
Types Extraction and Similarity Matrixes in
ATL Transformations – Technical Report

Javier Troya1, Loli Burgueño2, Manuel Wimmer1, and Antonio Vallecillo2

1 Business Informatics Group, Vienna University of Technology, Austria
{troya,wimmer}@big.tuwien.ac.at

2 Dpto Lenguajes y Ciencias de la Computación, Universidad de Málaga, Spain
{loli,av}@lcc.uma.es

Abstract. In this technical report we explain with detail the types ex-
traction in ATL transformations. Since there is no current support by
ATL in realizing this task, it acquires a certain degree of difficulty. Also,
we show how we use the types extraction to obtain the so-called similarity
matrixes.

1 Introduction

The procedure described in this document has been deployed in order to im-
plement the approach presented in [1]. In such work, a light-weight approach
to automatically checking model transformations is presented. It is based on
matching functions that establish alignments between specifications and imple-
mentations using the metamodel footprints, i.e., the metamodel elements used.
The approach is implemented for the combination of Tracts and ATL, both resid-
ing in the Eclipse Modeling Framework, and is supported by the corresponding
toolkit.

Tracts [4,3] are expressed in OCL (Object Constraint Language). For this
reason, the API of USE (UML based Specification Environment) tool [2] can be
used in the types extraction, what eases the process. Contrarily, ATL does not
offer any support nor API to do the extraction, what makes it quite complex.
The way we have addressed it is expressed in the next section of this technical
report.

For obtaining the fitness of a model transformation, this is, how accurate
it will be to apply the approach on such transformation, we define the concept
of similarity matrix. A similarity matrix gives us how related rules are among
them, i.e., the factor of common types they have. In this technical paper we also
show the results of these matrixes when applied over a large number of model
transformation taken from the ATL zoo3.

2 Types Extraction

The first step in the types extraction is to inject the textual ATL transformation
into a model-based representation. It is done automatically by means of a text-

3 http://www.eclipse.org/atl/atlTransformations/

http://www.eclipse.org/atl/atlTransformations/

2

to-model transformation. The obtained model conforms to the ATL metamodel,
which is in turn made up of three packages: ATL, OCL and PrimitiveTypes. Then,
an ATL transformation (in fact, a so-called higher-order transformation) takes
the obtained model, as well as the input and target metamodels of the original
transformation, and generates a model with information of the types used in
each and every rule. Focusing on a rule (let us say a matched rule for instance),
it is quite straightforward to obtain the types of the elements in the left-hand
side (LHS, the input part) of the rules as well as those created in the righ-hand
side (RHS, the output part). To do so, we need to navigate those objects of type
InPattern, OutPattern and Binding of the ATL package4. The most challenging
part is to extract the types from the OCL expressions, which can be present in
the filter part (of the LHS), local variables, the RHS and the imperative part.
These textual expressions are built conforming to the OCL package5 of the ATL
metamodel. The extraction of the types in the OCL expressions is a three-step
process. In the first step, we only need information of the ATL transformation
(expressed as a model, as explained before), while in the second and third steps
we need information of the source and target metamodels of the transformation
in order to be able to navigate them.

Fig. 1: Metamodel for organizing schools

4 A snapshot of the ATL package is available from http://atenea.lcc.uma.es/

Descargas/ATL.png (the references to the OCL package are not displayed)
5 A snapshot of the OCL package is available from http://atenea.lcc.uma.es/

Descargas/OCL.png (the references to the ATL package are not displayed)

http://atenea.lcc.uma.es/Descargas/ATL.png
http://atenea.lcc.uma.es/Descargas/ATL.png
http://atenea.lcc.uma.es/Descargas/OCL.png
http://atenea.lcc.uma.es/Descargas/OCL.png

3

An OCL expression can be made up of iterators (in a model level, they are
objects of type IteratorExp), such us collect and select. The first step of the types
extraction consists of taking every OCL expression and removing the iterators.
When doing so, from each OCL expression (that may contain iterators), one or
more navigation paths are obtained. Let us explain this with an example. Con-
sidering the metamodel of Figure 1, imagine we have within a transformation
the following OCL expression: City.allInstances() -> collect(c | c.schs.crs) -> select(c

| c.capacity>15) -> collect (ppl.name). First of all, let us recall the purpose of an
OCL expression in a model transformation: it is to retrieve an object, or a col-
lection of objects, that need to be accessed by means of a navigation through
other elements in the model. In OCL, this is expressed by navigating through
the references in a metamodel level. The collect operation is used to specify a
collection that is derived from some other collection, and which contains dif-
ferent objects from the original collection. When we have more than one collect

operation in an expression, we want to navigate until the last feature of the
last collect. If a select or reject operation is found between two collect operations,
we ignore it because it does not add information about the overall navigation
path. Consequently, for the given OCL expression, one of the navigation paths
extracted is City.schs.crs.ppl.name. Although we have ignored the select operation
in this navigation path, it has an influence in the object (or collection or objects)
extracted by the expression because, at some point in the navigation, it selects
a subset of a collection. This is why, for each select operation, we also extract a
path that goes from the beginning of the OCL expression until it. Consequently,
in the given example, we also extract City.schs.crs.capacity.

With the first step, we manage to transform the OCL expressions that
contain iterators into navigation paths from a class in a metamodel until a
given feature. Said paths navigate through references in the metamodel. In
the second step, we substitute the references in the navigation path for the
type (the target class) of such references. The last element in the path, which
is an object of type EStructuralFeature according to the Ecore metamodel6, re-
mains as it is. For the first navigation path extracted before, the path obtained
now is City.School.Classroom.People.name. In order to create it, we need to ac-
cess the metamodel (Figure 1) for obtaining the target class (eType) of each
reference. An OCL expression may also navigate through the reference that
starts from a subclass of a certain class. For example, the OCL expression
School.allInstances() -> collect(s | s.crs.ppl) -> select(p | p.age < 16) -> collect(p |
p.bp) -> first().cc is accessing the reference bp from objects of abstract type Peo-

ple. This means that the objects are, in fact, of type Student. It is important
to take this into consideration in this step. The navigation path extracted, in
the first step, from this expression is: School.crs.ppl.bp.cc; and the path extracted
in the second step is: School.Classroom.People.Backpack.cc. Similarly, an OCL ex-
pression may navigate through the reference starting from a superclass of a
certain class. Consider for example the OCL expression Classroom.allInstances()

6 A snapshot of the Ecore metamodel is available from http://atenea.lcc.uma.es/

Descargas/Ecore.png

http://atenea.lcc.uma.es/Descargas/Ecore.png
http://atenea.lcc.uma.es/Descargas/Ecore.png

4

-> collect(c | c.ppl.bc) -> forAll(b | b.sm.recyclabe). In the first step, we get the
navigation path Classroom.ppl.bc.sm. For the second step, we have to know that
sm reference departs from a superclass of Briefcase. We obtain the path Class-

room.People.Briefcase.SchoolMaterial.recyclable. The last OCL expression shown con-
tains a forAll operation. It often appears in the filter part of ATL rules and at
the last part of the expression, so we navigate until it.

The third step consists of chopping the path obtained in the second step, so
that we finally have the most significant types from the OCL expression. As ex-
plained in [1], we only leave the last two features. Thus, for path School.Classroom.

People.Backpack.Bag.cc, we only take Bag.cc.
Finally, and as also described in [1], we return as output the type(s) of the

last expression. For the case of Bag.cc, we return Bag.cc and Bag, since the type
of cc is a primitive type. If the last feature is a reference instead of an attribute
of a primitive type, we return its type. For instance, from the OCL expression
Student.allInstances() -> select(s | s.grade = ‘4A’) -> collect(s | s.bp.sm), one of the
navigation paths we get is (first step) Student.bp.sm, from which we obtain (second
step) Student.BackPack.sm, then we chop it and have (third step) Backpack.sm.
Finally, we return Backpack.sm, Backpack and SchoolMaterial. When the last feature
is of an enumeration type, we retrieve such type. For example, if we obtain in
the third step Book.subject, then we return Book.subject, Book and Subject.

3 Similarity Matrix

As explained in [1], we use similarity matrixes to obtain the fitness of a given
model transformation. They give us how related rules are among them, i.e., the
factor of common types they have. These matrixes, having rules in both columns
and rows, are consequently symmetric. Thus, we are only interested in half the
matrix (excluding the main diagonal, of course). To calculate the fitness for the
transformation, we extract the average and standard deviation of half the table.
The lower both values are, the fewer types rules have in common, and the fitter a
transformation is for applying our approach. We do not only use the arithmetic
mean, but also the standard deviation, because we need all values to be low.

We recommend to apply our approach on model transformations where the
mean and standard deviation of the similarity matrix for rules are below 0.15.
Otherwise, the accuracy of the results is not good enough (precision would be
normally below 0.7). For example, the similarity matrix for the Ecore2USE case
study7 gives a standard deviation of 0.18, and the precision after applying our
approach is 0.6 [1]. On the other hand, for the CPL2SPL case study8, the mean
of the similarity matrix is 0.08, while the standard deviation is 0.1. In this case,
the precision of the results is 0.8.

We have applied our ATL types extractor and have calculated the similarity
matrix of 41 model transformations taken from the ATL zoo. Out of those, it
is advisable to apply our approach on 21 of them, while it is not in the rest, as

7 http://atenea.lcc.uma.es/index.php/Main_Page/Resources/MTB/Ecore2USE
8 http://atenea.lcc.uma.es/index.php/Main_Page/Resources/MTB/CPL2SPL

http://atenea.lcc.uma.es/index.php/Main_Page/Resources/MTB/Ecore2USE
http://atenea.lcc.uma.es/index.php/Main_Page/Resources/MTB/CPL2SPL

5

shown in Table 1. The similarity matrixes of all of them, as well as their mean
and standard deviation, are available on our website9.

Transformation # Rules Mean Deviation
ATL2Problem 18 0.35 0.13
ATOM2RSS 3 0.05 0.05
ATOM2XML 8 0.33 0.08

BibTex2DocBook 9 0.41 0.24
CPL2SPL 16 0.07 0.13
Ecore2USE 14 0.1 0.17

Grafcet2PetriNet 5 0.14 0.07
HTML2XML 30 0.21 0.11

IEEE14712MoDAF 13 0.03 0.05
KM32OWL 16 0.13 0.14

KM32Problem 16 0.44 0.15
Measure2Table 6 0.31 0.37

Measure2XHTML 22 0.07 0.11
MySQL2KM3 11 0.2 0.29
OCL2R2ML 37 0.09 0.12
OWL2XML 24 0.51 0.16

PathExp2PetriNet 3 0.15 0.04
PathExp2TextualPath 5 0.37 0.44

PetriNet2Grafcet 5 0.14 0.07
PetriNet2PathExp 3 0.28 0.11
PetriNet2PNML 4 0.17 0.05
PetriNet2XML 5 0.54 0.11
PNML2PetriNet 5 0.28 0.12
PNML2XML 4 0.72 0.17
R2ML2RDM 69 0.11 0.14
R2ML2XML 55 0.26 0.13
R2ML2WSDL 14 0.07 0.14
RDM2R2ML 56 0.1 0.13
RDM2XML 39 0.32 0.14
RSS2ATOM 3 0.05 0.05
RSS2XML 4 0.37 0.15
UML2ER 8 0.09 0.11

WSDL2R2ML 17 0.06 0.11
WSDL2XML 20 0.36 0.15
XML2ATOM 10 0.15 0.06
XML2MySQL 6 0.12 0.1
XML2PetriNet 5 0.29 0.06
XML2PNML 5 0.25 0.19
XML2RSS 9 0.14 0.07

XML2WSDL 19 0.14 0.08
XSLT2XQuery 7 0.07 0.14

Table 1: Summary of Similarity Matrixes. Green: those where the approach is
advisable to be applied. Red: those where it is not

We discovered that the number of rules in the transformations has no impact
in the accuracy of our approach. In fact, the number of rules used in the set
of transformations studied ranged from 3 up to 69. As an example, the simi-
larity matrix of a small transformation (PetriNet2PathExp, 3 rules) gave bad

9 http://atenea.lcc.uma.es/index.php/Main_Page/Resources/MTB/

SimilarityMatrix

http://atenea.lcc.uma.es/index.php/Main_Page/Resources/MTB/SimilarityMatrix
http://atenea.lcc.uma.es/index.php/Main_Page/Resources/MTB/SimilarityMatrix

6

results, while the one obtained from the largest transformation (R2ML2RDM,
69 rules) gave good results. Contrarily, we obtained adverse results for another
large transformation (R2ML2XML, 55 rules), while we got good results for small
transformations (such as PetriNet2Grafcet, 5 rules). We have applied the Pear-
son product-moment correlation coefficient, a measure of the linear correlation
(dependence) between two variables, on the results, when the first variable is
the number of rules in the transformations and the second is the mean obtained
from the similarity matrixes. The value of this measure varies in the range [−1, 1],
where 1 is total positive correlation, 0 is no correlation, and −1 is negative cor-
relation. The results we obtained is −0.13, meaning that this dependence is
minimal.

4 Conclusion

In this technical report we have explained in detail with a running example how
we manage to extract the types in an ATL transformation. This implementa-
tion is part of our work [1] to automatically checking model transformations
based on matching functions that establish alignments between specifications
and implementations using the metamodel footprints, i.e., the types used in
transformations and constraints. Furthermore, we have shown the approach we
use to check before hand if the accuracy of our proposal [1] will be fair for a given
model transformations, namely similarity matrixes. We conclude that the appli-
cability of our proposal does not depend on how large model transformations
are according to their number of rules.

References

1. Burgueno, L., Troya, J., Wimmer, M., Vallecillo, A.: Checking model transforma-
tions using tracts. Transaction on Software Engineering (submitted for publication)
(2013)

2. Richters, M., Gogolla, M.: OCL: Syntax, semantics, and tools. In: Object Modeling
with the OCL (2002)

3. Vallecillo, A., Gogolla, M.: Typing model transformations using tracts. In: Hu, Z.,
Lara, J. (eds.) Theory and Practice of Model Transformations, Lecture Notes in
Computer Science, vol. 7307, pp. 56–71. Springer Berlin Heidelberg (2012), http:
//dx.doi.org/10.1007/978-3-642-30476-7_4

4. Wimmer, M., Burgueño, L.: Testing M2T/T2M transformations. In: Proc. of the
16th International Conference on Model-Driven Engineering Languages and Sys-
tems. pp. 203–219. LNCS 8107 (2013)

http://dx.doi.org/10.1007/978-3-642-30476-7_4
http://dx.doi.org/10.1007/978-3-642-30476-7_4

	Types Extraction and Similarity Matrixes in ATL Transformations – Technical Report

