Concurrent Model Transformations with Linda

Loli Burguefio, Javier Troya, and Antonio Vallecillo

GISUM/Atenea Research Group. Universidad de Mdlaga (Spain)
{loli, javiertc,av}@lcc.uma.es

Abstract. Nowadays, model transformations languages and engines use a se-
quential execution model. This is, only one execution thread deals with the whole
transformation. However, model transformations dealing with very large models,
such as those used in biology or aerospace applications, require concurrent solu-
tions in order to speed up their performance. In this ongoing work we explore the
use of Linda for implementing a set of basic mechanisms to enable concurrent
model transformations, and present our initial results.

Key words: Model transformation, concurrency, Linda

1 Introduction

Model transformations (MTs) are at the heart of model-driven engineering (MDE), and
provide mechanisms for manipulating and transforming models. MTs provide mech-
anisms to specify how output models are produced from input models. They can be
classified according to different characteristics [1]: abstraction level of input and output
models, type of language (declarative, imperative and hybrid), directionality, type of
target model, etc.

As far as we are concerned, the engine of the transformation languages available in
literature offer a sequential and non-distributed execution model. Only one execution
thread deals with the whole transformation. Furthermore, the transformation can only
be executed locally in a machine. This solution is inadequate for model transformations
that deal with very large models, such as those used in biology or aerospace applica-
tions, because their performance is rather low. If transformation engines made use of
concurrent execution models, different parts of a very big model, which are independent
from each other, could be transformed at the same time by different execution threads.
Besides, these independent parts could be distributed in different machines, all sharing
a common space for building the output model. This would speed up the transformation
process and would prevent from loading big models at once, which is normally very
inefficient and a well-known scalability problem of current approaches [2].

Linda [3] is a model of coordination and communication among several parallel
processes operating upon objects stored in and retrieved from shared, virtual and asso-
ciative memory. By storing (input and output) models in an associative memory, we can
apply a concurrent and distributed approach for transforming models. In this ongoing
work we explore the use of a Linda-based language [4] for implementing a set of basic
mechanisms to enable concurrent model transformations.

Jornadas de Ingenieria del Software y Bases de Datos (JISBD) 274
Madrid, 17-20 Septiembre 2013

After this introduction, Section 2 presents our proposed initial approach. Then, in
Section 3 we apply it on the Families2Persons case study, and present some perfor-
mance results. Finally, Section 4 concludes the paper and outlines how we would like
to continue this work.

2 Initial Approach

For implementing our approach, we have used the Java implementation of an in-memory
data grid offered by Gigaspaces Technologies [5]. It is called XAP Elastic Caching Edi-
tion (we will refer to it from here on as XAP) and supports the basic Linda operations,
such as read and write, as well as a wide range of new features, like fast data access,
performance and scalability. Linda, and consequently XAP, allows several machines
to work simultaneously over a tuple space that can be distributed in a user-transparent
manner. Since Gigaspaces XAP deals with Java code, Java objects can be introduced
and extracted from tuple spaces. Internally, X AP serializes the objects before introduc-
ing them in a tuple space and deserializes them on extraction.

The first things needed to define a MT are the metamodels of the source and target
domains. In our approach, since we are dealing with Java code, metamodels are repre-
sented by Java classes. XAP requires these classes to implement the Java Serializable
interface. Also, getter and setter methods have to be defined in order to have access
to attributes afterwards. Our models, consequently, are composed of instances (objects)
of these classes. Transformation languages such as ATL [6] or QVT [7] require meta-
models to conform to Ecore [8], which are stored in .ecore files. Models conform to
these metamodels and are typically stored in XML Metadata Interchange (XMI) files.
Our java representation can be directly obtained from such models and metamodels by
means of straightforward model-to-text transformations.

With XAP, we can define as many distributed tuple spaces as needed. In our ap-
proach, we have two of them, one for storing the input model and the other one for
the output model. The global view of the approach is presented in Figure 1. Different
execution threads, which may come from different machines, can be reading the input
model from the first tuple spaces at the same time. Likewise, several threads can be
creating the output model together. By having the model transformation implemented
in several machines, we can make the most of the processing capacity of all of them
because they can be creating different parts of the output model at the same time.

The model transformation is written in Java. In the implementation, we can specify
how many execution threads will be concurrently dealing with the transformation. In
this way, each thread retrieves a set of elements (objects) from the tuple space contain-
ing the input model and apply the transformation over them to create new objects and
place them in the tuple space containing the output model. Consequently, the perfor-
mance depends on the processing power. The more cores we have, the more threads can
be working at the same time and the higher the performance will be. We also take into
account the possible context switching among threads. This is, the fact that the number
of threads overtakes the number of cores is counter-productive, because threads have to
change from one core to another, and this affects the performance.

Jornadas de Ingenieria del Software y Bases de Datos (JISBD) 275
Madrid, 17-20 Septiembre 2013

g) K\ Output Model 8

— !- g
Model Transformation Modquﬁon Model Transformation

Fig. 1. Linda-based transformation schema

3 Case Study

The Families2Persons [9] example is rather small but sufficient for having an overview

of the basics of our approach. Figure 2 shows the Ecore representation for the meta-
models.

i familySon
familyDaugthe H Family Y H Person
0.1 | & lastName : EString
[

0.1 = fullName : EString
familyMother‘ 0.1 0.1 familyFather

mother [0.1 0.1| father

B Male B Female
0.x H Member)
daughters o= firstName : EString

sons

Fig. 2. Family and Person Ecore metamodels

The transformation aims to transform each element of type Member to an element
of kind Person. In particular, to Female type if the Member is mother or daughter, and
to Male if it is father or son. The code executed by each thread is as follows:

1 Family[] families = gigaSpaceSrc.takeMultiple (new Family (), numFamilies);
2
3 Person[] people = new Person[numMembers]; int k 0;
4
s for (int i = 0; i<families.length; i++) {
6 if (families[i].getMother () !'= null) {
7 people[k] = new Female(families[i].getMother () .getName () +" "+ families[i
] .getLastName ()); k++;
8 }
9 if (families[i].getFather () != null) {
10 people[k] = new Male(families[i].getFather().getName() +"_"+ families[i].
getLastName ()); k++;
11 }
12 for (Member m

: families[i].getDaughters()) {

Jornadas de Ingenieria del Software y Bases de Datos (JISBD)
Madrid, 17-20 Septiembre 2013

276

19

people[k] = new Female (m.getName ()+" "+families[i].getLastName()); k++;
}
for (Member m : families[i].getSons()) {
people[k] = new Male (m.getName ()+" "+families[i].getLastName()); k++;
}
}
gigaSpaceTrg.writeMultiple (people) ;

As we can see in line 1, we read a block of families from the input tuple space. Then
we iterate over the retrieved families in order to transform (lines 5 — 18) and finally
store (line 19) the new objects in the data element people defined in line 3. Reading and
writing from/in the tuple spaces can be a time-consuming task if they are realized over
and over again by the same thread. For this reason, XAP provides the readMultiple and
writeMultiple operations, where a set of elements are read and written at the same time.
We have made use of these operations to improve the performance. The idea is that, if
we have for example 1000 elements in the input tuple space and 10 threads, then each
thread deals with the retrieval, transformation and storage of 100 elements (variable
numFamilies in line 1).

The same transformation in ATL is as follows [9]:

module Families2Persons;
create OUT: Persons from IN: Families;

helper context Families!Member def: isFemale(): Boolean = ...
helper context Families!Member def: familyName: String = ...

rule Member2Male {
from s: Families!Member (not s.isFemale())
to t: Persons!Male (fullName <- s.firstName + ’ ’ + s.familyName)

}

rule Member2Female {

from s: Families!Member (s.isFemale())

to t: Persons!Female (fullName <- s.firstName + ’ ’ + s.familyName)
}

To compare the execution times between the ATL transformation and our Linda-
based transformation, we have created several considerably big models with a variable
number of families composed by 10 members each one. We executed both programs on
a machine running Linux with 16 cores, launching that number of execution threads,
where each thread deals with the same number of objects. Table 1 presents the results.

Table 1. Evaluation results

Number of families‘ ATL time |Linda time

1,000 0.246 s 0.222s
10,000 4.112s 2.162s
100,000 Exception 9.06 s

We can appreciate that for small models which have around 10,000 members, the
execution times are quite similar. For 100,000 members the execution time has been
halved. Finally, when we tried to transform 1,000,000 members with the ATL transfor-
mation, we obtained the error GC overhead limit exceeded. The problem that caused

Jornadas de Ingenieria del Software y Bases de Datos (JISBD)
Madrid, 17-20 Septiembre 2013

277

this exception is that almost all the time is spent in garbage collection and the ATL
program is making little or no progress because the Java heap is too small for such a
load.

4 Conclusions and Future Work

This paper presents an emergent approach based on Linda for executing model trans-
formations concurrently. Due to the distributed nature of Linda, this approach can be
also applied over distributed systems where a model is transformed by several machines
simultaneously, increasing significantly the performance of the transformation process.

We have presented a case study where we compare the execution times of our ap-
proach with the execution times in ATL. Our approach has proved to be faster for this
particular example, an does not present the scalability problems that appear in ATL.
Nevertheless, this is only the beginning and there are several lines that we still have to
explore.

In the first place, we plan to face the task of applying our approach on more complex
transformations. For example, we want to implement transformations where internal
traceability links would be needed, and transformations where several output models
are created from one input model and viceversa. We also want to study how complex
OCL expressions and constraints in transformations written in languages such as ATL
or QVT would be expressed in our approach.

In the second place, we plan to provide a mechanism which transforms persistent
metamodels and models from their original format into Java classes and Java instances.
In the same way, after the transformation, the Java instances belonging to the output
model will be stored in a file with the corresponding format.

Also, and as a more ambitious future line of research, we would like to create our
own concurrent model transformation language. This is, right now we are using Java
code to implement the transformations, but it would be ideal to count on a language
built on top of such implementation. Another possibility is to define a semantic map-
ping between some sequential transformation language, such as ATL, and our Linda-
based representation, so that transformations written in the former could be executed
concurrently.

Acknowledgements. This work is partially funded by Research Projects TIN2011-
23795 and TIN2011-15497-E and by Universidad de Mélaga (Campus de Excelencia
Internacional Andalucia Tech).

References

1. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches. IBM
Syst. J. 45(3) (2006) 621-645

2. Jouault, F,, Sottet, J.S.: An AmmA/ATL Solution for the GraBaTs 2009 Reverse Engineering
Case Study. In: Fifth International Workshop on Graph-Based Tools - Grabats 2009 (co-
located with TOOLS 2009), Zurich, Suisse (2009)

Jornadas de Ingenieria del Software y Bases de Datos (JISBD) 278
Madrid, 17-20 Septiembre 2013

3. Wells, G.: Coordination languages: Back to the future with linda. In: Proceedings of WCATOS.
(2005) 87-98

4. Wells, G.C., Chalmers, A.G., Clayton, P.G.: Linda implementations in java for concurrent
systems. Concurrency and Computation: Practice and Experience 16 (2003)

5. GigaSpaces Technologies Ltd. Gigaspaces: (2013) http://www.gigaspaces.com/
datagrid.

6. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation tool. Science of
Computer Programming 72(1-2) (2008) 31-39

7. OMG: MOF QVT Final Adopted Specification. Object Management Group. (2005) OMG
doc. ptc/05-11-01.

8. Budinsky, F., Merks, E., Steinberg, D.: EMF: Eclipse Modeling Framework (2nd Edition).
Addison-Wesley Longman, Amsterdam (2006)

9. Eclipse: (2012) http://wiki.eclipse.org/ATL/Tutorials_-_Create\
_a_simple_ATL_transformation.

Jornadas de Ingenieria del Software y Bases de Datos (JISBD) 279
Madrid, 17-20 Septiembre 2013

