burgueño, L., Wimmer, M., Vallecillo, A.: Towards tracking guilty transformation
rules. In: Proc. of the 1st Workshop on the Analysis of Model Transformations
(AMT) @ MODELS’12. pp. 1–6. ACM DL (2012)

5. Burgy, L., Consel, C., Latry, F., Lawall, J., Palix, N., Reveillere, L.: Language
technology for internet-telephony service creation. In: Proc. of ICC’06. pp. 1795–
1800 (2006)

http://atenea.lcc.uma.es/index.php/Main_Page/Resources/Tracts
http://atenea.lcc.uma.es/index.php/Main_Page/Resources/Tracts

22

6. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.L.: All About Maude, LNCS, vol. 4350. Springer (2007)

7. Jouault, F., Bézivin, J., Consel, C., Kurtev, I., Latry, F.: Building DSLs with
AMMA/ATL, a Case Study on SPL and CPL Telephony Languages. In: ECOOP
Workshop on Domain-Specific Program Development (2006)

8. Lennox, J., Wu, X., Schulzrinne, H.: Call Processing Language (CPL): A language
for user control of internet telephony services (2004), http://www.ietf.org/rfc/
rfc3880.txt

9. Rivera, J.E., Durn, F., Vallecillo, A.: emotions: A graphical approach for
modeling timedependent behavior of domain specific languages. available at
http://atenea.lcc.uma.es/index.php/main page/resources/e-motions (2009)

10. Wimmer, M., Mart́ınez, S., Jouault, F., Cabot, J.: A catalogue of refactorings for
model-to-model transformations. Journal of Object Technology 11(2), 1–40 (2012)

http://www.ietf.org/rfc/rfc3880.txt
http://www.ietf.org/rfc/rfc3880.txt

	Mutations in ATL Transformations and their Identification with Matching Tables –Technical Report–

