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Technical note
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Abstract

This paper describes a prototype system for the objective assessment of voice quality in patients recovering from various stages
of laryngeal cancer. A large database of male subjects steadily phonating the vowel /i/ was used in the study, and the quality of
their voices was independently assessed by a speech and language therapist (SALT) according to their seven-point ranking of
subjective voice quality. The system extracts salient short-term and long-term time-domain and frequency-domain parameters from
impedance (EGG) signals and these are used to train and test an artificial neural network (ANN). Multi-layer perceptron (MLP)
ANNs were investigated using various combinations of these parameters, and the best results were obtained using a combination
of short-term and long-term parameters, for which an accuracy of 92% was achieved. It is envisaged that this system could be
used as an assessment tool, providing a valuable aid to the SALT during clinical evaluation of voice quality. 2002 IPEM.
Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

An increasingly important factor in prescribing treat-
ment for cancer of the larynx is the quality of voice
retained post-therapy. At present, speech and language
therapists (SALTs) endeavour to rehabilitate a patient’s
voice back to normality, or as near normal as possible,
quickly following treatment. They currently assess voice
quality on a seven-point ranking (0=least abnormal,
6=most abnormal) based on a variety of sound para-
meters, some of which are well defined, such as shimmer
and jitter, while others, such as whisper and creak, are
descriptive or have tenuous physical correlates. As a
result, the assessment is largely subjective and depends
upon the experience of the SALT.

This situation will be clearly improved by the avail-
ability of an objective voice-quality system, which can
provide accurate, reproducible, graded measures of a

∗ Corresponding author.
E-mail address: t.ritchings@salford.ac.uk (R.T. Ritchings).

1350-4533/02/$22.00 2002 IPEM. Published by Elsevier Science Ltd. All rights reserved.
PII: S1350-4533 (02)00064-4

patient’s voice quality to help the SALT plan the
patient’s rehabilitation.

Earlier work has shown that a multi-layer perceptron
(MLP) trained using features derived from a normalised
power spectral representation, the fundamental-harmonic
normalised spectrum (FHN) [1], of stationary vowel seg-
ments can classify EGG speech signals as normal or
abnormal with an accuracy of 80% [2].

Whilst this provided good classification between nor-
mal and abnormal voice quality, the feature set was lim-
ited to sub-optimal classification results, as it is well
known that some pathologies are measured more easily
using long-term (�50 ms) parameters [3]. This paper
describes the refinement of the artificial neural network
(ANN) approach to voice quality assessment, by introd-
ucing long-term features to the prototype classification
system.

In addition, the extension of the system to provide a
sub-classification of abnormal voices in line with the
SALT seven-point ranking scheme is investigated, and
preliminary results are presented.
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2. Data capture

The data used to develop the system were captured
off-line under clinical conditions at the Christie and
Withington Hospitals in Manchester, using an Electrola-
ryngograph PCLX system [4]. This system is used to
capture electrical impedance (EGG) signals using pads
placed either side of the neck synchronously with acous-
tic signals captured using a microphone. Both EGG and
acoustic data channels were captured synchronously at
20 kHz for up to 3 s while the subject phonated the
vowel /i/ as steadily as possible. Other vowel sounds
were also recorded, however, the /i/ vowel is most fre-
quently used by SALTs as the onset of phonation occurs
more quickly than in other vowels and is a good indi-
cation of vocal fold health.

The EGG signal provides information about vocal fold
contact behaviour during voice production, as the electri-
cal impedance varies with the opening and closing of
the glottis. This signal is modulated by the resonant cavi-
ties of the vocal, oral and nasal tracts to provide the
acoustic signal. As the EGG signal is much less complex
than the acoustic signal, the visual appearance of this
signal is used by the SALT in conjunction with their
perception of the acoustic sound when making their
assessment of voice quality.

Although speech data were recorded for both male and
female patients, the largest pathological group was male,
so it is these speech signals that were used in the study.
Implicit in this is that the SALT had made a voice qual-
ity assessment of the patient using their own seven-
point ranking.

3. Data processing

An automated voicing analysis was performed upon
each 3 s EGG and acoustic speech signals to determine
if the subject had voiced during phonation. If voicing
was considered to have occurred, the EGG signal was
processed to extract the long-term features initially, and
then the short-term features for classification of voice
quality. The long-term features include Mf0, the mean of
fundamental frequency, f0, the standard deviation of f0

(SDf0), and the percentage of the 3 s signal that is voiced
(V+), while the short-term features include parameters
related to the spectral envelope of the first few glottal
harmonics, and the glottal noise.

The voicing test involved taking 50 ms frames from
the signals and applying Cepstral analysis techniques
[5,6] to identify the voiced frames. Each frame was then
pre-emphasised by forward differencing to reduce the
effects of drifting signal amplitude, and its autocovari-
ance was multiplied by a Hanning window, prior to
transformation to the frequency domain using the fast
Fourier transform. [7] An estimate of f0 for each frame,

deduced from the voicing analysis, was used to derive
the FHN normalised spectral representation. This pro-
cess removed the large observed inter-patient variability
in f0 and its harmonics, thus allowing a more effective
modelling of the spectral envelope among groups of
patients. Once the FHN spectrum had been determined,
Gaussians were fitted to the data around f0 and its first
few harmonics [8]. Each Gaussian, Gh, (h=0 up to typi-
cally 8) was parameterised as:

Gh � (positionh, widthh and amplitudeh)

An observation was made that the mixture of Gaussi-
ans gave a better ‘fi t’ to the FHN spectrum for the less
abnormal patients, and so a parameter related to the
goodness of fit, called the harmonic linearity measure
(HLM), was calculated for each frame. Finally, as glottal
noise is considered to be an important measure of voice
quality, a parameter based on the normalised noise
energy (NNE) [9,10], but derived from the FHN spec-
trum, FHNNE, was calculated for the data.

The parameters extracted from the speech data and
used for the ANN classification tests comprised three
long-term parameters (Mf0, SDf0, V+) and 18 short-term
parameters (f0, G1, G2, G3, G4, G5, HLM, FHNNE). Full
details of the data processing and extraction of these
parameters can be found in McGillion [11].

4. Data classification

In total, 77 abnormal speech signals were available
for training and testing data. For each of the seven
classes, 450 patterns were used for training/validation
and 200 for testing. Unfortunately, as a result of the rela-
tively small dataset, there were different numbers of
patients in each class. As it is desirable to have equal
numbers in each class to train an ANN adequately,
additional frames were taken from some patients in
classes with the fewest patients and a small percentage
of extra patterns was produced by adding normally dis-
tributed noise to the short-term features that were
derived from these frames.

A two-layer, seven-output MLP, as shown sche-
matically in Fig. 1, was trained using the back-propa-
gation training algorithm, softmax activation function,
and cross-entropy error function [12]. The advantage of
using the cross-entropy activation function is that the
output across all seven classes sums to 1.0 and can there-
fore be interpreted as a probability of membership of
each of the seven classes. A further constraint placed
upon the MLP is that for any single class to be declared
the ‘winner’ the output for that class must be greater
than 50% (0.5). MLP structures with different numbers
of hidden nodes and subsets of the 21 input parameters
were investigated in order to determine the combination
that provided the minimum classification error.
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Fig. 1. Generalised MLP structure used in this study.

5. Results and discussion

Several different combinations and subsets of the 21
parameters were investigated. All the short-term features
were found to contribute to the classification. The classi-
fication accuracy increased from 26.5% with [G1] alone
to 67.7% with [G1, G2, G3, G4, G5]. Adding the other
short-term features [FHNNE] and [HLM] increased the
discrimination ability of the MLP to 72.07 and
68.64%, respectively.

Similarly, the long-term features were also found to be
very important to the discrimination between the classes.
These parameters [Mf0], [SDf0], [V+] alone were able to
distinguish between the classes with accuracies of 37.57,
23.07, and 26.78%, respectively. However, it was found
that it was the combination of the short-term and long-
term features that provides the most accurate classi-
fications of the abnormal signals.

The best overall ANN structure was a 20-40-7 MLP
using the parameters [G1, G2, G3, G4, G5, FHNNE,
HLM, Mf0, SDf0, V+], and the results indicate that this
MLP was able to distinguish between the seven abnor-
mal groups with an accuracy of up to 92%.

Fig. 2 shows the output of the MLP for SALT’s 20

Fig. 2. The MLP estimate of class probability for the SALT’s pre-classified class 3 abnormals.

patients pre-classified as class 3 abnormals. The output
of the MLP is an estimate of the posterior probability of
the membership of each class Ci (0�i�6). It should be
noted that class estimates were also produced for the
other SALT classes, and only one misclassification was
found. This was for signal CA87EE, as seen in Fig. 2,
where the highest class probability was for class 6. How-
ever, when the output probability was transformed to
take into account the prior probability of each class [13],
this signal was correctly assigned to group 3. Perhaps
unsurprisingly, the classes at the two extremes of the
scale, 0 and 6, provide the best classification results. In
all cases, classes 3, 4, and 5 are the most difficult to
discriminate between.

6. Conclusions

The results from this work suggest that a voice quality
assessment system incorporating an ANN can be trained
to provide objective sub-classifications of voice quality
in line with the seven-point ranking scheme used by
the SALT.

However, it should be noted that the ANN has been
trained on the assessments of one SALT, which could
lead to subjectively biased results. The collection of
patient speech data, including voice quality rankings
from several SALTs in the region, is now taking place,
and will hopefully provide a larger and less biased data-
set for training the system.

At the same time, work is taking place to identify and
evaluate other parameters that can be derived from the
speech data, in particular the acoustic data, which have
been largely ignored in this study so far, in order to
further improve the accuracy and reproducibility of these
experimental results.
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