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A two–dimensional model of the non–isothermal melt spinning of compound and hollow
compound semi–crystalline fibres which accounts for molecular orientation and crystallization
is presented in this work. The model is based on the leading–order equations for the fibre’s
geometry and axial velocity component for slender fibres at low Reynolds and Biot numbers, and
two–dimensional equations for the temperature, orientation and crystallization. Furthermore, the
model employs a Newtonian rheology, includes the effects of both temperature and flow–induced
crystallization, and accounts for the effects of the molecular orientation on both the stress tensor
and the crystallization through a Doi–Edwards formulation and the Avrami–Kolmogorov kinetics,
respectively. Molecular orientation is modelled by means of a tensor whose evolution depends
mainly on the strain rate tensor, while the crystallization depends on the molecular orientation
and the temperature field; the equations for the crystallization and molecular orientation are
strongly coupled to those of mass, linear momentum and energy conservation.

The model presented here has been used to study the steady melt spinning of both compound
and hollow compound fibres numerically by means of finite difference equations in the computa-
tional domain which results from mapping the curvilinear geometry of the compound fibre onto
two rectangles. Numerical experiments have been performed at moderate draw ratios in a physical
domain that, in the axial location, is bounded by the maximum swell location and the take–up
cross–section. The numerical results indicate that, even at low Biot numbers, the temperature
may not be uniform across the compound fibre because of heat losses. For the cases reported
here, the temperature non–uniformities are mainly a function of the Biot number, the thermal
conductivity and the pre–exponential factor and activation energy of the dynamic viscosity law
for the cladding. The results also show that the cross–sectional averaged temperature predicted
by the two–dimensional model exhibits the same qualitative trends as those of an asymptotic
one–dimensional model which does not account for axial conduction and which is only valid for
slender fibres at low Reynolds and Biot numbers.

For hollow compound semi–crystalline fibres, it is shown that almost complete molecular
orientation is achieved close to the maximum swell region due to the large contraction of the
fibre there, whereas, for the conditions considered here, the ultimate degree of crystallization
is not achieved at the take–up point. It is also shown that there are non–uniformities in the
temperature and crystallinity profiles at the take–up point; these non–uniformities may have a
great effect on the fibre’s properties. Some areas for future work are also indicated.
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1.1 introduction

1.1.1 The melt spinning fibre formation process

Melt spinning, whose study is the main objective of this work, is the production of continuous
solid filaments from polymeric melts and involves the extrusion and drawing of a liquid. The fibre
formation process includes change in the shape, structure and properties of the thermoplastic
polymer. A diagram of a typical process is illustrated in Figure 1.1 (a). The polymer pellets or
granules are fed into an extruder where, through heating, their melting temperature is exceeded.
The polymeric melt is then transported, under pressure, to the spinneret. Hygroscopic polymers
require vacuum drying prior to processing in order to ensure a low water content. The extrusion
temperature T0 is roughly 30− 50K above the melting temperature Tm of the polymer, i.e.
T0 = 550− 570K for Polyethylene terephalate (PET). A constant mass flow rate of the melt is
achieved by a metering pump (the spinning pump) which can be positioned inside the spinning
head. Within the spinneret, the melt flow is channelled into a number of individual capillary
holes, each is responsible for the formation of a single filament. After the melt flow passes through
these spinneret orifices into the air, the single filaments are drawn and cooled until they solidify
in the draw zone. The final fibre velocity is fixed by the godet which consists of one or more

3



introduction and background. motivation

wheels rotating at a constant rate. The solid fibre moves at the same linear velocity as the wheels
due to contact frictional forces. Like a sewing thread, the fibre is finally wound on a spool for
storage. The take–up speed is much higher than the average extrusion velocity at the spinneret
exit. The ratio between the spinning velocity uL (take–up speed at any distance L) and the
(average) extrusion speed u0 at the spinneret exit defines the draw ratio Dr:

Dr =
uL
u0

. (1.1)

Some authors define the draw ratio as the ratio between the radius at the die–exit and that at
the take–up point.

The properties of fibres manufactured by melt spinning processes depend on the processing
conditions to which the polymer is subject during their manufacture.

Compound (hollow) fibre spinning differs from solid fibre spinning in that two fluids are
co–extruded and co–drawn. The inner or core fluid is often a fluid but may be an inert gas; in
this case, hollow fibres are obtained. In hollow compound fibres, the outer or external material
may protect the inner one, serve as a waveguide in signal transmission, etc. and the principle
guiding their manufacture is that the combination of two or more different materials with different
properties may result in composite fibres with highly desirable properties. Depending on the
extrusion conditions and the rheology of the inner and outer materials, the hollow compound
fibre may swell after exiting the nozzle.

(a) (b)

Figure 1.1: Schematic figure (a) and drawing zones (b) of the melt spinning process. This figure has been taken
from [91].

4



1.1 introduction

Melt spinning processes are commonly divided into four regions for analysis: (1) the shear
flow region which exists within the spinneret; (2) the flow rearrangement region in which the
shear flow becomes an elongational flow; (3) the melt draw zone where the fibre is drawn down
to the desired size and put in contact with a quench fluid to facilitate heat transfer; and (4)
the solidification region where as the fluid cools, it becomes a solid. Each of these regions is
identified in Figure 1.1 (b). It must be noted, that at high drawing speeds, a neck–in region has
also observed.

The most commonly specified operating variables are the spinneret diameter and temperature,
quench fluid temperature and velocity, extrusion mass flow rate and rotation rate of the godet
wheels. Proper specification of the operating variables permits production of a given fibre size at
a given rate.

A rigorous analysis of this process would require solving the conservation of mass, energy and
momentum equations in complex three–dimensional domains. To avoid lengthy and expensive
numerical solutions, a number of simplifying approximations have been introduced in the literature
which provide the basis for the Thin Filament Analysis (TFA) or Thin Filament Equations (TFE)
model.

Explicit treatment of regions 1 and 2 is avoided in this study by assuming the shear flow within
the spinneret rearranges to an elongational flow over a distance much shorter than the total draw
zone length. Finite element calculations have shown this to be an accurate approximation for
both solid and hollow fibre spinning and indicate that flow rearrangement typically occurs over a
distance equal to two or three spinneret diameters [79]. In addition, we shall concern ourselves
here with moderate drawing speeds so that the neck–in phenomenon does not arise.

Although the exact origin of the draw zone is undefined, the ambiguity is much smaller than the
draw zone length. The initial fibre diameter is usually set equal to the spinneret diameter or the
maximum die swell radius if die swell is significant. However, direct experimental measurement
or an appropriate correlation for die swell is required [49].

The analysis of region 4 is usually avoided by assuming an instantaneous, iso–enthalpic
transition to an undeformable solid at an appropriate transition temperature (e.g. melt or glass
transition). The significance of this assumption is not well defined in the existing literature. For
materials that possess significant crystallinity, especially at high speeds (velocities greater than
1000 m/min), the validity is questionable because the glass transition may be a strong function
of crystallinity and crystal orientation [49].

For glassy materials at lower speeds, the use of the glass transition temperature appears to
give reasonable results. Small variations in the glass transition temperature do not significantly
change the final fluid stress level nor the final fibre diameter [49, 50]. This is not unexpected since
both of these important spinline variables asymptotically approach their final values; shifting the
exact transition point has little effect within the plateau region.

The above assumptions reduce the problem to an analysis of region 3 only. The fact that
the fibre diameter is typically much smaller than the overall draw zone length allows one to
simplify the analysis further. The mechanics of this simplification have taken various forms in
the literature but all yield the same result: the TFE model.
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1.1.2 Manufacture and applications features

Most of the man–made fibres used in the textile industry are manufactured by means of fibre
spinning processes. Fibre spinning processes are also used in the manufacture of reinforced fibres
and optical fibres.

While textile fibre studies, in general, strive to avoid fibre rupture and gross distortion of
the thread line, the drawing of optical fibres takes filament continuity for granted, and the
application of optical fibres requires that the main issue in their manufacture be the sensitivity
to perturbations in the diameter. It must be noted that, when continuous drawing of textile
fibres is impossible, much emphasis is placed on the prediction and control of the thread length,
i.e., the filament length attainable between spontaneous ruptures.

About thirty years ago, a new optical fibre, i.e., the Polymer Optical Fibre (POF), emerged, but
did not find many optical applications due to its high attenuation, until about fifteen years ago
when graded–index optical fibres and low–attenuation perfluorinated fibres were developed [155].
POFs are now available as high–capacity transmission media thanks to their transparency and
bandwidth; they are currently replacing copper fibres in short–haul communications links due to
their transmission capacity, immunity to interference and small weight. In addition, POFs serve
as a complement to glass fibres in short–haul communications links because they are easy to
handle, flexible, and economical, although they are not used for very long distances because of
their relatively high attenuation.

POFs used for optical communications are highly flexible wave guides composed of nearly
transparent dielectric materials. The cross–section of these fibres is circular and, generally, consists
of three layers. The inner layer is called the core, the middle one is the cladding, and the outer
layer is the jacket or protective cover. Within the core, the refractive index profile may be uniform
(step–index fibres) or graded (graded–index fibres), whereas the cladding is typically uniform.

Figure 1.2: Schematic of a plastic optical fibre [140].

Optical fibres can be classified in two main groups from the point of view of wave propagation:
single–mode fibres which have a relative small core, and multimode fibres, whose core is large
enough so that propagation may be analysed by means of geometric ray–tracing models. Single–
mode POFs exhibit a much larger attenuation than single–mode glass fibres and lack the main
advantages of conventional POFs, i.e., ease to handle and low cost connectors. As a consequence,
research on these fibres has not been very active, although single–mode POFs can be easily
coupled to planar wave guides and serve as components for some devices such as sensors, and
their core may be doped with a dye to control absorption and non–linear wave propagation.
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Two steps are usually followed in the manufacture of POFs. First, a solid cylindrical rod, called
preform, which is approximately 0.5− 1m long and several centimetres in diameter, is made; the
structure of this preform determines the core and cladding refractive index profiles. The second
step consists in the heating and extrusion of the preform, which yields a POF length in a range
between half a kilometre and several kilometres. Step–index POFs are manufactured by means
of a melt spinning process in which fibres are obtained by either continuous or batch extrusion.
In the continuous extrusion process, a monomer, an initiator and a chain transfer agent are
continuously fed into the reactor and the fibre is continuously drawn from the die. This is an
efficient process due to its high production rate.

In order to obtain a particular refractive index profile in the core along the radial direction,
a preform with the desired profile can be employed; whenever more complex refractive index
profiles are required such as graded–index ones, a technique based on drawing a preform by
melting its tip with the aid of an oven is used. The preform is, in this case, a cylinder of a
polymer whose refractive index distribution in the radial direction can be made to coincide with
that desired for the POFs core.

Currently, there are two main techniques to produce graded–index POFs: gel polymerization
and diffusion. The gel polymerization technique requires the manufacture of a hollow cylinder
made of a polymer, e.g., Polymethyl methacrylate (PMMA), which will be the POFs cladding.
The hollow cylinder is filled with a mixture of a monomer from which the polymer cylinder is
made, a dopant with a higher refractive index than that of the polymer, an initiator, and a chain
transfer. The filled cylinder is then heated for some time and, as a consequence of the heating,
the cylinder softens due to the formation of a gel phase which accelerates the polymerization
reactions, i.e., the polymer is formed from the gel phase on the inner wall of the cylinder; the
reaction is completed when the initially hollow cylinder becomes a solid one. The reason for
the use of dopants with a higher refractive index than that of the polymer is that light should
be confined in the structure, and the mechanism for the correct distribution of the refractive
index consists in the selective diffusion of the monomer and dopant materials in the gel–polymer
phases created in the inner wall of the hollow cylinder. Moreover, since the molecular volume of
dopants is higher than that of the monomer, the monomer diffuses faster than the dopant in
the gel phase. For this reason, dopant molecules are concentrated in the central region of the
cylinder, so that the refractive index is higher in this region.

Once the preform has been obtained, it is held up by a support in the fibre extrusion tower,
where the lower end of the preform is heated with the aid of a furnace, so that it acquires the
necessary low viscosity to be extruded downward. The extrusion velocity and the speed at which
the mandrel rotates are adjusted by a controlled mechanism, so that the fibre reaches the desired
constant diameter.

During the extrusion process, the geometrical relationship between the core and the cladding
is kept constant, even though there is a drastic reduction from the diameter of the preform to
the final diameter of the extruded fibre. Finally, a coating is applied to the fibre in order to
protect it against microcurvatures or microbends, improve its mechanical resistance, and ease
its handling. When the coating has hardened by the effect of heat or ultraviolet radiation, the
optical fibre’s resistance to traction is continuously tested by forcing the coated POF to pass
through a series of pulleys that exert mechanical tension on it. In this manner, the optical fibre
must resist a minimum load before it is wound onto a cylindrical drum.

Other processes that usually use polymeric membranes (see Fig. 1.3 (a)) in either hollow
fibre or flat sheet forms, are membrane separation processes. These processes are employed in
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(a) (b) (c)

Figure 1.3: Some applications of the hollow compound semi–crystalline fibres. (a) Filtration process, (b) optics
and (c) infrared imaging and sensing.

a variety of industries ranging from water treatment to industrial gas separation [115]. Hollow
fibre membranes are mass–produced by a variety of spinning processes. These include variations
of the melt, dry and wet spinning processes.

The main reason why the spinning process is important to the development of gas separation
applications is that overall process economics are dictated by the rate at which hollow fibres
of uniform size and properties can be produced. Ideally, one could produce hollow fibres at
arbitrarily fast line speeds. In practice, however, rates are limited by instabilities that arise in
the process. Commonly encountered instabilities will be discuss below.

Hollow fibres are also broadly used because of their high surface–to–volume ratio and are
preferred in ultrafiltration and dialysis [12]. They are also used in the textile industry as well as
in optics, e.g., micro–structured optical fibres (Fig. 1.3 (b)), for infrared imaging and sensing (see
Fig. 1.3 (c)), wave transmission, etc., in military and medical applications, etc. [114]. Hollow fibre
bio–reactors have been in use for more than thirty years for the production of secreted proteins
and antibodies from mammalian cells, while polymeric solid hollow fibres of Polypropylene (PP)
have been used in heat exchangers for thermal desalination to replace the conventionally used
metallic shell–and–tube heat exchangers which require huge capital investments, suffer from
corrosion/erosion problems, create heavy metal pollution, and display a large footprint [135].

1.2 background

1.2.1 Models for amorphous compound fibres

Although there has been quite a lot research on the development of one–dimensional, mathematical
models for the analysis of the drawn–down region of single–component filaments and jets under
both isothermal and non–isothermal conditions at low Reynolds numbers [28, 29, 52, 111, 112,
126, 145, 148, 153], compound fibres such as those used in reinforced materials and optical fibres
(which are manufactured in co–extrusion processes) have received very little attention despite the
fact that the combination of two or more different materials with different properties may result
in composite fibres which highly desirable properties [71, 72, 90, 101, 109, 117, 121]. For example,
in the manufacture of optical fibres, the core is surrounded by a sheath of cladding material.
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Ramos [117] developed an asymptotic model for isothermal, compound fibres consisting of
Newtonian fluids, from the time–dependent axisymmetric form of the conservation equations
and obtained some analytical solutions under steady–state conditions.

Park [109] used perturbations methods based on the slenderness ratio and the smallness of the
Deborah number in his studies of steady, isothermal, two–phase or compound fibres consisting of
a Newtonian core layer surrounded by a sheath of a non–Newtonian fluid with a Maxwell rheology.
His studies result in a system of ordinary differential equations for the axial velocity component
and radii of the two–phase fibre which is more manageable than the two–dimensional conservation
equations of mass and linear momentum from which it was derived. Lee and Park [90] employed
the one–dimensional equations developed by Schultz [126] to study the linear stability of the
spinning of isothermal, bi–component fibres characterized by a Newtonian fluid for the core and
an upper–convected Maxwell fluid for the cladding, and showed that the stability of the fibre can
be maintained at higher draw ratios than those that result when the same fluid is employed for
both the core and the cladding. Naboulsi and Bechtel [101] introduced a one–dimensional model
of isothermal, Newtonian, bi–component fibre filaments by integrating the three–dimensional
equations over the filament cross–section, and examined the influence of density, viscosity and
surface tension ratios on the steady–state fluid dynamics of isothermal, compound jets at low
Reynolds numbers. Ji and Yang [71] and Ji et al. [72] studied isothermal, bi–component fibres
characterized by a Newtonian fluid for the core and a Phan–Thien/Tanner (PTT) fluid for the
cladding.

As stated above, previous studies of the drawn–down region of bi–component or compound
fibres at low Reynolds numbers [71, 72, 90, 101, 109, 117, 121] have only considered isothermal,
steady–state flows or determined the linear stability of these flows; in addition, except for that of
Ramos [121], none of these studies has considered the possible steady–state solutions of isothermal,
steady, bi–component fibres, and determined the effects of the downstream boundary conditions,
forcing and fluid dynamics parameters on the non–linear dynamics of isothermal, compound
liquid fibres. Moreover, there does not seem to be any studies concerning the cooling as well as
the non–linear response of non–isothermal, bi–component or compound fibres to perturbations in
the fibre’s geometry, axial velocity and temperature, perturbations in the operating conditions,
etc., analogous to those performed by, for example, Geyling [52], for single–component, round
fibres. It must be noted that compound fibres reduce to single–component ones whenever the core
and cladding are made of exactly the same material, and, therefore, any model for compound
fibres should reduce to a model for single–component, round fibres when the materials of the
core and cladding are identical.

1.2.2 Models for amorphous hollow fibres

Although some one–dimensional models have been developed to study the melt spinning (and
drawing) of single–component hollow fibres [40, 118, 142, 146, 147] based on Taylor’s series
expansions in the radial direction, asymptotic methods or integral formulations of the governing
equations for slender fibres under isothermal and non–isothermal conditions, there have been
few studies on the melt spinning of hollow compound fibres [119, 122] and these studies have
been limited to very small Biot numbers for which an asymptotic analysis for slender fibres
indicates that the temperature across the fibre is uniform at leading–order. For moderate or
large Biot numbers, such a uniform temperature approximation is not expected to be valid,
especially at the interfaces between the hollow compound fibre and its surrounding media and at
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the interface between the inner and outer materials that make up the hollow compound fibre.
These temperature uniformities, in turn, affect the velocity field through the dependence of
the dynamic viscosity on the temperature, and the molecular orientation and crystallization of
semi–crystalline polymer fibres through their dependence on the thermal field and the strain rate
and stress tensors. As a consequence, temperature non–uniformities across a hollow, compound
fibre may result in non–uniformities on the degrees of molecular orientation and crystallization
which, in turn, affect the fibre’s morphology and mechanical, chemical, optical, etc., properties.

1.2.3 Instabilities of fibre spinning processes

Stability is critical to any practical manufacturing process including commercial fibre spinning
processes. Many factors affect the ability to produce fibres with uniform size and properties. The
onset of spinning instabilities is one of the major factors that influence process productivity and
quality control. Two major process instabilities have been observed during fibre spinning: melt
fracture and draw resonance. Both instabilities yield fibres with non–uniform dimensions and an
excellent summary of the related literature is provided by Petrie and Denn [113].

Melt fracture refers to extrudate distortion and typically appears as exaggerated surface
roughness. When the extrusion rate increases beyond a critical value, the exit flow becomes
unstable and an extrudate with a smooth surface cannot be produced. If the surface distortions
are too severe, the filament can break.

The nature of the surface distortion depends on extrusion conditions and the material being
extruded. As the extrusion rate increases, the extrudate surface can change from smooth to
sharkskin, stick–slip, and then finally gross melt fracture [63, 75, 97, 133].

Typically, sharkskin is the first surface irregularity observed upon increasing the flow rate.
This distortion is characterized by a fine–scale texture of relatively small amplitude and short
wavelength [62, 98]. As the extrusion rate increases further, a stick–slip (or spurt–flow) surface
distortion may appear that is characterized by alternating smooth and sharkskin regions [51, 92].
Finally, at higher extrusion rates, extreme distortions referred to as gross or wavy melt fracture
may occur [26, 81]. For some systems, a second stable region may exist between the stick–slip
and gross melt fracture regions. In this region, a smooth extrudate is obtained but at much
higher extrusion rates than in the first stable region. This region is usually referred to as the
super–extrusion or super–flow region.

The mechanism of melt fracture is complex and poorly understood. Researchers have proposed
a multitude of mechanisms but have not reached consensus on the underlying physics [8, 58, 59,
61, 62, 106–108, 134, 141]. Most researchers agree that the instability starts inside the spinneret
but have different opinions on where: some point inside the die, at the die entrance, at the die
exit or some combination of these locations.

Researchers also believe that melt fracture is associated with the elastic deformation that arises
from the difference between the normal stress of the extrudate and the applied shear stress [97].
Theoretical studies of melt fracture have ranged from simple linear stability analyses [97] to
much more complicated models [55, 133].

Draw resonance is another type of instability observed in fibre spinning processes. It is
characterized by periodic, long wave length variations in extrudate dimensions in contrast to the
random, short wave length surface irregularity associated with melt fracture. Draw resonance in
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fibre spinning processes was first reported by several researchers [23, 47, 99] in the early 1960’s
and later was found to depend only on the draw ratio [31] under isothermal conditions and for
Newtonian fluids at low Reynolds numbers. Therefore, operating at low extrusion rates may
avoid melt fracture but draw resonance can occur if the draw ratio is sufficiently large.

Unlike melt fracture, draw resonance can occur in Newtonian fluids. This suggests the instability
has a viscous origin contrary to the elastic origin of melt fracture [19, 31]. Additionally, heat
transfer is not a direct trigger because draw resonance is observed in isothermal or nearly
isothermal spinning processes [19, 27, 31, 103, 144]. These observations initially led researchers
to develop theoretical stability analyses of isothermal, Newtonian spinlines. The first analyses
were based on linear perturbation theory applied to the TFE linearised about the steady–
state. Pearson [110], Shah [131], Han [59], Kase [76] and co–workers treated the linearised
system as an initial–value problem in which the system is perturbed from steady state with
a periodic disturbance in the inlet boundary conditions. The response of the system, as a
function of the disturbance frequency, was determined numerically by a two–step finite difference
method. Gelder [48] and Fisher and Denn [39] used classical stability theory in their work.
Infinitesimal fluctuations are introduced into the steady–state system while maintaining the
boundary conditions at the ends of the draw zone. The solution of the resulting linearised,
transient thin filament equations is an eigenvalue problem. For a given value of the draw ratio, the
spinning process is stable if the real parts of the calculated eigenvalues are negative. Otherwise
the spinning process is unstable. Both types of stability analysis predict the existence of a single
critical draw ratio, D∗r ∼ 20.22, for isothermal spinning of Newtonian fluids. When the draw
ratio exceeds D∗r , steady spinning is not possible. Donnelly [31] provides the first experimental
confirmation of this prediction. This is now a well–recognized result that serves as a benchmark
for the evaluation of new models and numerical methods.

Linear perturbation theory can predict the stability of the spinline only to infinitesimal
disturbances. It cannot predict in stability to finite disturbances. Furthermore, the transition
from an initial infinitesimal disturbance to the observed macroscopic draw resonance behaviour
cannot be demonstrated with a linear analysis: a non–linear stability analysis is required. Fisher
and Denn [38, 39] extended their linear analysis to a non–linear analysis to evaluate stability for
finite–amplitude disturbances. They demonstrate that isothermal spinning of Newtonian fluids is
stable when the draw ratio is belowD∗r for both infinitesimal and finite disturbances. Hyun [67, 68],
Kim [80], Jung [74], Lee [88, 89] and co–workers examined isothermal spinning stability using
kinematic wave theory and found the same critical draw ratio. Ishihara and Kase [69, 70] and
Cao [15, 16] obtained a numerical approximation to the solution of the transient, non–linear
TFE to demonstrate the evolution of a disturbance into draw resonance. Their results are in
excellent agreement with previous stability analyses.

Ramos [121] performed a linear stability analysis of the steady solution for isothermal compound
fibres or jets and carried out time–dependent numerical simulations below and above the critical
draw ratio predicted by linear stability theory in order to determine the dynamic response of
compound fibres to time–dependent axial velocity variations at the die exit and/or take–up point.
This stability analysis for what he refers to as the viscous regime, provides the same stability
condition on the draw ratio as analogous analyses for planar film casting [120], single–component
fibres [54, 110, 127, 149], single–component annular jets [118] and bi–component or compound,
annular liquid jets [119], when there is no surface tension and pressure differences across the
annular jet.
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Near the critical draw ratio, bifurcation theory for isothermal, single–component, round fibres
yields a stable supercritical Hopf bifurcation, the frequency of which decreases as the winder
speed is increased near the critical one [128]. For draw ratios higher than the critical one, Schultz
et al. [128] found that the oscillation amplitude compares favourably with experimental data for
isothermal fibres; however, they found quantitative differences in the disturbance frequency. This
discrepancy can be attributed to the rheology of the fibres used in the experiments, for it was
observed that, with viscoelastic fluids, the frequency decreases with the amplitude.

Draw resonance for non–Newtonian fluids is a more complex problem. Unlike for Newtonian
fluids, a single critical draw ratio does not exist. The critical draw ratio is highly dependent on
the fluid rheology. For an inelastic non–Newtonian fluid with a power law viscosity, the critical
draw ratio is directly proportional to the power law index. For shear thinning fluids (i.e., power
law indices less than unity), the critical draw ratio is less than that predicted for Newtonian
fluids and decreases as the power law index decreases.

For shear thickening fluids (i.e., power law indices greater than unity), the critical draw ratio
is greater than that of Newtonian fluids and increases with increasing power law index [39, 59,
68, 131]. The predicted drop of critical draw ratio for a shear thinning fluid is in good agreement
with experimental observations [59, 103, 144]. Fluid elasticity also has a significant effect on the
stability of non–Newtonian fluids. Fisher [39], Hyun [68], Jung [74] and co–workers examined
spinning stability using a simple Maxwell model, while Lee et al. [87–89] use the PTT model. All
of the results indicate that elasticity has a stabilizing effect for extensional–thickening fluids: the
critical draw ratio increases as the fluid relaxation time increases.

Any disturbance in the spinline eventually shows up as a fluctuation in the force applied to
the filament at the take–up point. For Newtonian fluids, the take–up force responds immediately
to the disturbance. However, a delay may occur for non–Newtonian fluids. This delay gives the
system time to return to its original stable state from a perturbed state and thereby increase
the critical draw ratio. Additionally, a second critical draw ratio exists for some non–Newtonian
fluids. Spinning is unstable between the two critical values. This suggests that draw resonance is
a dynamic phenomenon rather than an elastic one.

Temperature is another factor that affects draw resonance. Non–isothermal analyses [57, 129,
130] indicate that cooling stabilizes the spinning process for both Newtonian and non–Newtonian
fluids. This increased stability is due to the strong dependence of viscosity on temperature. As
the filament cools, viscosity increases dramatically along the spinline and the filament becomes
less sensitive to any force fluctuations at the take–up device. Gupta et al. [57] predict critical
draw ratios as high as 104 for non–isothermal spinning. This value is not as high as that found in
stable commercial spinlines but does demonstrate the tremendous stabilization effects of cooling
and fluid elasticity.

Fluid inertia, gravity and surface tension also affect spinline stability. Shah [130] and Chang [20]
and co–workers theoretically studied these effects and found that inertia has a strong stabilizing
effect and dominates the effects of gravity and surface tension. Experimental results reported
by D’Andrea and Weinberger [25] qualitatively agree with the numerical predictions. Therefore,
gravity and surface tension forces can be neglected when analyzing the stability problems of
most practical spinning processes.

Solid fibre spinning has been the focus of all of the stability analyses discussed thus far. While
similar analyses have been conducted for tubular film blowing processes [14, 53, 60, 82, 84, 96, 100,
151], the stability of hollow fibre spinning has not been addressed until recently [54, 91, 118, 119,
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150]. These works demonstrate that isothermal hollow fibre spinning also is unstable when the
draw ratio exceeds D∗r for Newtonian fluids. While, no direct evidence of draw resonance has been
reported in the literature, past work [2, 6] demonstrates an instability that is unique to hollow
fibre spinning. Under certain operating conditions, the filament periodically forms “bubbles”
along its length. These bubbles are short regions of much greater fibre diameter separated by
regions of much smaller fibre diameter. Although the bubbling instability is superficially similar
to draw resonance, the two phenomena appear to originate from different physics. In particular,
the variation in fibre size is not sinusoidal as with draw resonance; the distance between “bubbles”
is much greater than the length of a bubble. Additionally, the instability appears to occur at a
critical bore–to–clad flow rate ratio instead of at a critical draw ratio.

1.3 polymer orientation and crystallization

As stated above, most plastic products are manufactured by heating the polymer to above
its melting temperature and then cooling it in a mould as in injection moulding or deforming
the melt while simultaneously cooling it to get the desired shape as in film blowing and melt
spinning. The properties of the final product depend on the processing conditions to which the
polymer is subject during its manufacture. Furthermore, depending on the molecular structure
and processing conditions, the final product can be in either an amorphous or a semi–crystalline
state. Polymers that are unable to crystallize on cooling below their glass transition temperature,
form amorphous solids, and, if these solids are formed by deforming the polymer while cooling it
through the glass transition temperature, they can exhibit strong anisotropy. As the deformed
amorphous polymer melt cools below its glass transition temperature, its molecules lose their
mobility and become frozen in this oriented configuration.

Polymers having a regular or ordered molecular structure form a semi–crystalline solid when
kept at a temperature below the melting one for a sufficiently long time. Under quiescent
conditions, the crystallization process can be very slow especially at temperatures just below the
equilibrium melting temperature, and the resulting solid has a spherulitic morphology.

The rate of crystallization depends on the molecular orientation in the melt; when subject to
deformations that align the polymer molecules, the rate of crystallization increases dramatically,
and, when the temperature drops below the glass transition temperature, there is a cessation
of molecular motion and the crystallization rate decreases and may stop. As the crystallinity
increases, it retards the crystallization process and decreases the mobility of the polymer molecules
in the amorphous phase.

Some polymers such as, for example, Polyethylene (PE), find applications at temperatures
between their melting and glass transition temperatures. At these temperatures, the solid consists
essentially of rigid crystals and a flexible amorphous phase and it is therefore solid and tough.

The properties of the final product depend on the final morphology of the amorphous and
semi–crystalline phases; the morphology, in turn, depends on the thermal and deformation
histories undergone by the material during processing. Moreover, many products such as fibres
and films are subjected to large inelastic deformations after manufacture, and, during the course
of these deformations, further crystallization may take place, and the morphology and properties
of the product evolve with the deformation.

Liquid–crystalline solutions may phase separate even under isothermal conditions due to
electrostatic and steric interactions that result from the rigidity of the polymer chain backbones
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even at low polymer concentrations, and form anisotropic phases with a degree of molecular
orientation even in the quiescent state as evidenced by their ability to exhibit birefringence under
static conditions. During processing, e.g., isothermal spinning, these molecules are aligned by the
flow, thus yielding products with highly anisotropic properties [116]. For example, ultrastrength
textile fibres such as Vectran and Kevlar achieve their distinguished commercial properties (tensile
modulus) as a result of the interaction between the anisotropic molecular–scale structure of the
melt or solution, the macroscopic hydrodynamics of spinning flows and non–isothermal effects
including radial heat transfer through the round fibre free surface, temperature dependence of
material properties, crystallization, and phase change.

The phase change from the amorphous to the semi–crystalline stage is referred to as a phase
transition. Early work on phase transitions considered that heat conduction was dominant and
assumed that the temperature was the basic variable. Mean–phase field models were subsequently
developed; these models introduce both the temperature and an order parameter, modify the
energy equation to account for the order parameter, and introduce an additional equation the
origin of which can be traced back to the Landau–Ginzburg theory of phase transitions. However,
in most situations of practical interest, other mechanisms than conduction, e.g., convection in
the liquid and deformation of the solid, take place and must be considered by introducing the
kinematics of both the liquid and solid. Moreover, these mean–phase field models are unable
to predict the mechanical properties of the newly formed solid, and, in many materials, after
crystallization is initiated, the material goes through an intermediate set of states where it is
mixture of a liquid and solid, i.e., a mush, before being completely transformed into a solid.
Although there have been some studies on mushy zones, these studies have not addressed the
issues of changes in symmetry associated with the phase change and the large deformations of
the solid.

In the liquid phase, there are density fluctuations caused by thermal agitation [85, 86]. These
fluctuations may eventually create small clusters or aggregates of polymer molecules having the
same properties as the crystalline phase; the small crystals are continuously being created and
destroyed by fluctuations because the formation of a crystal involves the creation of an interface
between the liquid and the crystal and its consequent energy cost, i.e., the creation of crystals is
a competitive process whereby there is a decrease of energy due to the fact that the chemical
potential of the crystal phase is lower than that of the liquid and an increase of energy and an
energy cost associated with the creation of interfaces. Moreover, surface effects are dominant in
clusters of small size and, as a consequence, their growth is not energetically favourable, and
small crystals tend to dissolve. There exists, however, a critical size beyond which volume effects
dominate over surface ones, and the growth of the cluster is favoured by a global reduction
of energy. The size that determines the stability of the clusters is called critical size, and the
process of formation of crystals of size larger than or equal to the critical size is called nucleation.
There are two basic types of nucleation: homogeneous nucleation which occurs in the bulk of a
pure substance and heterogeneous nucleation which takes place in the presence of impurities,
pre–existing crystals, boundaries, etc.

Nucleation is the first step in the crystallization process, for it determines the appearance of
the first crystal nuclei which are the germ of the second stage of crystallization, i.e., growth. In
this second stage, nuclei larger than the critical size tend to grow either through the addition of
monomers or by acting as sites of heterogeneous nucleation, e.g., nucleation on the surface of a
growing crystal.
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Crystals grow freely until they begin to completely fill the whole space. Once they hit each
other, their growth stops at the contact surface. This phenomenon, referred to as impingement,
determines the final morphology of the processed polymer. In the final stage of crystallization, the
impingement impedes the subsequent nucleation of the crystals and, therefore, amorphous matter
remains trapped among clusters. Furthermore, the clusters themselves are not fully crystalline
because they may contain some amorphous inclusions. This trapped material can eventually
join the main crystal structure and, therefore, increase the degree of crystallization in a process
referred to as secondary crystallization.

As stated previously, the first step in the kinetics of phase transitions is nucleation. This is
an activated process where an energy barrier has to be overcome in order to form nuclei of a
critical size, beyond which the new phase grows spontaneously. Models for the crystallization of
polymers have been mainly based on the Avrami–Kolmogorov equation [3–5, 83] that is based
on the theory of filling the space through the nucleation and growth of one phase into another.
This equation was initially developed for isothermal, quiescent crystallization, although it has
been extended to account for non–isothermal conditions [13, 17, 36, 37]. Experimental results for
PE and PP show that there is a temperature drop before crystallization is initiated, after which
there is plateau where vigorous crystallization takes place at an almost constant temperature,
followed by a temperature drop to the ambient value after the cessation of crystallization.

When phase transitions occur in a flowing polymer melt, crystallization takes place under
strain and non–isothermal conditions, and the morphology of the processed polymer depends on
the temperature and deformation history. In fact, it has been observed that crystallization may
be enhanced by shear, pressure and strain, and that shear may increase the nucleation density,
whereas the crystallization rate decreases as the cooling rate is increased. Usually, a highly
oriented crystalline morphology is obtained under isothermal and non–isothermal deformations,
in contrast with the spherulite morphology observed under quiescent conditions. In spun fibres,
for example, lamellae are found to be perpendicular to the fibre axis and enhanced crystallization
is caused by chain extension arising from entanglement between molecules. Orientation in the
melt usually accelerates the phase transition process, but the molecular orientation may be
enhanced or relaxed depending on the deformation history and the relaxation time of the melt.

Flow–induced crystallization (FIC) in melts have been modelled in a number of different
manners. A frequently used approach is based on the Avrami–Kolmogorov equation which is
modified to account for enhanced crystallization due to the flow. In this approach, the effect of
the flow is accounted for by the inclusion of an orientation factor which depends on the flow [153].
Another approach is based on an extension of the work of Flory [41] on the stress–induced
crystallization of rubber. Such an extension assumes that the temporary network junctions play
the same role as the chemical cross–links in the theory of rubber crystallization and is based on
the decrease in entropy of the stretched molecules and the tendency of the polymer to crystallize.
A third approach is based on the formulation of constitutive equations that involve the concept
of multiple natural configurations and obtain evolution equations for the natural configuration
and mass fraction of the crystalline material by maximizing a prescribed rate of dissipation [125].
This approach combines continuum mechanics and thermodynamics, assumes that effects are
additive, and results in different models that depend on the forms used for the internal energy,
entropy and dissipation rate.
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1.3.1 Review of previous melt spinning models which include orientation and/or crystallization

Models that only account for the orientation–hydrodynamics interactions in fibre spinning
processes and, therefore, neglect energy effects and phase changes have been developed by Forest
and co–workers [43, 44] for liquid crystalline, round polymer fibres. These authors considered the
evolution of the microstructure in isothermal flows by starting from the three–dimensional Doi–
Edwards averaged kinetic equations before undertaking the study of the spinline crystallization
under isothermal [42] and non–isothermal flow conditions [45]. It is commonly accepted that
crystallization kinetics is triggered by a combination of orientation, stress and temperature [153].

It is well known that non–isothermal effects due to the rapid cooling by the surrounding quench
air and the low thermal conductivity of fibres can result in non–uniform fibre microstructure
and (mechanical, electrical, chemical, optical) properties. As a result, skin–core differentiation
or molecular orientation and structure can be observed in many fibres. Although considerable
efforts have been made to understand the dynamics of the melting spinning process and the
relationship between spinning conditions and fibre structure, most previous studies on melting
spinning processes are based primarily on one–dimensional models which include a single–
phase two–component submodel to describe stress–induced crystallization along the spinning
line [32, 34, 35, 95]. However, the results of these models do not provide any information about
radial variations and on the implications of these variations on the fibre microstructure. Moreover,
if one–dimensional models of the draw–down region of fibre spinning processes overestimate
the heat transfer at the fibre’s outer surface, they predict inaccurate temperature fields which,
in turn, influence the average axial velocity, tensile stress, crystallinity, and free–surface shape
due to the non–linear couplings between the mass, linear momentum and energy equations.
Through the dependence of the crystallization kinetics on temperature and molecular orientation,
a strong crystallinity profile is developed, and the radial variation of the molecular orientation
and crystallinity has a strong influence on the fibre microstructure and properties, i.e., physical,
mechanical, thermal, chemical, electrical and optical properties, such as tensile modulus and
optical birefringence.

In order to account for the effects of crystallization on melt spinning processes, one must
account for the rheological behaviour of the amorphous phase (the melt), the semi–crystalline
phase, and the rate of crystallization. From the rheological point of view, it may be assumed
that the two phases (amorphous and semi–crystalline) act in parallel and, therefore, the strain
rate tensor is the same for both phases, while the total stress is simply the superposition of the
individual stresses.

A simple model to account for the crystallization (if any) of spun filaments under non–
isothermal conditions consists in approximating the thermal crystallization rate by a quasi–static
Avrami–Kolmogorov equation, e.g.,

d

dt
[− ln(1−Y)]

1
n = Kst(T , ∆p), (1.2)
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1.3 polymer orientation and crystallization

where n denotes the Avrami exponent (usually assumed to be an integer 1 ≤ n ≤ 4), and Kst is
the steady–state crystallization rate which depends on the temperature and spinning stress, ∆p,
which may be approximated by

Kst(T , ∆p) = Kst(T , 0) exp[C3(∆p)2], (1.3)

where C3 is a constant and Kst(T , 0) is the crystallization rate of an isotropic crystallization [154].
This thermal crystallization rate can be added to the athermal one and to flow– and shear–induced
crystallization rates in order to determine the whole rate.

The one–dimensional model of fibre spinning of round fibres developed by Doufas et al. [32,
34, 35, 95] includes the combined effects of flow–induced crystallization, viscoelasticity, filament
cooling, air drag, inertia, surface tension, latent heat and gravity. It also includes both an amor-
phous phase (simulated as a modified Giesekus fluid) and a semi–crystalline phase (approximated
as rigid rods that grow and orient in the flow field) and are coupled through the stress and
linear momentum balance and the feedback of the crystallinity to the system of relaxation times,
predicts neck–like deformation and associated strain softening, and shows that crystallization
occurs mostly after the freeze point.

The microstructure model prior to the onset of crystallization used by Doufas et al. [32, 34,
35, 95] assumes that the polymer melt exiting the spinneret is coarse–grained as a concentration
of n non–linear dumbbell molecules per unit volume. In a mean field approximation, each of the
polymer melts is assumed to containN0 flexible statistical links of length l. The microstructure, i.e.,
orientation and stretching, of the melt is characterized by the conformational tensor c =< RR >

that represents the second moment of the end–to–end vector R of the polymer chains [9], and the
bracket denotes averaging with respect to the distribution function of the melt phase. Moreover,
the conformational tensor is assumed to be determined from a differential equation and allows to
determine the extra stress tensor.

Doufas et al. [32, 34, 35, 95] also assumed that crystallization begins when the axial temperature
in the filament reaches the equilibrium melting temperature, although experimental data suggest
that crystallization in high–speed melt spinning occurs below that temperature. After the onset of
crystallization, it is assumed that crystallization corresponds to the transfer of N statistical links
from the amorphous (melt) phase to the semi–crystalline phase at an arbitrary position along
the spin line under both undercooling and stress; this implies that stretching and crystallization
may occur simultaneously, and the degree of transformation from the amorphous to the semi–
crystalline phase is defined as z = N

N0
. In general, the semi–crystalline phase consists of amorphous

and crystalline regions, and the absolute degree of crystallization is defined as the ratio of the
mass of the pure crystalline material to the total mass of the system, i.e., Y = zY∞, where Y∞
is the degree of crystallization within the semi–crystalline phase, i.e., the ratio of the mass of
pure crystalline material to the mass of the semi–crystalline phase.

Fully steady–state two–dimensional models that account for viscoelasticity, non–isothermal
conditions, crystallization kinetics, and free–surface conditions have been developed by Joo et
al. [73] and Sun et al. [136] who employed a non–isothermal, viscoelastic Giesekus constitutive
model, the non–isothermal crystallization kinetics of Nakamura et al. [102] where the crystalliza-
tion rate which is a function of both the temperature and molecular orientation, is evaluated
according to the equation proposed by Ziabicki [153], the thermally–induced crystallization is
approximated by a Gaussian function in Ziabicki’s formulation, and the molecular orientation is
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determined from a stress–optical law that introduces stress–induced crystallization. It must be
noted that Joo et al. [73] assumed that the solvent viscosity can be expressed as the product of
two terms; the first term corresponds to amorphous polymers and depends exponentially on the
temperature through an Arrhenius equation, while the second one is an exponential function of
the relativity crystallinity defined as the ratio of the crystallinity to the maximum obtainable
crystallinity. Moreover, their crystallization kinetics is based on the assumption of iso–kinetic
conditions, for which the ratio of the linear crystal growth rate to the volume of the crystal
grain does not depend on time; they also neglected secondary crystallization and overlapping of
growing grains, and used an extension of the isothermal Avrami–Kolmogorov equation to describe
non–isothermal crystallization, where the crystallinity is governed by an advection equation.

1.4 numerical considerations on the fibre spinning process

It is well–known that two special characteristics of fibre spinning and many other polymer
manufacturing processes are the presence of free surfaces and die swell.

One generally thinks of a gas–liquid interface when talking about free surfaces. However, free
surfaces (free boundaries) also include the interface between two immiscible liquid phases and
the interface between a solid and a gas or liquid that might be moving due to evaporation,
sublimation, or melting.

In compound fibre spinning, the outer fibre radius is a gas–liquid free surface while the inner
one is a liquid–liquid interface due to the inmiscibility of the core and cladding. On the other
hand, in hollow compound melt spinning, one has an additional gas–liquid interface.

When simulating the melt fibre spinning process, the unknown interface positions are additional
variables that must be determined simultaneously with the velocity, pressure, temperature and
molecular orientation and degree of crystallization in the filament.

When a liquid is pumped out from a capillary, the jet diameter may increase and becomes
larger than the original capillary diameter. This well known phenomenon is referred to as die
swell or extrudate swell. For two–dimensional axisymmetric problems, the die swell ratio S
is defined as the ratio of the maximum fibre diameter in the transition region to the original
capillary diameter. Even Newtonian fluids show die swell at low Reynolds number. The swell
ratio for Newtonian fluids is ∼ 1.13 or a 13% increase in diameter [1, 18, 24, 104, 139]. Much
larger swell ratios can be observed for non–Newtonian fluids due to elastic and thermal effects.
Die swell is discussed extensively in the literature [18, 24, 66, 104, 137–139].

As noted previously, most fibre spinning analyses focus on the draw zone region and neglect
the transition region. By doing this, the difficulties associated with predicting die swell is avoided
and the determination of the location of the inner and outer free surfaces becomes easier. To
simulate die swell, one must use a solution domain that includes a sufficiently long portion of
the shear flow region within the spinneret to allow specification of a fully developed shear flow
boundary condition up–stream. Unfortunately, due to the complexities of the solution domain
and governing conservation equations as well as the change of boundary conditions, one cannot
solve the equations analytically and must use a numerical approximation instead.
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1.5 objectives of this research work

The main objective of this work is to develop a simplified two–dimensional model for the
numerical study of the melt spinning of compound and hollow compound semi–crystalline
polymeric fibres based on the leading–order equations for the fibre’s geometry and axial and
radial velocity components obtained from an asymptotic analysis of slender fibres at low Reynolds
and Biot numbers, and two–dimensional equations for the temperature, molecular orientation
and crystallization. The model employs a modified Newtonian rheology, accounts for the degrees
of molecular orientation using an order parameter deduced from the Doi–Edwards equation
for the orientation tensor [30] with a Maier–Saupe potential [93], and the thermal Avrami–
Kolmogorov [5, 83] crystallization kinetics modified by taking into account the effects of the
flow–induced crystallization. In addition, the model allows to determine the radial variations
of these quantities as well as those of the temperature across the compound fibre which affect
the mechanical, electrical, optical, etc. properties of the manufactured compound fibres. Of
particular concern is the radial variations of temperature, molecular orientation and degree of
crystallization that develop due to temperature gradients across the fibre in the production of
axisymmetric compound and hollow compound optical fibres by melt spinning processes due to
their importance in the properties of optical fibres.

1.6 structure of the thesis

The work has been arranged as follows. In the present chapter, an introduction to the melt
spinning process and applications of the manufactured fibres using this technique have been
presented. Moreover, a background and literature review of the models developed in the past for
solving the melt spinning problem for both amorphous and semi–crystalline compound fibres
have been provided. The instabilities and some numerical considerations of the fibre spinning
process have been briefly described in the present chapter. In addition, the main objectives and
the significance of this work have been also introduced in the present chapter.

In Chapter 2, a mathematical description of the two–dimensional model for semi–crystalline
compound and hollow compound fibres is presented together with its assumptions and simplifica-
tions. Boundary conditions are carefully detailed in the Chapter 2. The non–dimensionalization
stage is also carried out in the Chapter 2 together with the identification of the most important
parameters that govern the problem.

The one–dimensional models of the melt spinning of both amorphous and semi–crystalline
compound and hollow compound fibres are provided in Chapter 3. Some analytical solutions
for simplified flows, which are useful for code validation purposes, are reported. Finally, the
numerical method employed in this work for the one–dimensional model of semi–crystalline
compound and hollow compound fibres is also described briefly in Chapter 3.

Chapter 4 deals with the formulation of a two–dimensional model of fibre formation in melt
spinning processes. The numerical method which uses a mapping transformation of the physical
domain in order to obtain the solution of the two–dimensional equations for temperature,
molecular orientation and degree of crystallization is presented in this chapter.

Some sample results for the melt spinning of semi–crystalline compound fibres are presented
in Chapter 5. Comparisons between the predictions of the one–dimensional and two–dimensional
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models are also carried out in this chapter. Moreover, the final section of Chapter 5 summarizes
the most important findings extracted from the results.

In Chapter 6, some sample results for the melt spinning of semi–crystalline hollow compound
fibres are presented. The most relevant conclusions of these results are presented in the last
section of this chapter.

Finally, Chapter 7 summarizes the final conclusions extracted from this research work and
proposes some future research lines.

The symbols that appear throughout the text have been collected and defined in the Nomen-
clature.
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MATHEMATICAL MODELS FOR THE MELT SPINNING OF
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2
MODEL OF FIBRE FORMATION IN MELT SPINNING
PROCESSES

Contents
2.1 Model formulation. Governing equations and boundary conditions . . . . . . . 23

2.1.1 Constitutive equations for stresses . . . . . . . . . . . . . . . . . . . . 26
2.1.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Non–dimensionalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.1 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3 Molecular orientation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4 Crystallization model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.1 model formulation. governing equations and boundary conditions

Let us consider an axisymmetric, hollow compound liquid jet such as the one shown schematically
in Figure 2.1 (a), consisting of two immiscible, incompressible (constant density) fluids. The
inner (subscript 1) and outer (subscript 2) jets correspond to R(t,x) ≤ r ≤ R1(t,x) and
R1(t,x) ≤ r ≤ R2(t,x), respectively, and generate three interfacial surfaces which mathematically
are given by

S : S (r,x, t) = r−R (x, t) = 0, (2.1)
S1 : S1(r,x, t) = r−R1(x, t) = 0, (2.2)
S2 : S2(r,x, t) = r−R2(x, t) = 0. (2.3)

As we stated in Chapter 1 and, in order to model the fluid dynamics, heat transfer, molecular
orientation and crystallization processes that occur in the manufacture of semi–crystalline (hollow)
compound fibres by melt spinning or preform processes, we only consider the fluid mechanical and
thermal phenomena that occur beyond the maximum swell section which we take as x = 0, i.e.,
we only consider phenomena that occur beyond the maximum swell cross–section where the radii
of the hollow compound fibre are decreasing functions of the axial distance. In this region, cooling
due to forced convection and radiation with the surrounding media cause a radial temperature
distribution across each section of the fibre which, in turn, results in a radial variation of the
dynamic viscosity of the materials and thermally–induced crystallization.
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(a) (b)

Figure 2.1: Schematic of a hollow compound fibre (a) and a compound fibre (b).

The fluid dynamics of bi–component fibres are governed by the following two–dimensional
conservation equations of mass, linear momentum and energy, respectively,

∇ · vi = 0, i = 1, 2, (2.4)

ρi

(
∂vi
∂t

+ vi · ∇vi
)
= −∇pi +∇ · τ i + ρi · fmi , i = 1, 2, (2.5)

ρiCi

(
∂Ti
∂t

+ vi · ∇Ti
)
= −∇ · qi + τ i : ∇vi, i = 1, 2, (2.6)

where v is the velocity field vector and ρi and Ci are the density and specific heat per unit mass
of the fluids, respectively. Ti and pi are the absolute temperature and pressure, τ i denotes the
stress tensor which depends on the rheology of the fluids, and fm = g is the volumetric force
acting on the compound liquid jet due to gravity.

We adopt cylindrical coordinates (r, θ,x) with orthonormal basis er, eθ, ex with the axial di-
rection coincident with the direction of gravity, i.e., g = g ex where g is the constant gravitational
acceleration. The velocity is given by

v = v(r,x, t) er + u(r,x, t) ex, (2.7)

where we assume v · eθ = 0. This torsionless assumption is made for simplicity and may be
generalized to allow axisymmetric swirl in the flow.
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2.1 model formulation. governing equations and boundary conditions

The velocity gradient tensor for an axisymmetric flow is given in cylindrical coordinates by

∇v =


∂v
∂r 0 ∂v

∂x

0 v
r 0

∂u
∂r 0 ∂u

∂x

 . (2.8)

Moreover, we use the Fourier law for the heat flux qi

qi = −ki∇T , i = 1, 2, (2.9)

where k is the thermal conductivity and ∇ ≡ ∂
∂r er +

∂
∂x ex. It must be noted that the term

τ : ∇v corresponds to viscous heating. We follow Ziabicki [153], which is the standard in the fibre
literature, by neglecting the variation of internal energy due to latent heat effects and assuming
that heat flux is due to conduction alone (cf. Eq. (2.9)). We make no claims as to the global
thermodynamics consistency of these assumptions.

Equations (2.4)–(2.6) may be written as

• Mass conservation equation

1
r

∂

∂r
(r vi) +

∂ui
∂x

= 0, i = 1, 2, (2.10)

• Linear momentum equation – r axis

ρiL(vi) = −
∂pi
∂r

+
1
r

∂

∂r
(r τ i rr) +

∂

∂x
(τ i rx)−

τ i θθ
r

, i = 1, 2, (2.11)

• Linear momentum equation – x axis

ρiL(ui) = −
∂pi
∂x

+
1
r

∂

∂r
(r τ i rx) +

∂

∂x
(τ i xx) + ρig, i = 1, 2, (2.12)

• Energy conservation equation

ρiCiL(Ti) = ki

(
∂2Ti
∂x2 +

1
r

∂

∂r

(
r
∂Ti
∂r

))
+ Φi, i = 1, 2, (2.13)

where the material derivative operator, L, applied to the field Υi(r,x, t) is given by

L(Υi) =
∂Υi
∂t

+ ui
∂Υi
∂x

+ vi
∂Υi
∂r

, i = 1, 2, (2.14)

and the rate of heat dissipation, Φ, has the following expression,

Φi = τ i rr
∂vi
∂r

+ τ i rx

(
∂ui
∂r

+
∂vi
∂x

)
+ τ i θθ

(
vi
r

)
+ τ i xx

∂ui
∂x

, i = 1, 2. (2.15)

25



model of fibre formation in melt spinning processes

In the model presented here, it is assumed that the specific heat and thermal conductivity are
constant.

2.1.1 Constitutive equations for stresses

Isotropic Newtonian flows. Purely viscous behaviour. In Newtonian, incompressible and
isotropic flows, the linear Newton† law links the viscous stress tensor with the strain rate tensor
as

τN = 2µD = µ
(
∇v+∇vT

)
, (2.16)

where D is the rate–of–strain tensor and T denotes transpose.

In this manner, the viscous stress tensor, τ , for each fluid may be written as

τ = 2µ


∂v
∂r 0 1

2

(
∂v
∂x +

∂u
∂r

)
0 v

r 0
1
2

(
∂u
∂r +

∂v
∂x

)
0 ∂u

∂x

 , (2.17)

where the (Newtonian) dynamic viscosity depends on the temperature, T , following an Arrhenius
relation as

µ(T ) = A exp
(
− E

Rg

( 1
T
− 1
T0

))
, (2.18)

where A, E, Rg and T0 denote the pre–exponential factor, activation energy, universal gas
constant and an experimental temperature above the melting point, respectively.

The linearised Arrhenius expression for the dynamic viscosity used in this study corresponds to
a Frank–Kamenetskii’s approximation [46] whereby the argument of the exponential dependence
on temperature is linearised, and the dynamic viscosity may be written as

µ(T ) = D exp (H (T0 − T )) , (2.19)

which increases exponentially with the temperature for T < T0. The values of D and H can be
easily deduced from Eq. (2.18).

Semi–crystalline Newtonian flows. Model of the molecular orientation–induced
viscosity. The linear Newtonian friction law is expected to hold for small rates of strain. Some
liquids important in the chemical industry, on the other hand, display non–Newtonian behaviour
at moderates rates of strain. Polymer molecules that form liquid–crystalline phases in solution
generally have rigid backbones and, consequently, have rod–like or disk–like shapes. In this work,

†The Navier–Stokes equation of motion was derived by Claude–Louis–Marie Navier in 1827 and, independently
by Siméon–Denis Poisson in 1831. Latter, George Gabriel Stokes (in 1845) derived equation starting with the
linear stress vs. rate–of–strain argument.
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2.1 model formulation. governing equations and boundary conditions

we model the solution of rod–like polymers as an ensemble of rigid dumbbells suspended in a
Newtonian solvent [9]. In such a solution, the deviatoric stress tensor is assumed to be

τ = τN + τP , (2.20)

where

τP = 3 c kBT
[
−λ
φ
F (S) + 2λ

(
(∇v)T : S

)(
S+

I
3

)]
, (2.21)

c is the number of polymer molecules per unit volume, kB is the Boltzmann constant,

F (S) = −φ
λ

((
1− N

3

)
S−N (S · S) +N (S : S)

(
S+

I
3

))
, (2.22)

is a function that characterizes the orientation dynamics independently of the flow, I is the
identity tensor and the dimensionless scalar parameter N is a measure of the polymer number
density (c) which is directly proportional to the excluded volume between two rigid rods, where
each rod represents a polymer molecule. Here, φ is a dimensionless parameter related to the
friction tensor; 0 ≤ φ ≤ 1, where φ = 1 corresponds to an isotropic friction tensor, and smaller
values of φ correspond to increasing the ratio of the resistance encountered perpendicularly to the
dumbbell to that encountered parallel to the axis of the dumbbell. In addition, λ is a relaxation
time associated with rotation of the dumbbell molecules which may depend on the temperature
and the molecular orientation.

In this work, we also employ a linearised Arrhenius relation for relaxation time

λ(T ) = λ0 exp (ω (T0 − T )) , (2.23)

where λ0 is the relaxation time at temperature T0, and ω (units of inverse of temperature) is a
parameter which is determined from experiments.

Without loss of generality, we select the same temperature T0 in Eqs. (2.19) and (2.23). Any
other choice of experimental temperatures amounts to a simple translational rescaling.

Doi’s equation [30] for the molecular orientation tensor corresponds to changing φ/λ for 6DR

in Eq. (2.22), where DR is an averaged rotational diffusion coefficient, and S =< uu− I/3 >,
where u denotes the molecular orientation vector.

The deviatoric stress tensor depends on the molecular orientation tensor S which has been
modelled by introducing a probability density function for the molecular orientation vector. By
taking moments of the probability density function and modelling the fourth–order moments
in terms of second–order ones, one can derive the following partial differential equation for the
molecular orientation tensor which depends on the strain rate and the relaxation of the molecular
chains [30]

∇
S= F (S) +G (∇v, S) , (2.24)

where
∇
S represents the Upper Convective Maxwell (UCM) derivative of the tensor S given by

∇
S≡

∂S
∂t

+ v · ∇S−
[
(∇v)T · S+ S · ∇v

]
, (2.25)
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and

G (∇v, S) = 1
3
(
∇v+ (∇v)T

)
− 2

(
(∇v)T : S

)(
S+

I
3

)
, (2.26)

describes the flow–orientation interaction.

A scalar molecular orientation order parameter, S, is defined in terms of the second invariant,
Πs, of the molecular orientation tensor S as

S ≡
√

3
2Πs =

√
3
2 (S : S), (2.27)

and is a measure of the spread of the molecular orientation vector with respect to a preferred
direction. The scalar S is defined so that S = 0 corresponds to a purely random orientation, and
S = 1 corresponds to the alignment of all the molecules along the principal axis of S.

2.1.2 Boundary conditions

Equations (2.24) and (2.22) and (2.26) together with the conservation equations (2.4)–(2.6),
govern the fluid dynamics of amorphous compound fibres such as it is shown in Figure 2.1
(b) and are subject to boundary conditions at the nozzle exit, x = 0, downstream or take–up
location, x = L, initial conditions, t = 0, and symmetry boundary conditions at centreline r = 0.
In addition, at the to–be–determined core–cladding, r = R1(t,x), and cladding–surrounding,
r = R2(t,x), interfaces which are assumed to be material surfaces, kinematic and dynamic
boundary conditions that specify the continuity of axial and radial velocity components and
tangential stresses, and the balance of the normal stress difference with surface tension, must be
applied. Moreover, at r = R1, there is continuity of temperatures and heat flux, while, at r = R2,
the heat flux from conduction in the cladding was assumed to be equal to the heat at flux the
outer surface of the outer jet denoted here by qe. Analogous thermal transfer process occurs at
r = R for hollow compound fibres and the heat from conduction in the core must be equal to
the heat losses at the inner surface of the inner jet that will be denoted in this study by qi.

The boundary conditions described above may be written mathematically as

• Boundary conditions at the symmetry axis (r = 0)

1. Velocity

v1 = 0, ∂u1
∂r

= 0, (2.28)

2. Pressure

∂p1
∂r

= 0, (2.29)
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3. Temperature

∂T1
∂r

= 0. (2.30)

For hollow compound fibres (see Figure 2.1 (a)), the symmetry boundary conditions must
be replaced by the following ones:

• Boundary conditions at the surroundings–core interface (r = R(x, t))

1. Kinematic boundary conditions

D1S

Dt
≡ ∂S

∂t
+ v1 · ∇S = 0

∂R

∂t
+ v1 − u1

∂R

∂x
= 0, (2.31)

2. Continuity of tangential stresses

(
nT · τ 1

)
· t =

(
nT · τ∞,1

)
· t

(τ 1 rr − τ 1 xx)
∂R

∂x
+ τ 1 rx

(
1−

(
∂R

∂x

)2)

= (τ∞,1 rr − τ∞,1 xx)
∂R

∂x
+ τ∞,1 rx

(
1−

(
∂R

∂x

)2)
, (2.32)

3. Balance of the normal stress difference

(
nT · τ∞,1

)
· n−

(
nT · τ 1

)
· n = σκ− (p1 − pi)

τ∞,1 xx

(
∂R

∂x

)2
+ τ∞,1 rr − 2τ∞,1 rx

∂R

∂x

−τ 1 xx

(
∂R

∂x

)2
− τ 1 rr + 2τ 1 rx

∂R

∂x

= σJ − (p1 − pi)
(

1 +
(
∂R

∂x

)2)
, (2.33)
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model of fibre formation in melt spinning processes

4. Balance of heat flux

q1 · n = qi. (2.34)

The boundary conditions at the other two interfacial surfaces of either compound or hollow
compound fibres, may be written as

• Boundary conditions at the core–cladding interface (r = R1(x, t))

1. Kinematic boundary conditions

D1S1
Dt

≡ ∂S1
∂t

+ v1 · ∇S1 = 0,

∂R1
∂t

+ v1 − u1
∂R1
∂x

= 0, (2.35)

D2S1
Dt

≡ ∂S1
∂t

+ v2 · ∇S1 = 0

∂R1
∂t

+ v2 − u2
∂R1
∂x

= 0, (2.36)

2. Continuity of tangential stresses

(
nT1 · τ 2

)
· t1 =

(
nT1 · τ 1

)
· t1

(τ 2 rr − τ 2 xx)
∂R1
∂x

+ τ 2 rx

(
1−

(
∂R1
∂x

)2)

= (τ 1 rr − τ 1 xx)
∂R1
∂x

+ τ 1 rx

(
1−

(
∂R1
∂x

)2)
, (2.37)

3. Balance of the normal stress difference

(
nT1 · τ 2

)
· n1 −

(
nT1 · τ 1

)
· n1 = σ1κ1 − (p1 − p2)

30



2.1 model formulation. governing equations and boundary conditions

τ 2 xx

(
∂R1
∂x

)2
+ τ 2 rr − 2τ 2 rx

∂R1
∂x

−τ 1 xx

(
∂R1
∂x

)2
− τ 1 rr + 2τ 1 rx

∂R1
∂x

= σ1J1 − (p1 − p2)

(
1 +

(
∂R1
∂x

)2)
, (2.38)

4. Continuity of temperature

T1 = T2, (2.39)

5. Continuity of heat flux

q1 · n = q2 · n. (2.40)

• Boundary conditions at the cladding–surroundings interface (r = R2(x, t))

1. Kinematic boundary conditions

D2S2
Dt

≡ ∂S2
∂t

+ v2 · ∇S2 = 0

∂R2
∂t

+ v2 − u2
∂R2
∂x

= 0, (2.41)

2. Continuity of tangential stresses

(
nT2 · τ 2

)
· t2 =

(
nT2 · τ∞,2

)
· t2

(τ 2 rr − τ 2 xx)
∂R2
∂x

+ τ 2 rx

(
1−

(
∂R2
∂x

)2)

= (τ∞,2 rr − τ∞,2 xx)
∂R2
∂x

+ τ∞,2 rx

(
1−

(
∂R2
∂x

)2)
, (2.42)

3. Balance of the normal stress difference

(
nT2 · τ∞,2

)
· n2 −

(
nT2 · τ 2

)
· n2 = σ2κ2 − (p2 − pe)
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τ∞,2 xx

(
∂R2
∂x

)2
+ τ∞,2 rr − 2τ∞,2 rx

∂R2
∂x

−τ 2 xx

(
∂R2
∂x

)2
− τ 2 rr + 2τ 2 rx

∂R2
∂x

= σ2J2 − (p2 − pe)
(

1 +
(
∂R2
∂x

)2)
, (2.43)

4. Balance of heat flux

q2 · n2 = qe, (2.44)

where σ, σ1 and σ2 denote the constant surface tension at the inner jet’s inner surface, at the
interface between the inner and outer jets, and at the outer jet’s outer surface, respectively, and
n and ni denote the outward unit normal at R

n =
∇S
|∇S|

=
1√

1 +
(
∂R
∂x

)2

(
er −

∂R

∂x
ex

)
, (2.45)

and Ri,

ni =
∇Si
|∇Si|

=
1√

1 +
(
∂Ri
∂x

)2

(
er −

∂Ri
∂x

ex

)
, (2.46)

respectively, where | · | is the euclidean norm.

Although in this work we have taken into account the viscous stress tensor of the gases
surrounding the outer jet and enclosed by the inner jet, τ∞,i, these gases may be assumed to
be dynamically passive, since, in general, they have smaller density and dynamic viscosity than
those of liquids [121]. This implies that the gases surrounding the liquid may not introduce strong
velocity variations along each cross section of the jet, although they may affect its dynamics.
In addition, pi and pe are the pressures of the gases enclosed by and surrounding the hollow
compound liquid jet, respectively which can be, in general, a function of the spatial coordinates
and time.

The interface mean curvature, κ and κi, are given by the divergence of the unit vector normal
to each free surface,

κ = ∇ · n =
1√

1 +
(
∂R
∂x

)2

 1
R
− ∂2R

∂x2
1

1 +
(
∂R
∂x

)2

 , (2.47)

κi = ∇ · ni =
1√

1 +
(
∂Ri
∂x

)2

 1
Ri
− ∂2Ri

∂x2
1

1 +
(
∂Ri
∂x

)2

 , (2.48)
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2.1 model formulation. governing equations and boundary conditions

while J and Ji are related to the mean curvature using the following expressions

J = |∇S|2 · κ =

(
1 +

(
∂R

∂x

)2)
· κ =

√
1 +

(
∂R
∂x

)2

R
−

∂2R
∂x2√

1 + (∂R∂x )
2
, (2.49)

Ji = |∇Si|2 · κi =
(

1 +
(
∂Ri
∂x

)2)
· κi =

√
1 +

(
∂Ri
∂x

)2

Ri
−

∂2Ri
∂x2√

1 + (∂Ri∂x )
2
. (2.50)

The heat flux qe includes the effects of convection and radiation, i.e., qe = hc (T (R2,x, t)− T∞,2)+

kSBε
∗
(
T (R2,x, t)4 − T 4

∞,2
)
, where hc is the convective film heat transfer coefficient, T∞,2 is the

temperature of the gases that surround the compound fibre, kSB is the Stefan–Boltzmann constant
and ε∗ is the emissivity of the compound fibre’s outer surface. The heat flux can also be written as
qe = h2 (T (R2,x, t)− T∞,2), where h2 = hc + kSBε

∗
(
T (R2,x, t)2 + T 2

∞,2
)
(T (R2,x, t) + T∞,2),

which depends, amongst other parameters, on the fibre’s temperature at R2 and the velocity of
the fibre. In addition, the film heat transfer coefficient hc could depend on the local Reynolds
and Prandtl numbers. For example, Kase and Matsuo [77] determined experimentally that, for
single–component, round jets,

hc = C
k∞
R(x)

(2ρ∞u(x)R(x)
µ∞

)m
(2.51)

where k∞, ρ∞, and µ∞ are the thermal conductivity, density and dynamic viscosity, respectively,
of the ambient air at room temperature, u(x) and R(x) are the local axial velocity component
and radius of the jet, respectively, and C and m are determined from experimental data [77]. A
similar expression could be used for the heat flux qi for hollow compound fibres.

Equations (2.35) and (2.36) imply that (v2−v1) ·n1 = 0, i.e., the normal velocity at the outer–
inner jet interface is continuous. Since the fluids are viscous, (v2 − v1) · t1 = 0 at r = R1(t,x),
where

t1 =
1√

1 +
(
∂R1
∂x

)2

(
∂R1
∂x

er + ex

)
, (2.52)

is the unit vector tangent to the surface S1(r,x, t) and, therefore, the tangential velocity compo-
nents at this interface are continuous, i.e.,

u1 (R1,x, t) = u2 (R1,x, t) . (2.53)

In addition to the above boundary conditions in the radial direction, conditions in the axial
direction must also be provided. If the compound jet emerges from a nozzle or die, there is a stress
singularity at the nozzle–jet’s interface due to the relaxation of the velocity profile from no–slip
conditions at the nozzle walls to the free–surface flow away from the nozzle. This relaxation
may result in a jet contraction or swelling which implies that the radial velocity component
is of importance near the nozzle. Moreover, the stress singularity at the nozzle exit and the
jet contraction or swelling near the nozzle may result in a relatively important radial pressure
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model of fibre formation in melt spinning processes

gradient near the nozzle; therefore, an accurate analysis of the flow near the nozzle requires a
full solution of the Navier–Stokes equations within the nozzle and in the free surface flow, and
requires the use of numerical methods and two–dimensional simulations.

2.2 non–dimensionalization

For slender jets, i.e., ε = R0
L << 1, at low Reynolds numbers, it is convenient to non–

dimensionalize r, x, t, u, v, p, ρ, C, µ and k with respect to R0, L, t0 = (L/u0), u0, v0,
p0 = (µ0 u0/L), ρ0, C0, µ0 and k0, respectively, where R0 and L denote a characteristic radius
and a characteristic length in the axial direction, e.g., the die’s exit radius and the distance from
the die exit to the take–up point, respectively, u0 is a characteristic (constant) axial velocity
component, v0 = εu0, and ρ0, C0, µ0 and k0 are reference values for the density, specific heat,
viscosity and thermal conductivity, respectively. The temperature may be non–dimensionalized
as (T − Tr)/∆T where ∆T = (T0 − T∞), and Tr = T0 and T∞ denote a reference temperature
at the die exit and the temperature of the surroundings, respectively. Alternatively, the tem-
perature has been non–dimensionalized with respect to ∆T = T0 with Tr = 0 here. Since the
density of the fluids has been assumed to be constant, ρ0 can be taken equal to, for example, ρ2,
although we have preferred to introduce a reference density for non–dimensionalization purposes
throughout the chapter; the same comment applies to the reference values employed for the
non–dimensionalization of the specific heats, dynamic viscosities and thermal conductivities.

The dimensionless variables are:

r̂ =
r

R0
, x̂ =

x

L
, t̂ =

t

t0
,

û =
u

u0
, v̂ =

v

(u0 ε)
, p̂ =

p

p0
, T̂ =

T

T0
, (2.54)

ρ̂ =
ρ

ρ0
, Ĉ =

C

C0
, µ̂ =

µ

µ0
, k̂ =

k

k0
, ĥ =

h

h0
.

Using this non–dimensionalization, Eqs. (2.10)–(2.13) become

• Mass conservation equation

1
r̂

∂

∂r̂
(r̂ v̂i) +

∂ûi
∂x̂

= 0, i = 1, 2, (2.55)

• Linear momentum equation – r̂ axis

(εRe) ρ̂iL̂(v̂i) = −
∂p̂i
∂r̂

+
1
r̂

∂

∂r̂
(r̂ τ̂ i rr) +

∂

∂x̂
(ε τ̂ i rx)−

τ̂ i θθ
r̂

, i = 1, 2, (2.56)

• Linear momentum equation – x̂ axis

(εRe) ρ̂iL̂(ûi) = −ε2
∂p̂i
∂x̂

+
1
r̂

∂

∂r̂
(r̂ ε τ̂ i rx) + ε2

∂

∂x̂
(τ̂ i xx) + ρ̂i

Re

Fr
, i = 1, 2, (2.57)
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2.2 non–dimensionalization

• Energy conservation equation

(ε Pe) ρ̂iĈiL̂(T̂i) = ε2k̂i
∂2T̂i
∂x̂2 +

k̂i
r̂

∂

∂r̂

(
r̂
∂T̂i
∂r̂

)
+
(
ε2Br

)
Φ̂i, i = 1, 2, (2.58)

where the material derivative operator, L̂, is given now by

L̂(Υi) = t0 · L(Υi) =
∂Υi
∂t̂

+ ûi
∂Υi
∂x̂

+ v̂i
∂Υi
∂r̂

, i = 1, 2, (2.59)

the dimensionless heat dissipation rate, Φ̂, is given by

Φ̂i =

(
t0
p0

)
·Φi

= τ̂ i rr
∂v̂i
∂r̂

+ τ̂ i θθ

(
v̂i
r̂

)
+ τ̂ i xx

∂ûi
∂x̂

+ τ̂ i rx

(1
ε

∂ûi
∂r̂

+ ε
∂v̂i
∂x̂

)
, i = 1, 2, (2.60)

and

Re =
ρ0u0R0
µ0

, Fr =
u2

0
gR0

, Ca =
µ0u0
σ2

Pr =
µ0C0
k0

, (2.61)

Pe = RePr =

(
ρ0C0
k0

)
u0R0, Br =

µ0u2
0

k0T0
, Bi =

h0R0
k0

. (2.62)

denote the Reynolds (i), Froude (ii), capillary (iii), Prandtl (iv), thermal Péclet (v),
Brinkman (vi) and Biot (vii) numbers that (i) gives a measure of the ratio of inertial forces to
viscous forces, (ii) parametrizes gravity relative to inertia, (iii) represents the relative effect of
viscous forces versus surface tension acting across the external surface, (iv) is a measure of specific
heat relative to thermal conductivity, (v) is the ratio of viscous diffusion to thermal diffusion
rates, (vi) describes viscous heating relative to thermal conductivity and (vii) characterizes the
heat loss relative to thermal conductivity, respectively. Note that the surface tensions and the
reference convective heat transfer film coefficient, h0, have been assumed to be constant, i.e.,
independent of the temperature.

The dimensionless stress tensor becomes

τ̂ = τ̂N + τ̂P ,

τ̂N =
τN
p0

= 2µ̂ D̂, (2.63)

τ̂P =
τP
p0

= α T̂

[
− λ̂(T̂ )

φ
F̂ (S) + 2λ̂(T̂ )

(
∇̂vT : S

)(
S+

I

3

)]
,
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where α = 3 c kBT0
p0

parametrizes the molecular kinetic energy per unit volume relative to the
reference pressure, the combination α λ̂0 characterizes the relaxational stress due to molecular
rotation relative to the reference pressure, F̂ (S) = t0 · F (S) and

D̂ = t0 ·D =


∂v̂
∂r̂ 0 1

2

(
ε ∂v̂∂x̂ +

1
ε
∂û
∂r̂

)
0 v̂

r̂ 0
1
2

(
1
ε
∂û
∂r̂ + ε ∂v̂∂x̂

)
0 ∂û

∂x̂

 , (2.64)

∇̂v = t0 · ∇v =


∂v̂
∂r̂ 0 ε ∂v̂∂x̂
0 v̂

r̂ 0
1
ε
∂û
∂r̂ 0 ∂û

∂x̂

 . (2.65)

The boundary ambient viscous stress may be expressed in dimensionless form as(
n̂T · τ̂∞,1

)
= −ε2T̂ (x̂, t̂) t̂, (2.66)(

n̂T2 · τ̂∞,2
)
= −ε2T̂2(x̂, t̂) t̂2, (2.67)

which assume axisymmetric air drag and is a function of the process conditions. We use the
following empirical formulae for the non–dimensional tangential component of air drag [143]

T̂ (x̂, t̂) = Cd1

(
û1 R̂

)γ
R̂2 , (2.68)

T̂2(x̂, t̂) = Cd2

(
û2 R̂2

)γ
R̂2

2
, (2.69)

where Cdi is the air drag coefficient and γ is fitted from experimental data, e.g., γ = 1.39 [94].
Kase and Matsuo [78] have included the effect of quench air flow normal to the fibre axis, and
their proposed correlations are

T̂ = Cd1

(
û1R̂

)γ
R̂2

[
1 + 8

(
ua
u1

)2
]1/6

, (2.70)

T̂2 = Cd2

(
û2R̂2

)γ
R̂2

2

[
1 + 8

(
ua
u2

)2
]1/6

, (2.71)

where ua is the cross–flow velocity. In practice, ua/u is less than 0.1 and the 1/6–power of the
term in the brackets renders the expression very close to 1. In this work we ignore cross–flow
effects and only consider air drag given by (2.68)–(2.69) in order to formulate the equations of
the model.

In this work, it is assumed that the molecular orientation tensor S is symmetric and, therefore,
has only six components. Moreover, for slender fibres such as the ones considered here, it is an
easy exercise using perturbation methods based on the slenderness ratio, ε, to show that Srx must
be O(ε) for proper scaling, and, therefore, this component does not appear in the leading–order
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2.2 non–dimensionalization

equations that result from an asymptotic analysis of slender fibres. Furthermore, by assuming
that Sθx = Srθ = 0, the molecular orientation tensor becomes diagonal and, therefore, has only
three components,

S =


Srr 0 0
0 Sθθ 0
0 0 Sxx

 . (2.72)

In this manner, the diagonal components of the deviatoric stress tensor may be written as

τ̂ rr = 2 µ̂∂v̂
∂r̂

+ α T̂

{
2λ̂Π∗

(
Srr +

1
3

)
+

[
Srr −N

(
Srr +

1
3

)
(Srr −Πs)

]}
, (2.73)

τ̂ θθ = 2 µ̂ v̂
r̂
+ α T̂

{
2λ̂Π∗

(
Sθθ +

1
3

)
+

[
Sθθ −N

(
Sθθ +

1
3

)
(Sθθ −Πs)

]}
, (2.74)

τ̂ xx = 2 µ̂∂û
∂x̂

+ α T̂

{
2λ̂Π∗

(
Sxx +

1
3

)
+

[
Sxx −N

(
Sxx +

1
3

)
(Sxx −Πs)

]}
, (2.75)

where

Πs = (S : S) = S2
rr + S2

θθ + S2
xx, (2.76)

Π∗ =
(
∇̂vT : S

)
=

(
Srr

∂v̂

∂r̂
+ Sθθ

v̂

r̂
+ Sxx

∂û

∂x̂

)
, (2.77)

while the off–diagonal component, τ̂ rx, can be written as

τ̂ rx = µ̂

(1
ε

∂û

∂r̂
+ ε

∂v̂

∂x̂

)
. (2.78)

The dimensionless viscosity law corresponding to Eq. (2.19) now reads

µ̂(T̂ ) = D̂ exp
(
Ĥ(1− T̂ )

)
, (2.79)

so that µ̂ increases exponentially as T̂ decreases below the reference temperature. Moreover, it is
very easy to show that D̂ = D/µ0 and Ĥ = T0H. Analogous expressions can also be derived for
other viscosity laws, e.g., Eq. (2.18).

The dimensionless relaxation time corresponding to Eq. (2.23) can be written as

λ̂(T̂ ) = λ̂0 exp
(
ω̂(1− T̂ )

)
, (2.80)

where λ̂0 = λ0/t0 is the dimensionless relaxation time at temperature T0 and ω̂ = ω T0.
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Equation (2.24), that governs the evolution of the molecular orientation tensor S, may be
non–dimesionalized and rewritten as

L̂(S) = F̂ (S) + Ĝ∗
(
∇̂v,S

)
,

F̂ (S) = − φ

λ̂(T̂ )

{(
1− N

3

)
S −N (S ·S) +N Πs

(
S +

I

3

)}
, (2.81)

Ĝ∗(∇̂v,S) = 2
3D̂− 2 Π∗

(
S +

I

3

)
+
(
∇̂vT ·S +S · ∇̂v

)
,

where φ/λ̂0 parametrizes the anisotropic drag on polymer molecular motion relative to the
surrounding polymer molecules.

After some algebraic manipulations, one can obtains

F̂rr(S) = −
φ

λ̂(T̂ )

[
Srr −N

(
Srr +

1
3

)
(Srr −Πs)

]
,

F̂θθ(S) = −
φ

λ̂(T̂ )

[
Sθθ −N

(
Sθθ +

1
3

)
(Sθθ −Πs)

]
, (2.82)

F̂xx(S) = −
φ

λ̂(T̂ )

[
Sxx −N

(
Sxx +

1
3

)
(Sxx −Πs)

]
,

and

Ĝ∗rr(∇̂v,S) =
(
Srr +

1
3

)(
2∂v̂
∂r̂
− 2Π∗

)
,

Ĝ∗θθ(∇̂v,S) =
(
Sθθ +

1
3

)(
2 v̂
r̂
− 2Π∗

)
, (2.83)

Ĝ∗xx(∇̂v,S) =
(
Sxx +

1
3

)(
2∂û
∂x̂
− 2Π∗

)
.

2.2.1 Boundary conditions

Upon non–dimensionalizing the boundary conditions corresponding to a compound fibre, one
can write

• Boundary conditions at the symmetry axis (r̂ = 0)

1. Velocity

v̂1 = 0, ∂û1
∂r̂

= 0, (2.84)

2. Pressure

∂p̂1
∂r̂

= 0, (2.85)
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3. Temperature

∂T̂1
∂r̂

= 0, (2.86)

• Boundary conditions at the core–cladding interface (r̂ = R̂1(x̂, t̂))

1. Kinematic boundary conditions

v̂1 =
∂R̂1
∂t̂

+ û1
∂R̂1
∂x̂

, (2.87)

v̂2 =
∂R̂1
∂t̂

+ û2
∂R̂1
∂x̂

, (2.88)

2. Continuity of tangential stresses

ε2 (τ̂ 2 rr − τ̂ 2 xx)
∂R̂1
∂x̂

+ (ε τ̂ 2 rx)

1− ε2
(
∂R̂1
∂x̂

)2


= ε2 (τ̂ 1 rr − τ̂ 1 xx)
∂R̂1
∂x̂

+ (ε τ̂ 1 rx)

1− ε2
(
∂R̂1
∂x̂

)2
 , (2.89)

3. Balance of the normal stress difference

ε2τ̂ 2 xx

(
∂R̂1
∂x̂

)2

+ τ̂ 2 rr − 2 (ε τ̂ 2 rx)
∂R̂1
∂x̂

− ε2τ̂ 1 xx

(
∂R̂1
∂x̂

)2

− τ̂ 1 rr + 2 (ε τ̂ 1 rx)
∂R̂1
∂x̂

=

(
σ1
σ2

) 1
(εCa)

Ĵ1 − (p̂1 − p̂2)

1 + ε2
(
∂R̂1
∂x̂

)2
 , (2.90)

4. Continuity of temperature

T̂1 = T̂2, (2.91)
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5. Continuity of heat flux

k̂1

(
∂T̂1
∂r̂
− ε2∂T̂1

∂x̂

∂R̂1
∂x̂

)
= k̂2

(
∂T̂2
∂r̂
− ε2∂T̂2

∂x̂

∂R̂1
∂x̂

)
, (2.92)

• Boundary conditions at the cladding–surroundings interface (r̂ = R̂2(x̂, t̂))

1. Kinematic boundary conditions

v̂2 =
∂R̂2
∂t̂

+ û2
∂R̂2
∂x̂

, (2.93)

2. Continuity of tangential stresses

ε2 (τ̂ 2 rr − τ̂ 2 xx)
∂R̂2
∂x̂

+ (ε τ̂ 2 rx)

1− ε2
(
∂R̂2
∂x̂

)2


= − ε2T̂2(x̂, t̂), (2.94)

3. Balance of the normal stress difference

ε2τ̂ 2 xx

(
∂R̂2
∂x̂

)2

+ τ̂ 2 rr − 2 (ε τ̂ 2 rx)
∂R̂2
∂x̂

= − 1
(εCa)

Ĵ2 − (p̂e − p̂2)

1 + ε2
(
∂R̂2
∂x̂

)2
 , (2.95)

4. Balance of heat flux

−k̂2

(
∂T̂2
∂r̂
− ε2∂T̂2

∂x̂

∂R̂2
∂x̂

)
= Bi ĥ2

(
T̂2 − T̂∞

)
, (2.96)

where

Ĵi =

√
1 + ε2

(
∂R̂i
∂x̂

)2

R̂i
− ε2

∂2R̂i
∂x̂2√

1 + ε2
(
∂R̂i
∂x̂

)2
. (2.97)

Equations (2.55)–(2.97) depend on ε, Re, Fr, Ca, p̂e, T̂2, Pr, Br, Bi, ĥ2, σ1
σ2
, Ĉ1
Ĉ2

, k̂1
k̂2
, ρ̂1
ρ̂2
, D̂1,

Ĥ1, D̂2, Ĥ2, α1, α2, λ̂01, λ̂02, ω̂1, ω̂2, N1 and N2. In addition, the solution to these equations also
depends on the boundary conditions at the die exit and take–up cross–sections. This large set of
parameters does not allow us to obtain simpler equations except for slender geometries and small

40



2.3 molecular orientation model

values of the Reynolds, Biot and Brinkman numbers. We, therefore, consider typical operating
conditions [143] in the manufacture of compound fibres which are usually characterized by small
values of the Reynolds and very low values of the Biot and Brinkman numbers.

2.3 molecular orientation model

As it was stated in § 2.2, the molecular orientation tensor, S, is diagonal. However, since this
tensor is also traceless, i.e., Srr + Sθθ + Sxx = 0, one of the components in its main diagonal can
be related to the other two and this results in a molecular orientation tensor diagonal with only
two independent components, i.e.,

S =
1
3


−sr 0 0

0 sr − sx 0
0 0 sx

 . (2.98)

Using Eq. (2.98), the two components of the molecular orientation tensor given by the Doi–
Edwards equation [30], i.e., Eq. (2.2) and Eqs. (2.82)–(2.83), are governed by the following
equations

∂si r
∂t̂

+ v̂i · ∇̂si r = (si r − 1)
(

2∂v̂i
∂r̂
− 2Π∗i

)
− φi

λ̂i

{
si r −

Ni

3 [(1− si r) (si r + 3 Πi,s)]

}
, i = 1, 2, (2.99)

∂si x
∂t̂

+ v̂i · ∇̂si x = (si x + 1)
(

2∂ûi
∂x̂
− 2Π∗i

)
− φi

λ̂i

{
si x −

Ni

3 [(si x + 1) (si x − 3 Πi,s)]

}
, i = 1, 2, (2.100)

where

Πi,s =
2
9
(
s2
i r + s2

i x − si rsi x
)

, i = 1, 2, (2.101)

Π∗i =
1
3

[
si r

(
v̂i
r̂
− ∂v̂i
∂r̂

)
− si x

(
v̂i
r̂
− ∂ûi
∂x̂

)]
, i = 1, 2, (2.102)

according with the traceless assumption of the molecular orientation tensor (cf. Eq. (2.98)).

From Eqs. (2.27) and (2.98), the molecular orientation order parameter becomes

Si =
√

3
2 (Si : Si) =

√
1
3 (s2

i r + s2
i x − si rsi x), i = 1, 2. (2.103)

2.4 crystallization model

In order to account for the effects of both amorphous and crystalline phases in semi–crystalline
compound fibres, we have assumed that the semi–crystalline materials that compose the core
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model of fibre formation in melt spinning processes

and cladding behave as single–phase fluids whose degree of crystallization (Y) is governed by
Ziabicki’s model [154], i.e.,

∂Yi
∂t̂

+ v̂i · ∇̂Yi = kAi(S)(Y∞,i −Yi) i = 1, 2, (2.104)

where kAi(S) = kAi(0) exp(a2iS2
i ) is the linearised crystal growth rate which increases expo-

nentially with the molecular orientation order parameter and kAi(0) is the amorphous growth
rate.

In order to incorporate the effects of crystallization on the deviatoric stress tensor, the viscosity
µ̂i that appears in Eq. (2.79) has been replaced by the following effective value

µ̂e,i(T̂i,Yi) = µ̂i(T̂i) exp
(
βi

(
Yi
Y∞,i

)ni)
i = 1, 2, (2.105)

where βi and ni are the crystallization viscosity rate and the crystallization viscosity index,
respectively, which are material–dependent, e.g., βi = 4.605 and ni = 12 for nylon–66, and
βi = 4 and ni = 2 for PET, and the effects of crystallization on the effective dynamic viscosity
have been assumed to be multiplicative. Equation (2.105) indicates that, in addition to the
contribution of the molecular orientation to the deviatoric stress tensor (cf. Eq. (2.20)), the degree
of crystallization affects the effective viscosity and, therefore, the (modified) Newtonian stress
tensor (cf. Eq. (2.20)). Equation (2.105) also indicates that the effective dynamic viscosity increases
as the degree of crystallization tends to its ultimate value; for small degrees of crystallization,
the effective dynamic viscosity is mainly a function of the temperature and increases as the
temperature decreases.
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3.1 asymptotic 1–d model for compound fibres

For small Reynolds numbers, Re = εR̄ with R̄ = O(1), and, depending on the magnitude of the
Froude, capillary, Biot and Brinkmann numbers, several flow regimes can be identified. Here,
we consider Fr = F̄/ε, Ca = C̄/ε, Bi = ε2B̄ and Br = ε2b̄ where F̄ = O(1), C̄ = O(1),
B̄ = O(1) and b̄ = O(1) which correspond to small gravitational effects, small surface tension,
small heat convection and radiation, and small heat generation due to viscous dissipation. These
assumptions corresponds to moderately high draw speeds melting conditions. In addition, small
values of the α parameter have been assumed in this work, i.e., α = ε2ᾱ, where ᾱ = O(1), which
corresponds to low polymeric contributions to the stress tensor.

Substitution of these values and expansion of the dependent variables R̂1, R̂2, ûi, v̂i, p̂i and T̂i,
where i = 1, 2, as

Ψ = Ψ0 + ε2Ψ2 +O
(
ε4
)

, (3.1)

where Ψ denotes a dependent variable, into the governing equations and boundary conditions
for compound fibres, together with the expansion of the boundary conditions at R̂1(t̂, x̂) and
R̂2(t̂, x̂) about R̂10(t̂, x̂) ≡ R1 and R̂20(t̂, x̂) ≡ R2, respectively, yield asymptotic expansions
which at leading–order, i.e., at O

(
ε0
)
, correspond to
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one–dimensional model of fibre formation in melt spinning processes

• Mass conservation equation

1
r̂

∂

∂r̂
(r̂v̂i,0) +

∂ûi,0
∂x̂

= 0, i = 1, 2, (3.2)

• Linear momentum equation – r̂ axis

−∂p̂i,0
∂r̂

+
1
r̂

∂

∂r̂
(r̂ τ̂ i,0 rr) +

∂

∂x̂

(
µ̂i,0

∂ûi,0
∂r̂

)
− τ̂ i,0 θθ

r̂
= 0, i = 1, 2, (3.3)

• Linear momentum equation – x̂ axis

1
r̂

∂

∂r̂

(
r̂ µ̂i,0

∂ûi,0
∂r̂

)
= 0, i = 1, 2, (3.4)

• Energy conservation equation

1
r̂

∂

∂r̂

(
r̂
∂T̂i,0
∂r̂

)
= 0, i = 1, 2. (3.5)

The boundary conditions for compound fibres at leading–order, O
(
ε0
)
, are

• Boundary conditions at the symmetry axis (r̂ = 0)

1. Velocity

v̂1,0 = 0, ∂û1,0
∂r̂

= 0, (3.6)

2. Pressure

∂p̂1,0
∂r̂

= 0, (3.7)

3. Temperature

∂T̂1,0
∂r̂

= 0. (3.8)

• Boundary conditions at the core–cladding interface
(
r̂ = R̂1,0(x̂, t̂)

)
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3.1 asymptotic 1–d model for compound fibres

1. Kinematic boundary conditions

v̂1,0 =
∂R̂1,0
∂t̂

+ û1,0
∂R̂1,0
∂x̂

, (3.9)

v̂2,0 =
∂R̂1,0
∂t̂

+ û2,0
∂R̂1,0
∂x̂

, (3.10)

2. Continuity of tangential stresses

µ̂2,0
∂û2,0
∂r̂

= µ̂1,0
∂û1,0
∂r̂

, (3.11)

3. Balance of the normal stress difference

τ̂ 2,0 rr − τ̂ 1,0 rr − 2
(
µ̂2,0

∂û2,0
∂r̂
− µ̂1,0

∂û1,0
∂r̂

)
∂R̂1,0
∂x̂

=

(
σ1
σ2

) 1
C̄R̂1,0

− (p̂1,0 − p̂2,0) ,

(3.12)

4. Continuity of temperature

T̂1,0 = T̂2,0, (3.13)

5. Continuity of heat flux

k̂1
∂T̂1,0
∂r̂

= k̂2
∂T̂2,0
∂r̂

. (3.14)

• Boundary conditions at the cladding–surroundings interface
(
r̂ = R̂2,0(x̂, t̂)

)
1. Kinematic boundary condition

v̂2,0 =
∂R̂2,0
∂t̂

+ û2,0
∂R̂2,0
∂x̂

, (3.15)

2. Continuity of tangential stresses

µ̂2,0
∂û2,0
∂r̂

= 0, (3.16)
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one–dimensional model of fibre formation in melt spinning processes

3. Balance of the normal stress difference

τ̂ 2,0 rr − 2 µ̂2,0
∂û2,0
∂r̂

∂R̂2,0
∂x̂

= − 1
C̄R̂2,0

− (p̂e − p̂2,0) , (3.17)

4. Balance of heat flux

k̂2
∂T̂2,0
∂r̂

= 0. (3.18)

For the asymptotic analysis developed above, the equations of the diagonal components of the
stress tensor at leading–order, O

(
ε0
)
, can be written as (cf. Eqs. (2.73)–(2.75))

τ̂ i,0 rr = 2 µ̂i,0
∂v̂i,0
∂r̂

,

τ̂ i,0 θθ = 2 µ̂i,0
v̂i,0
r̂

,

τ̂ i,0xx = 2 µ̂i,0
∂ûi,0
∂x̂

.

The solutions to these equations are

ûi,0 = Bi(t̂, x̂), p̂i,0 = Di(t̂, x̂), T̂i,0 = Fi(t̂, x̂), i = 1, 2, (3.19)

v̂i,0 =
Ci
r̂
− ∂Bi

∂x̂

r̂

2, i = 1, 2, (3.20)

which imply that, at leading–order, the axial velocity component B1 = B2 ≡ B (cf. Eq. (2.53)), the
temperature F1 = F2 ≡ F (cf. Eqs. (3.13), (3.14) and (3.18)), and the pressure are only functions
of the axial coordinate and time. C1(t,x) and C2(t,x) can be determined from the kinematic
conditions provided by Eqs. (3.9), (3.10) and (3.15) and v̂1,0(0, x̂, t̂) = 0 (cf. Eqs. (3.6), (3.7)
and (3.8)) as

C1 = C2 =
∂

∂t

(
R2

1,0
2

)
+

∂

∂x

(
B
R2

1,0
2

)
=

∂

∂t

(
R2

2,0
2

)
+

∂

∂x

(
B
R2

2,0
2

)
= 0, (3.21)

which, in turn, imply that

∂A1
∂t̂

+
∂

∂x̂
(BA1) = 0, ∂A2

∂t̂
+

∂

∂x̂
(BA2) = 0, (3.22)

where

A1 =
R̂2

1,0
2 =

R2
1

2 , A2 =
R̂2

2,0 − R̂2
1,0

2 =
R2

2 −R2
1

2 . (3.23)

Equation (3.22) corresponds to mass conservation at leading–order.
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3.1 asymptotic 1–d model for compound fibres

Taking into account that axial velocity and acceleration in radial direction are independent of
the radial coordinate (cf. Eqs. (3.19)– (3.20)) at leading–order, then

Π∗i,0 =
1
2
∂B
∂x̂

si x. (3.24)

It must be pointed out that, since the dynamic viscosity is a function of the temperature,
i.e., µ̂i = µ̂

(
T̂i,0 + ε2T̂i,2 +O

(
ε4
))
, a Taylor’s series expansion about T̂i,0 shows that µ̂(T̂i) =

µ̂i,0 + ε2µ̂i,2 +O
(
ε4
)
, where µ̂i,0 = µ̂i(T̂i,0) and µ̂i,2 = dµ̂i

dT̂i
(T̂i,0) · T̂i,2.

From Eqs. (3.12), (3.17) and (3.20), one can easily obtain the following equations

p̂1,0 = D1(x̂, t̂) = p̂e +
1
C̄

( 1
R2

+

(
σ1
σ2

) 1
R1

)
− µ̂1,0

∂B
∂x̂

, (3.25)

p̂2,0 = D2(x̂, t̂) = p̂e +
1
C̄

1
R2
− µ̂2,0

∂B
∂x̂

. (3.26)

Equations (3.19), (3.20), (3.22) and (3.25)–(3.26) contain four unknowns, i.e., B, R1, R2, and
F ; therefore, these equations are not a closed system. In order to close this system of equations,
it is necessary to go to higher order in the asymptotic expansion.

At O
(
ε2
)
, the axial momentum equations yields

µ̂i,0

(
∂ûi,2
∂r̂

+
∂v̂i,0
∂x̂

)
=Mi

r̂

2 +
Pi
r̂

, i = 1, 2, (3.27)

where

Mi = R̄ρ̂i
DB
Dt̂
− R̄

F̄
ρ̂i +

∂p̂i,0
∂x̂
− ∂

∂x̂
(τ̂ i,0 xx) , (3.28)

where D
Dt̂

(·) ≡ ∂
∂t̂
(·) + B ∂

∂x̂ (·) and Pi is a function of integration that, in general, depends on x̂
and t̂.

The shear stress conditions at the interfaces (cf. Eqs. (2.89) and (2.94)), together with vi,0 (cf.
Eq. (3.20)) and the no–slip condition provided by Eq. (2.53) at second–order yield, after lengthy
algebra,

R̄ (ρ̂1A1 + ρ̂2A2)
DB
Dt̂

= (ρ̂1A1 + ρ̂2A2)
R̄

F̄
+

1
2C̄

(
∂R2
∂x̂

+

(
σ1
σ2

)
∂R1
∂x̂

)
+
∂

∂x̂

{
3 (µ̂1,0A1 + µ̂2,0A2)

∂B
∂x̂

}
−T̂2R2 −

∂p̂e
∂x̂

(A1 +A2) . (3.29)
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The symmetry (cf. Eq. (3.6)) and continuity of tangential stresses at the interface R1 (cf.
Eq. (3.11)) boundary conditions allow to obtain the functions Pi as

P1 = 0, (3.30)

P2 = (M1 −M2) A1 + 3 (µ̂2,0 − µ̂1,0)
∂B
∂x̂

∂A1
∂x̂

. (3.31)

The energy Eq. (2.58) at second–order yields

T̂i,2 =

(
P̄
ρ̂iĈi

k̂i

DF
Dt̂
− ∂2F
∂x̂2

)
r̂2

4 +Hi ln r̂+ Ui, i = 1, 2, (3.32)

where P̄ = R̄Pr, Pr = O(1) and Hi and Ui are functions of x̂ and t̂. Equation (3.32) subject to
the symmetry condition at r̂ = 0 for i = 1 and the thermal boundary conditions at the interfaces
(at second–order) yields

P̄
(
ρ̂1Ĉ1A1 + ρ̂2Ĉ2A2

) DF
Dt̂

=
∂

∂x̂

((
A1k̂1 +A2k̂2

) ∂F
∂x̂

)
− B̄ ĥ2R2 (F −F∞,2) , (3.33)

which clearly shows that the compound jet behaves as a single–component jet with a thermal
inertia and conductivity which are proportional to the cross–sectional areas and the thermal
capacities and conductivities of the materials that compose the jet.

Equations (3.22), (3.29) and (3.33) reduce to those derived by Schultz and Davis [126, 127] and
Gupta and Schultz [56] for steady, single–component jets under isothermal and non–isothermal
conditions, respectively.

Equations (3.22), (3.29) and (3.33) constitute a system of four one–dimensional equations for
R1, R2, B and F . This system is asymptotically valid for small Reynolds, Biot and Brinkman
numbers and large values of the Froude and capillary numbers, is much simpler than Eqs. (2.4)–
(2.53), and includes the effects of the temperature through Eq. (3.29) and the dependence of the
viscosity on temperature in the linear momentum equations (cf. Eq. (2.79)). However, this system
of one–dimensional equations implies that the leading–order temperature and axial velocity
components of the inner and outer jets are the same. It must be noted that no latent heat has
been considered, and viscous dissipation has been disregarded.

3.2 asymptotic 1–d model for hollow compound fibres

Since the derivation of the one–dimensional equations for the slender fibre’s geometry and axial
velocity component is analogous to that for isothermal slender hollow compound fibres [119, 122]
and the derivation of the one–dimensional equation for the temperature is similar to that for
non–isothermal slender compound fibres presented in § 2.2 and § 3.1, the details are omitted here.
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3.2 asymptotic 1–d model for hollow compound fibres

The following leading–order equations for the hollow fibre’s geometry and leading–order axial
and radial velocity components, respectively, for hollow compound fibres have been obtained as

∂A1
∂t̂

+
∂

∂x̂
(BA1) = 0,

∂A2
∂t̂

+
∂

∂x̂
(BA2) = 0, (3.34)

∂

∂t̂

(
R2

1
2

)
+

∂

∂x̂

(
BR

2
1

2

)
= C(x̂),

where A1 =
R2

1−R
2
0

2 and A2 =
R2

2−R
2
1

2 denote the non–dimensional leading–order cross–sectional
areas of the inner and outer hollow jets, respectively,

(ρ̂1A1 + ρ̂2A2) R̄
DB
Dt

= (ρ̂1A1 + ρ̂2A2)
R̄

F̄
−A1

∂D1
∂x̂
−A2

∂D2
∂x̂

+
∂

∂x̂

(
3 (µ̂1,0A1 + µ̂2,0A2)

∂B
∂x̂

)
+2 C(x̂)

(
µ̂1,0

∂A1
∂x̂

+ µ̂2,0
∂A2
∂x̂

)
−T̂2R2 + T̂ R0, (3.35)

where

D1(x̂, t̂) = p̂i −
1
C̄

(
σ

σ2

) 1
R0
− µ̂1,0

2 C(x̂)
R2

0
, (3.36)

D2(x̂, t̂) = p̂e +
1
C̄

1
R2
− µ̂2,0

2 C(x̂)
R2

2
, (3.37)

v̂i,0(r̂, x̂) =
C(x̂)
r̂
− r̂

2
∂B
∂x̂

, (3.38)

where C(x̂, t̂) is given by

C(x̂, t̂) = −1
2
(p̂e − p̂i) + 1

C̄

[(
σ
σ2

)
1
R0

+
(
σ1
σ2

)
1
R1

+ 1
R2

]
µ̂1,0

(
1
R2

0
− 1
R2

1

)
+ µ̂2,0

(
1
R2

1
− 1
R2

2

) . (3.39)

The first two equations of Eq. (3.34) can also be written making use of the third one as

∂

∂t̂

(
R2

0
2

)
+

∂

∂x̂

(
BR

2
0

2

)
= C(x̂), (3.40)

∂

∂t̂

(
R2

2
2

)
+

∂

∂x̂

(
BR

2
2

2

)
= C(x̂). (3.41)
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Taking into account the expressions for the axial and radial velocity components at leading–
order, the velocity gradient tensor for hollow compound fibres is written as

∇̂v =
1
2
∂B
∂x̂


−1 0 0
0 −1 0
0 0 2

+
C
r̂2


−1 0 0
0 1 0
0 0 0

 , (3.42)

which, unlike in compound fibres, is a function of r̂ and x̂, and

Π∗i,0 =
1
2
∂B
∂x̂

si x +
1
3
C
r̂2 (2si r − si x) , i = 1, 2. (3.43)

Equation (3.32) subject to the thermal boundary conditions at the interfaces (at second–order)
yields

P̄
(
ρ̂1Ĉ1A1 + ρ̂2Ĉ2A2

) DF
Dt̂

=
∂

∂x̂

((
A1k̂1 +A2k̂2

) ∂F
∂x̂

)
−B̄

[
ĥ2R2 (F −F∞,2) + ĥ1R0 (F −F∞,1)

]
, (3.44)

which clearly shows that the hollow compound jet behaves as a single–component jet with a
thermal inertia and conductivity which are proportional to the cross–sectional areas and the
thermal capacities and conductivities of the materials that compose the fibre.

The asymptotic analysis also indicates that, for slender fibres at low Reynolds and Biot
numbers, the temperature is uniform across the hollow compound fibre at leading–order in the
slenderness ratio. Although this assumption is valid for the small Biot numbers employed in the
asymptotic analysis, it is not expected to be so near the hollow compound fibre’s outer and inner
interfaces. In particular, at R2 (and also at R0), where heat exchanges with the surroundings
occur, a thermal boundary layers may form, especially at moderate and high Péclet numbers.

3.3 1–d molecular orientation and degree of crystallization models

The molecular orientation model presented in § 2.3 requires the solution of two components
of the assumed diagonal molecular orientation tensor and can be simplified by requiring that
sx = 2 sr = 2 s so that the resulting tensor

S =
s

3


−1 0 0
0 −1 0
0 0 2

 , (3.45)

is proportional to the leading–order velocity gradient tensor for compound fibres which may be
written as

∇̂v =
∂B
∂x̂


−1 0 0
0 −1 0
0 0 2

 . (3.46)
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3.4 1–d steady–state model for semi–crystalline compound fibres

In this model, the molecular orientation tensor depends only on a single (order) parameter [45]
and its contribution to the deviatoric stress tensor, τ , may be written through an effective
dynamic viscosity µ̂e,i as

τ i = µ̂e,i
(
∇vi + (∇vi)T

)
, i = 1, 2, (3.47)

where

µ̂e,i = µ̂i(T̂i) exp
(
βi

(
Yi
Y∞,i

)ni)
+

2
3 αi λ̂i T̂i s

2
i , i = 1, 2. (3.48)

Under these conditions, the Doi–Edwards equation, i.e., Eq.(2.24), can be written as

∂Si
∂t̂

+ B∂Si
∂x̂

= (1−Si)(2Si + 1)∂B
∂x̂
− φi

λ̂i
F U(Si), i = 1, 2, (3.49)

where

U (Si) = Si
(

1− Ni

3 (1−Si)(2Si + 1)
)

, i = 1, 2, (3.50)

is a bulk free energy which is related to the intermolecular potential.

It must be noted that the molecular orientation parameter now reads as

Si =
√

3
2 (Si : Si) = si, i = 1, 2. (3.51)

The equation for degree of crystallization, Y is given by the well–known Ziabicki’s model which
for the one–dimensional model (see § 2.4) is written as

∂Y
∂t̂

+ B∂Yi
∂x̂

= kAi(S)(Y∞,i −Yi), i = 1, 2. (3.52)

3.4 1–d steady–state model for semi–crystalline compound fibres

In this subsection, we employ a generalization of the model developed in § 3.1 and § 3.3 for
fibres to analyse the effects of orientation and crystallization of the melt spinning of compound
fibres. The contribution of air drag effects to the leading–order momentum equation has been
neglected. Such a generalization requires the numerical solution of the following equations (cf.
Eqs. (3.22), (3.29) and (3.33))

d

dx̂
(BA1) = 0, d

dx̂
(BA2) = 0, (3.53)

R̄ (ρ̂1A1 + ρ̂2A2)B
dB
dx̂

= (ρ̂1A1 + ρ̂2A2)
R̄

F̄
+

1
2C̄

(
dR2
dx̂

+

(
σ1
σ2

)
dR1
dx̂

)
+
d

dx̂

{
3 (µ̂e1,0A1 + µ̂e2,0A2)

dB
dx̂

}
(3.54)
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P̄
(
ρ̂1Ĉ1A1 + ρ̂2Ĉ2A2

)
BdF
dx̂

=
d

dx̂

((
A1k̂1 +A2k̂2

) dF
dx̂

)
− B̄ ĥ2R2 (F −F∞,2) , (3.55)

or

P̄
(
ρ̂1Ĉ1A1 + ρ̂2Ĉ2A2

)
BdF
dx̂

= −B̄ ĥ2R2 (F −F∞,2) (3.56)

when axial conduction is neglected.

The steady–state equations for the molecular orientation order parameter and degree of
crystallization can be written using § 3.3 as

BdS
dx̂

= (1−Si) (2Si + 1) dB
dx̂
− φi
λi
F U (Si), i = 1, 2, (3.57)

BdY
dx̂

= kA i (S) (Y∞,i −Yi) , i = 1, 2, (3.58)

where kA i(S) = kAi(0) exp(a2 iS2
i ),

The effective dynamic viscosity of the inner and outer jets is given by

µ̂e1,0 = D̂1 exp
(
Ĥ1 (1−F)

)
exp

(
β1

(
Y1
Y∞,1

)n1)
+

2
3α1λ̂1FS2

1 , (3.59)

µ̂e2,0 = D̂2 exp
(
Ĥ2 (1−F)

)
exp

(
β2

(
Y2
Y∞,2

)n2)
+

2
3α2λ̂2FS2

2 . (3.60)

In addition, the one–dimensional model of the melt spinning of semi–crystalline compound
fibres is subject to the following boundary conditions:

• Geometry

Ri(0) = Ri0, i = 1, 2, (3.61)

• Axial velocity

B(0) = B0, B(1) = Dr · B0, (3.62)

• Temperature

Equation (3.55) represents a two–point boundary value problem which is to be solved
subject to a Dirichlet boundary condition at the die exit and a boundary condition at the
take–up point. A plausible downstream boundary condition for the temperature is no heat
flux at the downstream boundary,

F(0) = F0, dF
dx̂

(1) = 0 (when axial conduction is considered), (3.63)
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3.4 1–d steady–state model for semi–crystalline compound fibres

• Molecular orientation order parameter

Si(0) = Si0, i = 1, 2, (3.64)

• Degree of crystallization

Yi(0) = Yi0, i = 1, 2, (3.65)

where Dr is the draw ratio defined in § 1.1.1.

The molecular orientation (Eq. (3.57)) is affected by the axial velocity component, B, and
affects the degree of crystallization through Eq. (3.58); both the orientation and crystalliza-
tion affect the axial velocity component (Eq. (3.54)) through the effective dynamic viscosities
(Eqs. (3.59) and (3.60)), and, of course, the compound fibre’s geometry (Eq. (3.53)) and tem-
perature (Eq. (3.55) or Eq. (3.56)) are affected by the axial velocity component. This implies
that the orientation and crystallization of the compound fibre are non–linearly coupled with the
fibre’s geometry, axial velocity component and temperature, and that Eqs. (3.53)–(3.58) must be
solved numerically in an iterative fashion.

3.4.1 1D Analytical solutions for steady, isothermal, amorphous compound fibres

For steady, compound fibres, Eq. (3.53) has the following solutions

BA1 = Q1, BA2 = Q2, (3.66)

where Q1 and Q2 denote the (constant) non–dimensional volumetric flow rates of the inner
and outer jets, respectively whereas the total one is obtained from the sum of both terms
Q1 +Q2 = Q.

If the effective dynamic viscosity is assumed to be constant (independent of the temperature,
degree of crystallization and molecular orientation), one can obtain analytical solutions for simple
flows [124].

Viscous regime. This regime is characterized by R̄ = 0 and finite values of F̄ , and no surface
tension (1/C̄ = 0), i.e., Eq. (3.54) becomes

d

dx̂

{
3 (µ̂1,0A1 + µ̂2,0A2)

dB
dx̂

}
= 0, (3.67)

and has the following solution

B(x̂) = exp
(
δ +

χ

2 x̂
)

, (3.68)

53



one–dimensional model of fibre formation in melt spinning processes

where χ and δ are integration constants which can be easily determined from the conditions
given by Eq. (3.62). Note that δ = ln(B0) and χ = 2 ln(Dr). The values of R1 and R2 can be
easily determined from Eq. (3.23) as

R1(x̂) =
√

2Q1 exp
(
−1

2
(
δ + χ

2 x̂
))

, (3.69)

R2(x̂) =
√

2Q exp
(
−1

2
(
δ + χ

2 x̂
))

. (3.70)

This simple solution has been used for validating the numerical method developed for solving
more complex flow regimes.

Viscous–capillary regime. This regime is characterized by Eq.(3.66), and R̄ = 0 and R̄
F̄
= 0,

i.e., Eq. (3.54) becomes

1
2C̄

(
dR2
dx̂

+

(
σ1
σ2

)
dR1
∂x̂

)
+

d

dx̂

{
3 (µ̂1,0A1 + µ̂2,0A2)

dB
dx̂

}
= 0, (3.71)

and has the following solution

B(x̂) =
(

exp
(
δ +

χ

2 x̂
)
+
Q∗

χ

)2
, (3.72)

where χ and δ are integration constants that depend on the axial velocity at the take–up point,
i.e., they depend on B(1) and

Q∗ =

( 1√
18 C̄

) √Q+
(
σ1
σ2

)√
Q1

µ̂1,0Q1 + µ̂2,0Q2
. (3.73)

The values of R1 and R2 can be easily determined from Eq. (3.23), but they are not shown
here.

Viscous–gravitationless regime. This regime corresponds to Eq. (3.66), and F̄ = ∞ and
R̄ 6= 0, i.e., Eq. (3.54) becomes

R̄ (ρ̂1A1 + ρ̂2A2)
dB
dx̂

=
d

dx̂

{
3 (µ̂1,0A1 + µ̂2,0A2)

dB
dx̂

}
, (3.74)

which has the following solution

B(x̂) =
(
χ

P

) exp (δ + χx̂)

1− exp (δ + χx̂)
, (3.75)

where χ and δ are integration constants which can be easily determined from the conditions for
the axial velocity at the die exit and take–up points, and

P =

(
R̄

3

)
ρ̂1Q1 + ρ̂2Q2

µ̂1,0Q1 + µ̂2,0Q2
, (3.76)
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3.4 1–d steady–state model for semi–crystalline compound fibres

Viscous–gravitationless–capillary regime. This regime corresponds to Eq. (3.66), and R̄ 6= 0
and R̄

F̄
= 0, i.e., Eq. (3.54) becomes

R̄ (ρ̂1A1 + ρ̂2A2)B
dB
dx̂

=
1

2C̄

(
dR2
dx̂

+

(
σ1
σ2

)
dR1
∂x̂

)
+
d

dx̂

{
3 (µ̂1,0A1 + µ̂2,0A2)

dB
dx̂

}
, (3.77)

which can be easily integrated upon making the change B = z2

dz

Pz3 + χz −Q∗
=
dx̂

2 , (3.78)

and has different solutions depending on the roots of

Pz3 + χz −Q∗ = 0, (3.79)

where P and Q∗ have been defined previously.

Let us define q = χ
3P and r = −Q∗

2P . Then, the solution to Eq. (3.78) is

3∏
i=1

(z − zi)
∏3
j=1,j 6=i(zi−zj)

−1
= exp

(
P

2 x̂
)

, (3.80)

if q3 + r2 < 0 and zi are the different (real) roots of Eq. (3.79)

−1
2

1
(z − z∗)2 = δ +

P

2 x̂, (3.81)

which corresponds to q3 + r2 = 0 and three identical (real) roots (z∗) of Eq. (3.79),

(
z − z1
z − z2

) 1
(z2−z1)2 exp

(
(z2 − z1)

(z − z1)

)
= δ exp

(
P

2 (z2 − z1)
2x̂

)
, (3.82)

which corresponds to q3 + r2 = 0 and two identical (real) roots z1 and another different (real)
root z2 of Eq. (3.79), and

− 1
(z1 − zr)2 + z2

i

z1 − zr
zi

arctan z − zr
zi

+ ln

(
(z − zr)2 + z2

i

) 1
2

z − z1

 = δ +
P

2 x̂, (3.83)

which corresponds to q3 + r2 > 0, a real root (z1) and two complex conjugate ones (zr ± izi),
i2 = −1, of Eq. (3.79), and χ and δ are integration constants which can be determined from
B(0) = B0 and depend on the value of the take–up velocity, i.e., B(1) or Dr.

For the temperature, the boundary condition at the downstream does not allow us to obtain
closed–form analytical solutions to Eq. (3.55). However, if axial conduction is neglected and
S̄t ≡ B̄

P̄
= O(1), where S̄t is the Stanton number, Eq. (3.55) becomes a first–order ordinary

differential equation (cf. Eq. (3.56)) whose solution may be written as

F(x̂) = F∞,2 +C exp
(
− St

ρ̂1Ĉ1Q1 + ρ̂2Ĉ2Q2

∫ x̂

0
ĥ2R2(ζ)dζ

)
, (3.84)
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one–dimensional model of fibre formation in melt spinning processes

where the constant C can be easily determined from the condition at the die exit, i.e., F(0) = F0,
as C = (F0 −F∞,2).

For the viscous flow regime considered above, the leading–order temperature of the compound
fibre (assuming a constant value of ĥ2) may be written as

F(x̂)−F∞,2
F0 −F∞,2

= exp
{
− St ĥ2
ρ̂1Ĉ1Q1 + ρ̂2Ĉ2Q2

√
2Q

( 4
χ

)
exp

(
−1

2δ
)[

1− exp
(
−χ4 x̂

)]}
. (3.85)

For χ << 1, a Taylor’s series expansion of the inner exponential in Eq. (3.85) shows that the
temperature decreases in an exponential fashion along the fibre axis and the rate of decrease
increases as B̄ is increased. Moreover, in the absence of swelling, the integral in Eq. (3.84) has
the following upper and lower bounds R2(0)L and R2(1)L, respectively, which also indicate
that the temperature decreases in an exponential fashion along the fibre axis and its rate of
decrease increases as B̄ is increased.

Analytical solutions can also be obtained whenever axial conduction is neglected for the steady
flow regimes considered previously in the present Subsection.

Moreover, if φi = 0 in Eq. (3.57), then the resulting equation can be written as dS
dy =

(1−S)(1 + 2S) where y = lnB and the subscript i has been dropped, and has fixed points at
S = 1 and S = −1

2 which are stable and unstable, respectively, and, since S ≥ 0, it can be easily
shown that the solution to this equation evolves towards S = 1. Moreover, this equation can
be integrated analytically subject to, say, S(0) = S0, to yield the molecular orientation as a
function of the leading–order axial velocity component as

B(S) = B0

(
(1 + 2S0)2

1−S0

)−1/3(
(1 + 2S)2

1−S

)1/3

, (3.86)

from which one can easily obtain S(x̂) = S(B) as

S(B) =
(
B3 −B3

0
)
+ S0 ·

(
2B3 + B3

0
)

(B3 + 2B3
0) + 2S0 · (B3 −B3

0)
. (3.87)

Furthermore, under the same assumptions as discussed above, Eq. (3.58) can be integrated
analytically subject to Y(0) = Y0 to yield

Y(x̂)−Y0
Y∞

= 1− exp
(
−
∫ x̂

0

kA(S)
B(ζ)

dζ

)
, (3.88)

where kA(S) can be written as kA(B) upon using S(B) from Eq. (3.87). Both Eq. (3.87) and
Eq. (3.88) indicate that, under the above assumptions, the molecular orientation and crysta-
llization depend on B(x̂) which, in turn, depends in a non–linear fashion on the solutions to
Eqs. (3.53)–(3.55).
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3.4.2 Numerical scheme

In this subsection, a brief description of the numerical method used to solve the set of one–
dimensional equations that governs the steady–state fluid–dynamics of melt spinning of semi–
crystalline compound fibres is presented.

Firstly, the mass conservation equations (3.53) establish that

d

dx̂
(Ai(x̂)B(x̂)) = 0, ⇒ Ai(x̂)B(x̂) = Qi i = 1, 2. (3.89)

It must be noted that Qi (constant) and

Qi = Ai(0)B(0) ⇒

Q1 =
R2

10
2 B0,

Q2 =
R2

20−R
2
10

2 B0.
(3.90)

Taking into account Eq. (3.90), the axial momentum conservation equation (cf. Eq. (3.54))
can be written as,

R̄ (ρ̂1Q1 + ρ̂2Q2)
dB
dx̂

= (ρ̂1A1 + ρ̂2A2)
R̄

F̄
+ 3 d

dx̂
(µ̂e1,0A1 + µ̂e2,0A2)

dB
dx̂

+ 3 (µ̂e1,0A1 + µ̂e2,0A2)
d2B
dx̂2 +

1
2C̄

(
dR2
dx̂

+

(
σ1
σ2

)
dR1
dx̂

)
(3.91)

which can be rewritten as

d2B
dx̂2 +

{
d

dx̂
(ln Πµe)− R̄W

1
3 Πµe

}
dB
dx̂

= − Πρ

3 Πµe

(
R̄

F̄

)

− 1
2C̄

1
3 Πµe

(
dR2
dx̂

+

(
σ1
σ2

)
dR1
dx̂

)
(3.92)

where W = ρ̂1Q1 + ρ̂2Q2 represents a measurement of the dimensionless mass flow rate of the
compound jet and Πρ = ρ̂1A1 + ρ̂2A2 and Πµe = µ̂e1,0A1 + µ̂e2,0A2 denote the mean values of
the density and dynamic viscosity, respectively.

Equation (3.92) is a linear ordinary differential equation (supposing known R1 and R2, and
so, A1 and A2, and F , S and Y) for B that must be solved subject to the Dirichlet boundary
conditions given by Eq. (3.62).

Taking into account Eq. (3.90), the energy conservation equation (cf. Eq. (3.55)) may be
written as

P̄
(
ρ̂1Ĉ1Q1 + ρ̂2Ĉ2Q2

) dF
dx̂

=
d

dx̂

(
A1k̂1 +A2k̂2

) dF
dx̂

+(
A1k̂1 +A2k̂2

) d2F
dx̂2 − B̄ĥ2R2 (F −F∞) , (3.93)

that is rewritten as

d2F
dx̂2 +

{
d

dx̂
(ln Πk)− P̄ WC

1
Πk

}
dF
dx̂
− B̄ĥ2

1
Πk
R2F = −B̄ 1

Πk
R2F∞,2, (3.94)

57



one–dimensional model of fibre formation in melt spinning processes

where WC = ρ̂1Ĉ1Q1 + ρ̂2Ĉ2Q2 and Πk = k̂1A1 + k̂2A2.

Equation (3.94) is a linear ordinary differential equation for F which must be solved under
the boundary conditions given by Eq. (3.63).

The next instructions flow may be used for solving the coupled non–linear problem:

1. Use as seed for the axial velocity, B(0)(x̂), the solution of the isothermal viscous
regime (cf. Eq. (3.68)) characterized by (R̄ = 0, C̄ →∞) and a finite (non–zero)
value of F̄ . Likewise, the temperature, F (n)(x̂), and molecular orientation order
parameter, S(n)i (x̂), and degree of crystallization, Y (n)

i (x̂), of the compound jet
are guessed by using boundary conditions at the die–exit and imposing a flat
axial profile for each variable (a linear one can be also imposed).

2. Calculate the compound fibre geometry A(n)
1 ,A(n)

2 ,R(n)
1 ,R(n)

2 using Eq. (3.89)–
(3.90).

3. Determine the effective dynamic viscosity µ̂(n)ei,0 = f(F (n),S(n),Y (n)) of the inner
and outer jets.

4. Calculate the new axial velocity B(n+1)(x̂) using Eq. (3.92).

5. Determine the new temperature profile, F (n+1)(x̂), of the compound jet using
Eq. (3.94).

6. Update the molecular orientation order parameter, S(n+1)
i (x̂), using Eqs. (3.57)

and degree of crystallization, Y (n+1)
i (x̂), (cf. Eqs. (3.58)) of the core and cladding.

7. Iterate until specified convergence criteria are satisfied.

The steady–state solution is obtained numerically by means of an implicit finite difference
method (scheme solved iteratively) that discretizes the advection–type terms by means of first–
order accurate upwind difference expressions while second–order accurate differences are used to
discretize the diffusion terms. In order to obtain grid independent results, the number of nodes
in the non–dimensional axial direction (x̂), Nx, must be at least 1001, which corresponds to an
equispaced size grid of ∆x̂ = 1× 10−3.

Due to the non–linear coupling between fibre geometry, axial velocity, temperature, molecular
orientation order parameter and degree of crystallization, an under–relaxation factor equal to
fψ = 0.5,

ψ(n+1) = fψ ψ
(n) + (1− fψ)ψ(n+1), n = 0, 1, . . . , N , (3.95)

has been employed for each of these variables (N indicates the maximum number of iterations)
in order to ensure convergence criteria which has been set to

L2(ψ) =

√√√√√ 1
Nx

Nx∑
j=1

(
ψ
(n+1)
j −ψ(n)

j

)2
≤ TOL, (3.96)
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where n is the n–th iteration, and ψ represents any of the unknowns of the problem, i .e., B,
F , Si and Yi. Typical values of N and TOL enough to reach convergence are 1000 and 10−8,
respectively.

3.5 1–d steady–state model for semi–crystalline hollow compound fi-
bre

In this subsection, we summarize the 1–D model of the melt spinning of hollow compound
fibres that includes the effects of orientation and crystallization. The contribution of both the
gases surrounding and enclosed by the hollow compound jet to the drag on the fibre to the
leading–order momentum equation has been neglected. The one–dimensional model for hollow
compound jet requires the numerical solution of the following equations (cf. Eqs. (3.34), (3.35)
and (3.44))

d

dx̂
(BA1) = 0, d

dx̂
(BA2) = 0, d

dx̂

(
BR

2
1

2

)
= C(x̂), (3.97)

where C(x̂) was defined in Eq. (3.39),

R̄ (ρ̂1A1 + ρ̂2A2)B
dB
dx̂

= (ρ̂1A1 + ρ̂2A2)
R̄

F̄
−A1

dD1
dx̂
−A2

dD2
dx̂

+
d

dx̂

{
3 (µ̂e1,0A1 + µ̂e2,0A2)

dB
dx̂

}
+2 C(x̂)

(
µ̂e1,0

dA1
dx̂

+ µ̂e2,0
dA2
dx̂

)
, (3.98)

where D1 and D2 are given by Eqs. (3.36) and (3.37), respectively,

P̄
(
ρ̂1Ĉ1A1 + ρ̂2Ĉ2A2

)
BdF
dx̂

=
d

dx̂

((
A1k̂1 +A2k̂2

) dF
dx̂

)
−B̄

[
ĥ2R2 (F −F∞,2) + ĥ1R0 (F −F∞,1)

]
, (3.99)

when axial conduction is accounted for, or

P̄
(
ρ̂1Ĉ1A1 + ρ̂2Ĉ2A2

)
BdF
dx̂

= −B̄
[
ĥ2R2 (F −F∞,2) + ĥ1R0 (F −F∞,1)

]
, (3.100)

when axial conduction is neglected.

For the molecular orientation order parameter and degree of crystallization, the model presented
for compound semi–crystalline fibres in § 3.4 has been adopted. This model is given by Eqs. (3.57)–
(3.58).

In addition, the one–dimensional model of the melt spinning of semi–crystalline hollow com-
pound fibres is subject to the same boundary conditions as for compound fibres, and, therefore, a
similar numerical method to that developed in § 3.4.2 was used to solve its governing equations.
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4.1 2–d steady–state model for semi–crystalline compound fibres

The asymptotic analysis developed in § 3.1 shows that, for slender fibres at low Reynolds
and Biot numbers, the temperature is uniform across the compound fibre at leading–order in
the slenderness ratio, ε. This assumption is valid for the small Biot numbers employed in the
asymptotic analysis, but it is not expected to be valid near the compound fibre’s outer interface,
i.e., at R2, where a thermal boundary layer may form.

It must be noted that, if one were to continue with the asymptotic analysis at higher orders
in the slenderness ratio, one would obtain corrections to the velocity and temperature fields
that depend on r̂, t̂ and x̂. However, such a radial dependence is only observed at O(ε2) in
the asymptotic expansion and, therefore, it is expected to be small. Moreover, the algebra
involved in deriving these second–order approximations is too cumbersome compared with the
two–dimensional model developed in this work.

The hybrid steady–state model developed in this work, which we also called a 1 + 1/2–D
model, consists of solving the one–dimensional mass and linear momentum equations (Eqs. (3.53)
and (3.54)) that govern the geometry and axial velocity of the compound jet at leading–order,
respectively, and which were obtained with an asymptotic analysis using the fibre slenderness
ratio, ε, as a perturbation parameter, together with the two–dimensional energy equation, i.e.,
Eq. (2.58), and two–dimensional equations for the degree of crystallization, e.g., [7, 33, 64], and
the components of the diagonal molecular orientation tensor.
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In this model, the first term in the right–hand side of Eq. (2.58) has been neglected

P̄

(
ρ̂iĈi

k̂i

)(
ûi,0

∂T̂i
∂x̂

+ v̂i,0
∂T̂i
∂r̂

)
=

1
r̂

∂

∂r̂

(
r̂
∂T̂i
∂r̂

)
, i = 1, 2, (4.1)

where P̄ = ε Pe = O(1) and T̂i is a function depending of r̂ and x̂.

By approximating in Eq. (4.1), ûi,0 and v̂i,0 by B and Eq. (3.20), respectively, one obtains a
parabolic partial differential equation for the temperature field which uses the velocity profile
from the leading–order asymptotic analysis of slender compound fibres. Note that the neglect of
the first term in the right–hand side of Eq. (2.58) is a valid approximation for the slender fibres
considered in this study.

Upon non–dimensionalization and using the results of the previous chapters, the two–dimensional
steady–state equations for the components of the molecular orientation tensor and degree of
crystallization can be written as(

ûi,0
∂si r
∂x̂

+ v̂i,0
∂si r
∂r̂

)
= (1− si r) (1 + si x)

dB
dx̂

− φi

λ̂i

{
si r −

Ni

3 [(1− si r) (si r + 3 Πi,s)]

}
, i = 1, 2, (4.2)

(
ûi,0

∂si x
∂x̂

+ v̂i,0
∂si x
∂r̂

)
= (si x + 1) (2− si x)

dB
dx̂

− φi

λ̂i

{
si x −

Ni

3 [(si x + 1) (si x − 3 Πi,s)]

}
, i = 1, 2, (4.3)

(
ûi,0

∂Yi
∂x̂

+ v̂i,0
∂Yi
∂r̂

)
= kAi(0) exp

(
a2iS2

i

)
(Y∞,i −Yi) , i = 1, 2, (4.4)

where si r and si x and Yi are functions that depend on r̂ and x̂.

It must be noted that because of the hyperbolic nature of the equations that govern both
molecular orientation and degree of crystallization of semi–crystalline fibres, it is not possible to
impose any boundary condition for these variables at the interface r̂ = R̂1(x̂). This weakness
suggests that this model may not be the most adequate since one expects that polymers may
mix at this interface. However, we shall use this model in this work.

Equations (4.2) and (4.3) are first–order quasilinear partial differential equations while Eq. (4.4)
is a linear one. These three equations can be written as(

ûi,0
∂Ωi

∂x̂
+ v̂i,0

∂Ωi

∂r̂

)
= U (r̂, x̂) , i = 1, 2, (4.5)

and their solutions can be obtained (using the leading–order velocity) as

dx̂

B
=

dr̂

− r̂
2
dB
dx̂

=
dΩ
U

. (4.6)
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Integration of Eq. (4.6) yields

dr̂

dx̂
= − r̂2

1
B
dB
dx̂

⇒ B r̂2 = ϑ (4.7)

dΩ
dx̂

=
U
B

(4.8)

where ϑ is a constant of integration. Therefore, these equations could be integrated by the method
of characteristics. Because of their first–order and depending on the boundary conditions at
x̂ = 0, the molecular orientation and crystallinity may not be continuous at the core–cladding
interface.

The fact that B r̂2 is constant will be used later when integrating these three equations as well
as that for the temperature of the core and cladding.

Since the effective dynamic viscosity depends on the two–dimensional fields of T̂ , Y and S, the
dynamic viscosity that appears in Eq. (3.54) becomes

< µ̂e1 > (x̂) =
1
A1

∫ R1

0
µ̂e1,0(r̂, x̂) r̂ dr̂, (4.9)

< µ̂e2 > (x̂) =
1
A2

∫ R2

R1
µ̂e2,0(r̂, x̂) r̂ dr̂. (4.10)

Likewise, a global cross–sectionally averaged dynamic viscosity may be defined as

< µ̂e > (x̂) =
1
A

∫ R2

0
µ̂e(r̂, x̂) r̂ dr̂, (4.11)

where A = A1 +A2, which indicates that

A < µ̂e > (x̂) = A1 < µ̂e1 > (x̂) +A2 < µ̂e2 > (x̂). (4.12)

In this manner, Eq. (3.54) becomes

R̄ (ρ̂1A1 + ρ̂2A2)B
dB
dx̂

= (ρ̂1A1 + ρ̂2A2)
R̄

F̄
+

1
2C̄

(
dR2
dx̂

+

(
σ1
σ2

)
dR1
dx̂

)
+

d

dx̂

{
3 (< µ̂e1,0 > A1+ < µ̂e2,0 > A2)

dB
dx̂

}
. (4.13)

Equations (4.2)–(4.3) and Eqs. (4.1), (4.4) and (3.66) and (4.13) represent the two–dimensional
model for the fluid dynamics of semi–crystalline compound fibres developed in this study and
are subject to specified conditions at the maximum swell cross–section, x̂ = 0,

• Axial velocity

B(0) = B0, (4.14)

• Temperature profile

T̂i(r̂, 0) = T̂i0(r̂), (4.15)
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• Molecular orientation order parameter profile

si r(r̂, 0) =Si0(r̂), (4.16)
si x(r̂, 0) = 2Si0(r̂), (4.17)

• Degree of crystallization profile

Yi(r̂, 0) = Yi0(r̂) i = 1, 2, (4.18)

downstream or take–up location, x̂ = 1,

B(1) = Dr · B0, (4.19)

and symmetry boundary conditions at the centreline, r̂ = 0,

∂T̂1
∂r̂

= 0. (4.20)

In addition, at the core–cladding interface, r̂ = R1(x̂), there is continuity of temperature and
heat flux, i.e.,

T̂1 = T̂2, (4.21)

k̂1
∂T̂1
∂r̂

= k̂2
∂T̂2
∂r̂

, (4.22)

while, at the cladding–surroundings interface, r̂ = R2(x̂), the non–dimensional form of the
thermal boundary condition is

−∂T̂2
∂r̂

(R2, x̂) = Bi2
(
T̂2(R2, x̂)− T̂∞,2

)
, (4.23)

where a term proportional to ε in the left hand–side has been neglected and Bi2 = ĥ2
k̂2
Bi depends

on the film heat transfer coefficient ĥ2 and the thermal conductivity of the cladding.

4.1.1 Numerical method. Mapping

In this work, we shall only be concerned with steady state conditions, and the numerical solution
of the equations governing the two–dimensional free–surface model for semi–crystalline compound
fibres presented above was obtained as follows. First, the following transformation (r̂, x̂)→ (ξ, η)
for the inner and outer jets, where ξ(r̂, x̂) = r̂

R2(x̂)
and η(r̂, x̂) = x̂, was employed to map the

curvilinear geometries of the inner and outer fibres into rectangles, i.e., [0,R1(x̂)]→ [0,
√
Q1/Q]

and [R1(x̂),R2(x̂)]→ [
√
Q1/Q, 1], respectively.
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Figure 4.1: Mapping between the physical domain (r̂, x̂) and the computational one (ξ, η) for compound fibres.

Using this mapping, the differential operators can be written in the transformed domain taking
into account the chain rule as

∂

∂x̂
=
∂ξ

∂x̂

∂

∂ξ
+
∂η

∂x̂

∂

∂η
= − ξ

R2(η)

dR2(η)

dη

∂

∂ξ
+

∂

∂η
, (4.24)

∂

∂r̂
=
∂ξ

∂r̂

∂

∂ξ
+
∂η

∂r̂

∂

∂η
=

1
R2(η)

∂

∂ξ
. (4.25)

The convective operator, L, that appears in Eqs. (4.1)–(4.4) may be written as

L = ûi,0
∂

∂x̂
+ v̂i,0

∂

∂r̂
= B(η) ∂

∂η
, (4.26)

where the continuity equation (cf. Eq. (3.23)), i.e.,

d

dη

(
B(η)R

2
2(η)

2

)
=

d

dη
(AB) = 0, (4.27)

has been used.

Furthermore, the N operator that appears in the energy equation (cf. (4.1)) can be written as

N ≡ 1
r̂

∂

∂r̂

(
r̂
∂

∂r̂

)
=

1
R2 ξ

1
R2

∂

∂ξ

(
R2 ξ

1
R2

∂

∂ξ

)
=

1
2A

1
ξ

∂

∂ξ

(
ξ
∂

∂ξ

)
. (4.28)
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In this manner, both the energy conservation equation and the equations that model the
molecular orientation tensor components and degree of crystallization in the computational
domain can be written as

∂T̂i
∂η

=
1

2Q
1
P̄i

1
ξ

∂

∂ξ

(
ξ
∂T̂i
∂ξ

)
i = 1, 2, (4.29)

B ∂si r
∂η

= (1− si r) (1 + si x)
dB
dη

− φi

λ̂i

{
si r −

Ni

3 [(1− si r) (si r + 3 Πi,s)]

}
, i = 1, 2, (4.30)

B ∂si x
∂η

= (si x + 1) (2− si x)
dB
dη

− φi

λ̂i

{
si x −

Ni

3 [(si x + 1) (si x − 3 Πi,s)]

}
, i = 1, 2, (4.31)

B ∂Yi
∂η

= kAi(0) exp
(
a2iS2

i

)
(Y∞,i −Yi) , i = 1, 2, (4.32)

where P̄i = P̄
(
ρ̂iĈi
k̂i

)
.

The boundary conditions in the transformed (computational) domain are

• Temperature of the jets

T̂i(ξ, 0) = T̂i0(ξ) i = 1, 2, (4.33)

• Thermal boundary condition at the symmetry axis (ξ = 0)

∂T̂1
∂ξ

= 0, (4.34)

• Boundary conditions for the temperature at the core–cladding interface
(
ξ =

√
Q1
Q

)
T̂1 = T̂2, (4.35)

k̂1
∂T̂1
∂ξ

= k̂2
∂T̂2
∂ξ

, (4.36)

• Boundary condition for the temperature at the cladding–surrounding interface (ξ = 1)

∂T̂2
∂ξ

+Bi2R2 T̂2 = Bi2R2 T̂∞,2, (4.37)
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• Components of the molecular orientation tensor

si r(ξ, 0) = Si0(ξ), i = 1, 2, (4.38)

si x(ξ, 0) = 2Si0(ξ), i = 1, 2, (4.39)

• Degree of crystallization

Yi(ξ, 0) = Yi0(ξ), i = 1, 2. (4.40)

The (two–dimensional) equations for the (two components of the) molecular orientation tensor
(cf. Eqs. (4.30) and (4.31)) and the degree of crystallization (cf. Eqs. (4.32)) are hyperbolic
and were discretized by means of first–order accurate upwind difference expressions in both
the axial and the radial directions, whereas the (two–dimensional) energy equation is of the
advection–diffusion type and its advection terms were discretized as those for the degree of
crystallization, while second–order accurate finite differences were used to discretize the diffusion
term in the radial direction. The set of finite difference equations for B, T̂ , S and Y were solved
iteratively in grids consisting of 1001 points in the axial direction and 301 points in the radial
one (101 points in the core and 201 in the cladding), respectively, until a specified convergence
criterion is achieved.

4.1.2 Average temperature of the compound jet

In order to compare the results of the hybrid model with those of the one–dimensional one,
is mandatory to define the average temperature of the compound jet, < T̂ >. To do so, the
cross–sectionally averaged of the energy conservation partial differential equations (Eqs. (4.29))
yields

2QP̄1

(
k̂1

k̂2

)
d

dη

(
< T̂1 > (η)

Q1
2Q

)
=

√
Q1
Q

(
k̂1

k̂2

)
∂T̂1
∂ξ

(√
Q1
Q

, η
)

, (4.41)

2QP̄2
d

dη

(
< T̂2 > (η)

Q2
2Q

)
=
∂T̂2
∂ξ

(1, η)−
√
Q1
Q

∂T̂2
∂ξ

(√
Q1
Q

, η
)

, (4.42)

where the average temperature, < T̂i(η) >, of each jet has been defined in the same way as the
average dynamic viscosity, which, in the mapped domain, can be written as

< T̂1 > (η) =
2Q
Q1

∫ √Q1
Q

0
T̂1(ξ, η) ξ dξ, (4.43)

< T̂2 > (η) =
2Q
Q2

∫ 1√
Q1
Q

T̂2(ξ, η) ξ dξ. (4.44)
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The sum of Eqs. (4.41) and (4.42), taking into account the boundary conditions both at the
interface,

(
ξ =

√
Q1
Q

)
, and the convective one, (ξ = 1), yields

P̄1

(
k̂1

k̂2

)
d

dη

(
< T̂1 > (η)Q1

)
+ P̄2

d

dη

(
< T̂2 > (η)Q2

)
=
∂T̂2
∂ξ

(1, η)(
P̄1

(
k̂1

k̂2

)
Q1 + P̄2Q2

)
d< T̂ > (η)

dη
= −Bi2R2(η)

(
T̂2 (1, η)− T̂∞,2

)
. (4.45)

In this manner, the average temperature of the jet, < T̂ (η) >, is a monotonically decreasing
function depending on η due to the convection phenomena that the compound jet experiences as
it is being drawn. It must be noted that

< T̂ > (η) =
P̄1
(
k̂1
k̂2

)
Q1 < T̂1(η) > +P̄2Q2 < T̂2(η) >

P̄1
(
k̂1
k̂2

)
Q1 + P̄2Q2

(4.46)

and that the equation that governs its evolution in the transformed domain is

d< T̂ > (η)

dη
= − St

ρ̂1Ĉ1Q1 + ρ̂2Ĉ2Q2
ĥ2R2(η)

(
T̂2 (1, η)− T̂∞,2

)
, (4.47)

where St = Bi/P̄ .

4.1.3 Numerical scheme

In this subsection, a brief description of the procedure for the solution of the two–dimensional
model is presented.

The following instructions flow was followed in order to obtain the converged solution for the
melt spinning of semi–crystalline compound fibres.
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1. Use as an initial guess for the axial velocity, B(0)(η), the solution of the isothermal
viscous regime (cf. Eq. (3.68)) characterized by (R̄ = 0, C̄ →∞) and a finite (non–
zero) value of F̄ . Likewise, the temperature, T̂ (n)(ξ, η), and the components of the
molecular orientation tensor, S(n)(¸, ), and degree of crystallization, Y (n)

i (ξ, η),
of the compound jet are guessed using the boundary conditions at η = 0 and
imposing a constant two–dimensional field for each variable (a linear one can also
be imposed).

2. Calculate the compound fibre geometry A(n)
1 ,A(n)

2 ,R(n)
1 ,R(n)

2 using Eq. (3.89)–
(3.90).

3. Determine the effective dynamic viscosity µ̂(n)ei (ξ, η) = f
(
T̂ (n),Y (n)

)
of the inner

and outer jets.

4. Obtain the averaged effective dynamic viscosity, < µ̂ei >
(n) (η), of the jets.

5. Calculate the new axial velocity B(n+1)(x̂) using Eq. (4.13).

6. Calculate the temperature, T̂ (n+1)(ξ, η), of the compound jet using Eq. (4.29).

7. Calculate the molecular orientation order parameter, S(n+1)
i (ξ, η), using

Eqs. (4.30)–(4.31) and the degree of crystallization, Y (n+1)
i (ξ, η), of the core

and cladding.

8. Iterate until the convergence criteria are satisfied; this convergence criterion is√√√√√ 1
Nx

Nx∑
j=1

(
1
Nr

Nr∑
k=1

(
Ψ(n+1)
j,k −Ψ(n)

j,k

)2
)
≤ TOL, (4.48)

where Nx and Nr are the number of nodes in the axial and radial directions,
respectively, n is the n–th iteration, TOL = 10−8 is the error tolerance and Ψ
represents any of the two–dimensional unknown fields, T̂i, Si, and Yi.

4.2 2–d steady–state model for semi–crystalline hollow compound fi-
bres

The well–known conservation equations of mass, linear momentum and energy for axisymmetric
flows of Newtonian fluids together with the equations for the molecular orientation tensor and
the degree of crystallization presented in Chapter 1 are highly non–linearly coupled through the
dependence of the dynamic viscosity on the temperature, molecular orientation order parameter
and degree of crystallization which, in turn, are non–linearly coupled to the continuity, energy
and linear momentum equations. In addition, the geometry of the hollow compound fibres must
be determined as part of the solution. Therefore, an analysis of even Newtonian hollow compound
fibres would require an intensive and expensive computational effort. In this section, this effort is
substantially diminished by developing a simplified two–dimensional model which employs the
one–dimensional equations for the (slender) fibre’s radii and axial velocity component and two–
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dimensional equations for the radial velocity component derived in the previous section and the
two–dimensional equations of energy, molecular orientation tensor, and degree of crystallization.

Since the effective dynamic viscosity depends on the (two–dimensional) fields of T̂ and Y , the
dynamic viscosity that appears in Eq. (3.35) is

< µ̂e1,0 > (x̂) =
1
A1

∫ R1

R0
µ̂e1,0(r̂, x̂) r̂ dr̂, (4.49)

< µ̂e2,0 > (x̂) =
1
A2

∫ R2

R1
µ̂e2,0(r̂, x̂) r̂ dr̂, (4.50)

and the integrals that appear in these averaged dynamic viscosities provide an integro–differential
character to the melt spinning (or drawing) of hollow compound semi–crystalline fibres.

In order to consider the radial variations of temperature, we use Eqs. (3.34)–(3.38) for the
fibre’s geometry and (leading–order) axial and radial velocity components, while the temperature
field will be determined by solving the two–dimensional energy equation which in non–dimensional
form was written as Eq. (2.58). Note that the neglect of axial diffusion term in the right–hand
side of Eq. (2.58) is a valid approximation for slender hollow compound fibres, i.e., for ε << 1,
considered in this study.

In the numerical simulations presented here, û and v̂ have been replaced by B and Eq. (3.38),
respectively, in Eq. (2.58). Therefore, in the two–dimensional model presented here, one employs a
parabolic equation for the temperature field which uses the velocity profile from the leading–order
asymptotic analysis of slender hollow compound fibres.

Under the conditions stated above, the two–dimensional steady–state equations for the compo-
nents of the molecular orientation tensor and degree of crystallization are given by(

ûi,0
∂si r
∂x̂

+ v̂i,0
∂si r
∂r̂

)
= (1− si r)

[
(1 + si x)

dB
dx̂

+
2
3
C(x̂)
r̂2 (3 + 2 si r − si x)

]
− φi

λ̂i

{
si r −

Ni

3 [(1− si r) (si r + 3 Πi,s)]

}
, (4.51)

(
ûi,0

∂si x
∂x̂

+ v̂i,0
∂si x
∂r̂

)
= (si x + 1)

[
(2− si x)

dB
dx̂
− 2

3
C(x̂)
r̂2 (2 si r − si x)

]
− φi

λ̂i

{
si x −

Ni

3 [(si x + 1) (si x − 3 Πi,s)]

}
. (4.52)

and Eq. (4.4) where the molecular orientation order parameter, Si, which has the same expression
as that derived for compound fibres, and Yi are functions depending of r̂ and x̂.

As indicated in § 4.1, Eqs. (4.51)–(4.52) and (4.4) may be written as Eq. (4.5) which can be
solved by the method of characteristics, i.e.,

dr̂

dx̂
=

1
B

(C
r̂
− r̂

2
dB
dx̂

)
(4.53)

dΩ
dx̂

=
U
B

(4.54)

but, in this case, the first equation does not have a simple solution as that for compound jets
if C 6= 0. However, if C = 0 which corresponds to p̂e = p̂i and 1

Ĉ
= 0, the solution of the first
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equation is B r̂2 = ϑ. In this case, however, Eqs. (4.51)–(4.52) and (4.4) may be solved by means
of upwind difference techniques.

Equations (3.34)–(3.38), (2.58), (4.51)–(4.52), and (4.4), represent the two–dimensional model
for the fluid dynamics of semi–crystalline hollow compound fibres and are subject to specified
conditions at the location of maximum swell, x̂ = 0, identical to those of Eqs. (4.14)–(4.19).

The boundary conditions corresponding to the energy equation are

−k̂1
∂T̂1
∂r̂

(R0, x̂) = Bi ĥ1
(
T̂∞,1 − T̂1(R0, x̂)

)
, (4.55)

T̂1(R1, x̂) = T̂2(R1, x̂), (4.56)

k̂1
∂T̂1
∂r̂

(R1, x̂) = k̂2
∂T̂2
∂r̂

(R1, x̂), (4.57)

−k̂2
∂T̂2
∂r̂

(R2, x̂) = Bi ĥ2
(
T̂2(R2, x̂)− T̂∞,2

)
, (4.58)

where Bi depends on the (reference, constant) film heat transfer coefficient h0 and the di-
mensionless heat transfer coefficients ĥi = hi

h0
may depend on the local Reynolds and Prandtl

numbers.

The model for the melt spinning (or drawing) of hollow compound fibres presented in this
chapter is a single–phase, bi–component formulation characterized by a Newtonian rheology and
does not account for latent heat effects associated with solidification. The model does not account
either for the presence of amorphous and crystalline phases in a separate manner either through
conservation equations for these components or through a non–Newtonian rheology. Latent heat
effects associated with phase changes may result in a locally small increase of temperature at
the solidification point, but are usually small in melt spinning processes at moderate drawing
speeds. By way of contrast, the fluid dynamics, rheology, heat transfer, molecular orientation
and crystallization of hollow compound fibres are expected to be affected by the presence of
amorphous and crystalline phases. It must be also noted that, in the model presented here, the
axial velocity component, û, only depends on x̂, while v̂, S, Y and T̂ depend on r̂ and x̂ for
time–independent melt spinning processes.

4.2.1 Numerical method. Mapping

In this chapter, only steady hollow compound fibres are considered, and the numerical solution
of the non–linear equations governing the two–dimensional multiple free–surface model presented
above was obtained as follows. First, the following transformation (r̂, x̂)→ (ξ, η) for the inner
and outer jets, where ξ(r̂, x̂) = r̂2−R2

0(x̂)

R2
2(x̂)−R

2
0(x̂)

and η(r̂, x̂) = x̂, was employed to map the curvilinear
geometries of the inner and outer jets/fibres into rectangles, i.e., [R0(x̂),R1(x̂)] → [0,Q1/Q]
and [R1(x̂),R2(x̂)]→ [Q1/Q, 1], respectively, where Q = Q1 +Q2 denotes the non–dimensional
(total) volumetric flow rate of the hollow compound jet (cf. Figure 4.2).
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Figure 4.2: Mapping between physical domain (r̂, x̂) and the computational one (ξ, η) in hollow compound fibres.

Using the above mapping, the differential operators can be written in the transformed domain
taking into account the chain rule as

∂

∂x̂
=

−1
A(η)

(
dA0(η)

dη
+ ξ

dA(η)
dη

)
∂

∂ξ
+

∂

∂η
, (4.59)

∂

∂r̂
=

r̂

A(η)
∂

∂ξ
, (4.60)

where A0(η) =
R2

0(η)
2 .

Using an analogous procedure than made for compound fibres on section 4.1.1 and taking
into account Eqs. (3.34) and (3.38) the convective operator, L, that appears into Eqs. (4.1)–(4.4)
may be written as

L = ûi,0
∂

∂x̂
+ v̂i,0

∂

∂r̂
=

[
B(η) ∂ξ

∂x̂
+

(C
r̂
− r̂

2
∂B
∂x̂

)
∂ξ

∂r̂

]
∂

∂ξ
+ B(η) ∂

∂η
= B(η) ∂

∂η
. (4.61)

Furthermore, the N operator that appears in the energy equation may be written as

N =
1
r̂

∂

∂r̂

(
r̂
∂

∂r̂

)
=

2
A(η)

∂

∂ξ

{[A0(η)

A(η)
+ ξ

]
∂

∂ξ

}
. (4.62)
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Both energy conservation equation and the equations that model the molecular orientation
tensor components and degree of crystallization in the computational domain can be written as

∂T̂i
∂η

=
1
Q

2
P̄i

∂

∂ξ

[(A0
A

+ ξ

)
∂T̂i
∂ξ

]
, i = 1, 2, (4.63)

B ∂si r
∂η

= (1− si r)
[
(1 + si x)

dB
dη

+
1
3

C(η)
A(η)ξ +A0(η)

(3 + 2 si r − si x)
]

− φi

λ̂i

{
si r −

Ni

3 [(1− si r) (si r + 3 Πi,s)]

}
, i = 1, 2, (4.64)

B ∂si x
∂η

= (si x + 1)
[
(2− si x)

dB
dη

+
1
3

C(η)
A(η)ξ +A0(η)

(2 si r − si x)
]

− φi

λ̂i

{
si x −

Ni

3 [(si x + 1) (si x − 3 Πi,s)]

}
, i = 1, 2, (4.65)

B ∂Yi
∂η

= kAi(0) exp
(
a2iS2

i

)
(Y∞,i −Yi) , i = 1, 2. (4.66)

Boundary conditions in the computational domain now read as

• Temperature of the jets

T̂i(ξ, 0) = T̂i0(ξ) i = 1, 2, (4.67)

• Thermal boundary condition at the surrounding–core interface (ξ = 0)

−∂T̂1
∂ξ

+Bi1
A
R0

T̂1 = Bi1
A
R0

T̂∞,1, (4.68)

• Boundary conditions for the temperature at the core–cladding interface
(
ξ = Q1

Q

)
T̂1 = T̂2, (4.69)

k̂1
∂T̂1
∂ξ

= k̂2
∂T̂2
∂ξ

, (4.70)

• Boundary condition for the temperature at the cladding–surrounding interface (ξ = 1)

∂T̂2
∂ξ

+Bi2
A
R2

T̂2 = Bi2
A
R2

T̂∞,2, (4.71)

and Eqs. (4.38)–(4.39) and (4.40) for the molecular orientation tensor and degree of crystallization,
respectively, where Bi1 = ĥ1

k̂1
Bi depends on the film heat transfer coefficient ĥ1 and the thermal

conductivity of the core.
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The governing equations were discretized by means of a finite difference method analogous to
the one employed for compound fibres. The set of finite difference equations for B, T̂ , S and Y
were solved iteratively in grids consisting of 1001 points in the axial direction, and 101 points
in the radial direction for both the inner and outer jets, until the L2 norm of the differences
between the solutions in two successive iterations given by Eq. (4.48) was less than or equal to
10−8.

4.2.2 Average temperature of the hollow compound jet

In order to compare the results of the hybrid model for hollow compound fibres with those of
the one–dimensional one, it is useful to define of the mean averaged temperature of the hollow
compound jet, < T̂ >. To do that, the cross–sectionally averaged of the energy conservation
partial differential equations (Eqs. (4.63)) yield

P̄1

(
k̂1

k̂2

)
d

dη

(
< T̂1 > (η)Q1

)
=

2
(
k̂1

k̂2

)[(
Q1
Q

+
A0
A

)
∂T̂1
∂ξ

(
Q1
Q

, η
)
− A0
A
∂T̂1
∂ξ

(0, η)
]

, (4.72)

P̄2
d

dη

(
< T̂2 > (η)Q2

)
=

2
[(

1 + A0
A

)
∂T̂2
∂ξ

(1, η)−
(
Q1
Q

+
A0
A

)
∂T̂2
∂ξ

(
Q1
Q

, η
)]

, (4.73)

where the average temperature, < T̂i(η) >, of each jet has been defined in the same way as the
average dynamic viscosity which in the mapped domain can be written as

< T̂1 > (η) =
Q

Q1

∫ Q1
Q

0
T̂1(ξ, η) dξ, (4.74)

< T̂2 > (η) =
Q

Q2

∫ 1

Q1
Q

T̂2(ξ, η) dξ. (4.75)

The sum of Eqs. (4.72) and (4.73), taking into account the boundary conditions both at the
interface,

(
ξ = Q1

Q

)
, and the convective ones, and those at ξ = 0 and at ξ = 1, yields

P̄1

(
k̂1

k̂2

)
d

dη

(
< T̂1 > (η)Q1

)
+ P̄2

d

dη

(
< T̂2 > (η)Q2

)
=

2
[(

1 + A0
A

)
∂T̂2
∂ξ

(1, η)−
(
k̂1

k̂2

)
A0
A
∂T̂1
∂ξ

(0, η)
]

, (4.76)
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(
P̄1

(
k̂1

k̂2

)
Q1 + P̄2Q2

)
d< T̂ > (η)

dη
=

−
[
R2(η)Bi2

(
T̂2 (1, η)− T̂∞,2

)
+R0(η)Bi1

(
k̂1

k̂2

)(
T̂1 (0, η)− T̂∞,1

)]
, (4.77)

which indicates that the average temperature of the jet, < T̂ (η) >, is a monotonically decreasing
function because due to the convection phenomena that the hollow compound jet experiences as
it is drawn. One can also write

< T̂ > (η) =
P̄1
(
k̂1
k̂2

)
Q1 < T̂1(η) > +P̄2Q2 < T̂2(η) >

P̄1
(
k̂1
k̂2

)
Q1 + P̄2Q2

, (4.78)

being the equation that governs its evolution in the transformed axial location, η,

d

dη
< T̂ > (η) = − St

ρ̂1Ĉ1Q1 + ρ̂2Ĉ2Q2
·[

R2(η) ĥ2
(
T̂2 (1, η)− T̂∞,2

)
+R0(η) ĥ1

(
T̂1 (0, η)− T̂∞,1

)]
. (4.79)
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5.1 introduction

Some sample two–dimensional results† obtained with the axisymmetric melt spinning model for
semi–crystalline compound fibres described in Chapter 4 are presented here for, unless otherwise
stated, the same thermal conductivities and pre–exponential factors and activation energies of
the dynamic viscosity for the core and cladding, a constant film–heat transfer coefficient that
corresponds to a constant Biot number, unity Reynolds, Prandtl, and Froude numbers, and
a capillary number equal to ten. We have also used R1(0) = 1 and Q1 = 0.5, i.e., the same
non–dimensional volumetric flow rate for the core and the cladding have been selected, i.e.,
Q1 = Q2, and the non–dimensional axial velocity at the maximum swell cross–section is unity,
i.e., B(0) = 1.

In the cases considered here, the draw ratio, Dr, i.e., the relation between the axial velocity
at the take–up cross–section and that at x̂ = 0 is 100. Since we are dealing with moderately
high drawing speeds melting conditions, air drag was not included in our calculations (T̂2 = 0).
The relevant simulation parameters are summarized in Table 5.1 where P̄i = P̄

(
ρ̂i Ĉi
k̂i

)
as it

was defined in Chapter 4. It must be pointed out that Cases 4 and 5 correspond to D̂1 = 10
and 0.1, respectively; Cases 6 and 7 to Ĥ1 = 40 and 10, respectively; and, Cases 8 and 9 to
D̂2 = 10 and 0.1, respectively. It must also be noted that Cases 8, 10 and 12 converged very
slowly because these cases correspond to large values of the pre–exponential factor and activation
energy, respectively, of the linearised Arrhenius expression for the dynamic viscosity law of the
cladding and large Biot numbers; an increase in the first two corresponds to a substantial increase
in the dynamic viscosity of the cladding, while an increase in the Biot number results in an
increase in the heat transfer rate at the cladding–surroundings interface and lower temperatures
for the cladding which, in turn, result in an increase of the dynamic viscosity.

†Most of text and figures presented in this chapter have been taken from an old version of [10].
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Table 5.1: Values of the parameters employed in the simulations of semi–crystalline compound fibres.

Case Bi Ĥ1 Ĥ2 P̄1 P̄2
k̂2
k̂1

D̂1 D̂2

1 5 20 20 1 5 1 1 1
2 5 20 20 1 5 0.2 1 1
3 5 20 20 1 5 5 1 1
4 5 20 20 1 5 1 10 1
5 5 20 20 1 5 1 0.1 1
6 5 40 20 1 5 1 1 1
7 5 10 20 1 5 1 1 1
8 5 20 20 1 5 1 1 10
9 5 20 20 1 5 1 1 0.1
10 5 20 40 1 5 1 1 1
11 5 20 10 1 5 1 1 1
12 10 20 20 1 5 1 1 1
13 2.5 20 20 1 5 1 1 1

The other parameters employed in the simulations reported in this section are Ni = 4, αi = 5,
a21 = 10, a22 = 5, λ̂i,0 = 1, ω̂i = 0 , Y∞,i = 0.8, ni = 12, βi = 4, σ1

σ2
= 1, φi = 0.5,

kA1(0) = kA2(0) = 0.005, and T̂∞,2 = 0.

The following parabolic profile for the temperature of the compound fibre at the maximum
swell cross–section, i.e., η = 0, was imposed

T̂ (ξ, 0) =


1 + ∆T

(
1−

(
ξ
ξI

)2
)

, 0 ≤ ξ ≤ ξI

1− ∆T
(
k̂1
k̂2

)((
ξ
ξI

)2
− 1

)
, ξI ≤ ξ ≤ 1

(5.1)

where ξI =
√

Q1
Q corresponds to the interface between the inner and outer jets, and ∆T <(

k̂2
k̂1

) (
Q1
Q2

)
in order to get positive temperature at the die exit (T̂ (1, 0) > 0), and the molecular

orientation parameter S

S(ξ, 0) =


S10 − ∆S1

(
1− 2

(
ξ
ξI

)2
)

, 0 ≤ ξ ≤ ξI

S20 + ∆S2

1− 2(
1−ξI

2

)2 (ξ − 1) (ξI − ξ)

 , ξI ≤ ξ ≤ 1
(5.2)

where ∆Si < min(Si0, 1−Si0) for i = 1, 2. For the results presented in the next section, ∆T = 0.1
and (S10, ∆S1) = (0.25, 0.10) and (S20, ∆S2) = (0.50, 0.20) have been employed.
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5.2 results of the two–dimensional model for semi–crystalline compound
fibres

Figure 5.1 illustrates the temperature distribution in the compound fibre for Case 1. In this
figure, the temperature distribution near x̂ = 0 is shown using a logarithmic scale, while that for
x̂ ∈ [0.1, 1] is shown in a linear scale. Figure 5.1 shows that a thermal boundary layer is formed
at the outer interface of the cladding, while the inner jet exhibits a thermal core up to about
x̂ = 0.35.

(a) (b)

Figure 5.1: Temperature distribution for Case 1. (The x̂–axis of the left figure is in log scale.)

The degree of crystallization and the molecular orientation order parameter corresponding
to Case 1 are shown in Figure 5.2. For the values of the parameters of Case 1, very little
crystallization is observed in the cladding, while that of the core increases rapidly and reaches a
level close to its ultimate value at about x̂ = 0.3. By way of contrast, almost complete molecular
orientation is observed at x̂ = 0.01 for both the core and the cladding, although there are
substantial differences in the degree of orientation of the core and cladding near x̂ = 0 due to
the initial conditions used in this study.

Although not shown here, the axial velocity component, B, is uniform across the compound
fibre, while the radial one, v̂ = − r̂

2
∂B
∂x̂ is directed towards the symmetry axis at a rate which first

increases and then decreases along the fibre, before it reaches a nil value upon crystallization
which corresponds to a large value of the effective dynamic viscosity.

The axial distributions of temperature, molecular orientation order parameter, degree of
crystallization and (decimal logarithm of the) effective dynamic viscosity at the compound fibre’s
axis, core–cladding interface, and cladding–surroundings interface for Case 1 are illustrated in
Figure 5.3. This figure indicates that the largest initial cooling occurs at the cladding–surroundings
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(a) (b)

Figure 5.2: Distributions of the degree of crystallization (a) and order parameter for molecular orientation (b)
for Case 1. (The x̂–axis is in log scale in both figures.)
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Figure 5.3: (From left to right, from top to bottom) Temperature, molecular orientation order parameter, degree
of crystallization and (decimal logarithm of) dynamic viscosity at the axis (r̂ = 0) (—), core–cladding
internal interface (r̂ = R−

1 ) (– –) and air–cladding interface (r̂ = R2) (–·–) for Case 1.
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Figure 5.4: (From left to right, from top to bottom) Temperature, molecular orientation order parameter, degree

of crystallization and (decimal logarithm of) effective dynamic viscosity at x̂ = 0 (—), 0.1 (– –) and
0.2 (–·–) for Case 1.
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Figure 5.5: (From left to right, from top to bottom) Temperature, molecular orientation order parameter, degree
of crystallization and (decimal logarithm of) dynamic viscosity at x̂ = 0 (—), 0.5 (– –) and 1.0 (–·–)
for Case 1.

interface as observed in the temperature gradient, and this cooling results in an increase of the
effective dynamic viscosity by about a factor of one hundred. However, the dynamic viscosity
increase is not only due to the temperature drop; it is also caused by the increase in the molecular
orientation order parameter and the degree of crystallization as a consequence of the formulation
presented here (cf. Eq. (2.105)).

Figure 5.3 also shows that almost complete molecular orientation is reached near x̂ = 0 on
account of the initial large contraction of the compound fibre there which results in an increase
in the axial strain rate. Figure 5.3 also indicates that the degree of crystallization increases along
the fibre but it is mainly a function of the temperature; therefore, for Case 1, it may be stated
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that thermal effects are more important than flow–induced ones in determining the crystallization
of the compound fibre.

(a) (b)

Figure 5.6: Temperature distribution for Case 2. (The vertical axis of the left figure is in log scale.)

Some radial distributions of temperature, molecular orientation and crystallization across the
compound fibre are illustrated in Figures 5.4 and 5.5 for Case 1. These figures show that both the
temperature and its radial derivative are continuous across the fibre, but the effective dynamic
viscosity is not even continuous at the core–cladding interface because neither the molecular
orientation order parameter nor the degree of crystallization are continuous there owing to the
fact that these variables are governed by first–order advection–reaction equations and that their
(identical) initial conditions were not uniform across the compound fibre at x̂ = 0. It must be
noted that no discontinuities in the molecular orientation and crystallization are observed at the
core–cladding interface when the initial conditions for these variables are uniform and identical
at x̂ = 0 across the compound fibre.

For Case 2, the temperature distribution presented in Figure 5.6 clearly indicates that, as the
thermal conductivity of the core is increased, the thermal boundary layer thickness formed at the
cladding–surroundings interface increases and the core reaches an almost uniform temperature
equal to about that of the cladding for x̂ > 0.4. As a consequence, the degree of crystallization of
the core increases as the core’s thermal conductivity is increased, as illustrated in Figure 5.7.

Although the molecular orientation order parameter presented in Figure 5.7 exhibits different
patterns than those shown in Figure 5.2, almost complete orientation is achieved at about x̂ = 0.1.
The differences between the molecular orientation presented in Figures 5.2 and 5.7 affect the
degree of crystallization as discussed in Chapter 2, and the largest effect on the differences in
the degree of crystallization observed in Figures 5.2 and 5.7 is associated with the cooling of
the fibre, because almost complete molecular orientation is reached shortly after x̂ = 0. It must,
however, be pointed out that, due to the dependence of the dynamic viscosity on temperature, a
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(a) (b)

Figure 5.7: Distributions of the degree of crystallization (a) and molecular orientation order parameter for
molecular orientation (b) for Case 2. (The x̂–axis is in log scale in both figures.)

(a) (b)

Figure 5.8: Temperature distribution for Case 3. (The vertical axis of the left figure is in log scale.)
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decrease in temperature results in an increase in viscosity, an increase in the solidification rate,
and, by mass conservation, a correspondingly decrease in the compound fibre’s cross–section.
As a consequence, the axial strain rate increases, and, since the leading–order velocity field was
used in the determination of the velocity field, the hoop and radial strain rates also increase.

(a) (b)

Figure 5.9: Distributions of the degree of crystallization (a) and molecular orientation order parameter for
molecular orientation (b) for Case 3. (The x̂–axis is in log scale in both figures.)

As the thermal conductivity of the core is decreased, the boundary layer thickness formed
at the cladding–surroundings interface decreases as illustrated in Figure 5.8. This figure also
shows that the core presents a thermal core up to about x̂ = 0.1, there is a thermal boundary
layer at the core–cladding interface, and the temperature at x̂ = 1 is still high at the compound
fibre’s centreline. As a consequence, the degree of crystallization of the core does not reach its
ultimate value at the take–up point. However, a comparison between Figures 5.2 and 5.9 shows
that the distributions of crystallinity and orientation for Cases 1 and 3 exhibit similar trends,
thus indicating that the thermal conductivity of the core does not play a great qualitative role in
these distributions when its value is varied from k̂1 = 1 to 5, while keeping k̂2 = 1. However, it
plays a quantitative role as shown in Figure 5.10.

Figure 5.10 shows the cross–sectionally averaged values of the temperature, molecular orien-
tation order parameter, degree of crystallization, and (logarithm of the) effective viscosity as
well as the compound fibre’s geometry and leading–order axial velocity component for Cases
1–3. Figure 5.10 shows that there is a strong contraction of the compound fibre near x̂ = 0 and
the rate of this contraction increases as k̂1 is decreased; it also shows that the temperature is a
decreasing function of the distance along the fibre, but the cross–sectionally averaged temperature
is larger for small values of k̂1 than for large ones, and this result is in accord with those presented
in Figures 5.1, 5.6 and 5.8.
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Figure 5.10: (From left to right) Top row: fibre’s radii, leading–order axial velocity, and cross-sectional averaged
temperature. Middle row: Cross–sectionally averaged dynamic viscosity, degree of crystallization,
and molecular orientation parameter for the core. Bottom row: Cross–sectionally averaged dynamic
viscosity, degree of crystallization, and molecular orientation parameter for the cladding. (Case 1:
—; case 2: – –; case 3: –·–).
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Figure 5.10 also shows that the axial velocity exhibits a one–sign curvature for Cases 1 and 3
and a two–sign one for Case 2, and this is due to the fact that the equation which governs the
axial velocity component is one–dimensional and employs the cross–sectional average dynamic
viscosity; this average depends on the temperature and the cross–section, and the latter is larger
for the cladding than for the core.
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Figure 5.11: (From left to right) Top row: fibre’s radii, leading–order axial velocity, and cross-sectional averaged
temperature. Middle row: Cross–sectionally averaged dynamic viscosity, degree of crystallization,
and molecular orientation parameter for the core. Bottom row: Cross–sectionally averaged dynamic
viscosity, degree of crystallization, and molecular orientation parameter for the cladding. (Case 1:
—; case 4: – –; case 5: –·–).
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Figure 5.12: (From left to right) Top row: fibre’s radii, leading–order axial velocity, and cross-sectional averaged
temperature. Middle row: Cross–sectionally averaged dynamic viscosity, degree of crystallization,
and molecular orientation parameter for the core. Bottom row: Cross–sectionally averaged dynamic
viscosity, degree of crystallization, and molecular orientation parameter for the cladding. (Case 1:
—; case 6: – –; case 7: –·–).

Since the initial contraction of the compound fibre for Case 2 is smaller than those for Cases 1
and 3, the initial axial strain rate is also smaller for Case 2 than for the other two cases, and
these differences in strain rate are also observed in the molecular orientation order parameter
shown in Figure 5.10; this parameter reaches a constant value of unity for Cases 1 and 3 at an
axial location much smaller than that for Case 2. However, the ultimate degree of crystallization
of Case 2 is reached before those for Cases 1 and 3 for both the core and cladding. This behaviour
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is associated with the kinetics of the crystallization model employed in this study which indicates
that the crystallization is mainly a function of the molecular orientation and the velocity field;
therefore, an increase in the axial velocity component implies a shorter crystallization time as
clearly observed in Figure 5.10 which, again, indicates that the axial velocity component is
smaller for Case 2 than for Cases 1 and 3, except, of course, at the location of maximum swell
and at the take–up point.

(a) (b)

Figure 5.13: Temperature distribution for Case 9. (The vertical axis of the left figure is in log scale.)

As shown in Figure 5.11, very few differences were observed among the cross–sectional averages
of temperature, molecular orientation and crystallization between the results for Cases 4 and 5
and those for Case 1, except that Cases 4 and 5 result in slightly higher and smaller, respectively,
axial velocities, slightly higher cross–sectionally averaged temperatures, and slightly smaller
cross–sectionally averaged molecular orientation and crystallization than Case 1, and Case 4
resulted in a higher dynamic viscosity for the core than Cases 1 and 5. These results are to be
expected, for they correspond to different pre–exponential factors of the Arrhenius dependence
of the dynamic viscosity on the temperature of the core which, as shown in Figure 5.11,takes
a longer distance to decrease its temperature and has a smaller cross–sectional area than the
cladding.

On the other hand, Figure 5.12 indicates that there are very few differences in the cross–
sectional averages of temperature, degree of crystallization and molecular orientation between
Cases 1 and 7, whereas Case 6 predicts a smaller cross–sectionally averaged temperature, a
larger initial contraction, axial velocity and dynamic viscosity for the core, smaller degrees of
crystallization for both the core and the cladding, and an initially smaller viscosity for the
cladding than Cases 1 and 7. Case 6 also requires a longer distance than Cases 1 and 7 to achieve
complete molecular orientation.
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Figures 5.13 and 5.14 correspond to Case 9 of Table 5.1. Figure 5.13 indicates a smaller
initial contraction of the compound fibre than for Case 1, while Figure 5.14 shows a smaller
crystallization and a longer region for achieving full molecular orientation than Case 1. The
differences between Cases 1 and 9 are due to the larger pre–exponential factor of the dynamic
viscosity of the cladding for Case 9.

(a) (b)

Figure 5.14: Distributions of the degree of crystallization (a) and molecular orientation order parameter for
molecular orientation (b) for Case 9. (The x̂–axis is in log scale in both figures.)

Although not shown here, the cross-sectional averaged temperature and the degrees of crysta-
llization of the core and cladding are higher for Case 9 than for Case 1. On the other hand, the
axial velocity is initially slightly smaller and then slightly larger for Case 9 than for Case 1, i.e.,
the two axial velocity profiles have an intersection point in the drawing region, and the degree of
crystallization of the core and the molecular orientation for both the cladding and the core are
slightly smaller for Case 9 than for Case 1.

The effects of the activation energy of the dynamic viscosity law of the core on the compound
fibre can be appreciated by comparing the results presented in Figures 5.1 and 5.2 with those of
Figures 5.15 and 5.16, respectively. Figure 5.15 shows a smaller initial contraction and a thicker
boundary layer at the cladding–surroundings interface than Figure 5.1. On the other hand, the
contraction of the compound fibre is higher at x̂ = 0.1 for Case 11 than for Case 1.

Figure 5.16 indicates that it takes longer distance to achieve full molecular orientation in Case
11 than in Case 1 for both the core and the cladding, but especially for the cladding. Figure 5.16
also shows that the degree of crystallization increases as the activation energy of the dynamic
viscosity of the core is decreased.

Figures 5.17 and 5.18 illustrate the temperature, molecular orientation and crystallization
fields for Case 13. Comparisons between Figures 5.1 and 5.2 and Figures 5.17 and 5.18 show that
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the molecular orientation order parameter increases rapidly near x̂ = 0 towards a constant value
of unity which corresponds to complete orientation but the rate at which this constant value is
reached decreases as the Biot number is decreased; this result is consistent with the formulation
presented here which indicates that the molecular orientation increases with the axial derivative
of the leading–order axial velocity component. It should be pointed out that the solidification of
the compound fibre is represented in this model by an increase of the effective dynamic viscosity
which causes that the axial velocity component tend toward a constant value as illustrated in
Figure 5.1 if the Biot number is sufficiently large.

(a) (b)

Figure 5.15: Temperature distribution for Case 11. (The vertical axis of the left figure is in log scale.)

Figures 5.1 and 5.17 also show that the contraction of the compound fibre increases as the
Biot number is increased on account of the increase in heat losses, the corresponding drop in
temperature and the increase in the dynamic viscosity due to the increase in the heat transfer as
this number is increased and the no radial dependence of the axial velocity component employed
in this study.

The degree of crystallization shown in Figure 5.18 increases with the axial distance along
the compound fibre but decreases as the Biot number is increased. This result is consistent
with the cross–sectionally averaged temperature discussed above and seems to indicate that the
thermal crystallization dominates over the flow–induced one. This may be due to the single–phase,
single–component approximation, the use of a Newtonian rheology, the neglect of latent heat
effects associated with solidification, and the use of the Avrami–Kolmogorov kinetics which, in
the Ziabicki’s approximation employed here, plays a more important role than the flow–induced
one.

Numerical simulations performed at different Biot numbers indicate that, depending on the
parameters used, the leading–order axial velocity along the fibre may exhibit two different
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(a) (b)

Figure 5.16: Distributions of the degree of crystallization (a) and molecular orientation order parameter for
molecular orientation (b) for Case 11. (The x̂–axis is in log scale in both figures.)

(a) (b)

Figure 5.17: Temperature distribution for Case 13. (The vertical axis of the left figure is in log scale.)
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curvatures at low Biot numbers, albeit only one for Biot numbers greater than unity. These
simulations also indicate that, in some cases, the cross–sectionally averaged temperature and
dynamic viscosity may increase as the Biot number is increased, despite the fact that the heat
losses increase as this number is increased; this occurs because the cross–sectional area of the
cladding is larger than that of the core.

(a) (b)

Figure 5.18: Distributions of the degree of crystallization (a) and molecular orientation order parameter for
molecular orientation (b) for Case 13. (The x̂–axis is in log scale in both figures.)

Since, for example, for a Biot number equal to or greater than five, the axial velocity component
reaches a constant value long before the take–up point, it has been found that, for the conditions
considered here, the degree of crystallization is mainly a function of the temperature, i.e., it
increases as the temperature decreases, in accord with the thermal formulation corresponding to
the Avrami–Kolmogorov crystallization formalism employed in this study, and depends very little
on the degree of molecular orientation, because almost complete orientation is achieved very near
x̂ = 0. According to the model presented in this study, the molecular orientation is mainly a
function of the axial strain rate and reaches its maximum close to the maximum swell location.
Since the crystallization is mainly a function of the axial velocity field and this increases initially
with the contraction of the compound fibre, and this contraction, in turn, increases with the
cooling rate, one expects that the crystallization increases as the residence time is increased.

5.2.1 Comparison between the two– and one–dimensional models

In this subsection, we compare the results obtained with the two–dimensional model presented
on Chapter 2 with those of the asymptotic one–dimensional model [121] that uses the slenderness
ratio (ε = R0/L) as a perturbation parameter and results in a set of one–dimensional equations
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for the compound fibre’s radii, axial velocity component and temperature at low Reynolds and
Biot numbers. It must be noted that there are two asymptotic one–dimensional models: one
includes axial heat conduction and the other does not take into account axial conduction at
all [121, 123]. These two models predict uniform temperature, crystallization and molecular
orientation across the fibre; therefore, in order to compare their predictions with those of the
two–dimensional model presented here, the values of these three quantities predicted by the
two–dimensional model were cross–sectionally averaged.

As indicated above, the two–dimensional model uses one–dimensional equations for the com-
pound fibre geometry and axial velocity component but solves a two–dimensional advection–
diffusion equation for the temperature and two–dimensional hyperbolic equations for the compo-
nents of the molecular orientation tensor and the degree of crystallization. This model shows
that the temperature of the core is higher than that of the cladding because of heat losses.

Figure 5.19 shows comparisons between the two– and one–dimensional models when the latter
accounts for axial heat conduction, and indicates that the two–dimensional model predicts a one–
sign curvature axial velocity profile while the axial velocity predicted by the one–dimensional model
exhibits a two–sign curvature sigmoid shape. Figure 5.19 also shows that the one–dimensional
model which accounts for axial heat conduction predicts a higher temperature than the cross-
sectional averaged one predicted by the two–dimensional model; it also predicts a larger contraction
of the compound fibre, a smaller dynamic viscosity, and longer distances for achieving complete
molecular orientation. The one-dimensional model which accounts for axial heat conduction also
predicts slightly smaller and slightly larger degrees of crystallization for the cladding and core,
respectively.

Although from Figure 5.19, it can be concluded that the two–dimensional model yields a
cross–sectionally averaged temperature that exhibits the same qualitative features as that of the
one–dimensional model which accounts for axial heat conduction, the latter is not able to predict
accurately the temperature near the symmetry axis, at the core–cladding and, especially, at the
cladding–surroundings interfaces. It must be noted that despite these differences between the one–
and two–dimensional models, there are very few differences on the fibre’s geometry, and averaged
temperature, molecular orientation and crystallization at the take–up point, at least, for Case 1.

If axial conduction in the one–dimensional model is neglected, the following differences with
respect to the two–dimensional model are observed. First, the one–dimensional model which does
not account for axial heat conduction predicts a smaller temperature than the cross–sectionally
averaged one of the two–dimensional model. Second, this one–dimensional model predicts a larger
contraction of the fibre and an initially larger axial strain rate than the two–dimensional one.
Third, the one–dimensional model which does not account for axial heat conduction requires
longer distances to achieve complete molecular orientation and results in a smaller degree of
crystallization than the two–dimensional one, as shown in Figure 5.20.

The results presented in Figures 5.19 and 5.20 indicate that, for the conditions presented here,
axial conduction in one–dimensional models may be important, at least, for not too large thermal
Péclet numbers.

For the conditions examined here and others not presented in this work, it has been observed
that the molecular orientation parameter S reaches a value equal to unity very close to the
section of maximum swell, i.e., x̂ = 0, and may decrease slightly thereafter if the source term
in the equations for sr and sx which depend on the velocity gradient becomes smaller than the
Maier–Saupe potential associated with the relaxation of the molecular chains. It must be noted
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Figure 5.19: (From left to right) Top row: fibre’s radii, leading–order axial velocity, and cross-sectional averaged
temperature. Middle row: Cross–sectionally averaged dynamic viscosity, degree of crystallization,
and molecular orientation parameter for the core. Bottom row: Cross–sectionally averaged dynamic
viscosity, degree of crystallization, and molecular orientation parameter for the cladding. Case 1.
(Two–dimensional model: —; one–dimensional with axial conduction: – –).
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Figure 5.20: (From left to right) Top row: fibre’s radii, leading–order axial velocity, and cross-sectional averaged
temperature. Middle row: Cross–sectionally averaged dynamic viscosity, degree of crystallization,
and molecular orientation parameter for the core. Bottom row: Cross–sectionally averaged dynamic
viscosity, degree of crystallization, and molecular orientation parameter for the cladding. Case 1.
(Two–dimensional model: —; one–dimensional without axial conduction: – –).
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that, for ∆T = ∆S1 = ∆S2 = 0, i.e., uniform distribution of the temperature and molecular
orientation parameter at the maximum swell section, there are few differences between the degrees
of crystallization predicted by the one– and two–dimensional models because the temperature at
the maximum swelling section is assumed to be uniform across the fibre.

The two-dimensional model of the melt spinning or preform–drawing processes presented here
has been built on the one–dimensional asymptotic models for slender compound fibres developed
by Ramos [117, 121, 123] for isothermal and non–isothermal fibres. These one–dimensional
models have been shown to predict correctly the onset of draw resonance under isothermal
conditions, as well as the pulling/tension forces required to draw both single–component and
compound amorphous fibres. For semi–crystalline fibres, these one–dimensional models predict
the qualitative trends of the stresses reported by Shi et al. [132] who performed differential
scanning calorimetry, wide–angle X–ray diffraction, birefringence and tensile tests on high-speed bi–
component spinning of Poly(butylene terephthalate) (PBT) as sheath and Poly(butylene adipate–
co–terephthalate) (PBAT) and found an improvement on the fibre’s thermal and mechanical
properties. Good qualitative agreement was also found between the predictions of the one–
dimensional model and the experimental measured tensions obtained by Huang et al. [65] on
bi–component fibres consisting of a sheath of PP and a core of Thermotropic Liquid–Crystalline
Polymer (TLCP). Since the cross–sectionally averaged temperature, crystallization and molecular
orientation fields predicted by the two–dimensional model presented in this paper show the
same trends as the one–dimensional model, it may be stated that the tension predicted by the
two–dimensional model presented in this paper is in good qualitative agreement with the tension
measured experimentally on both amorphous and semi–crystalline compound fibres. However,
such an agreement may not be a good indicator of either the accuracy or the predictive capabilities
of one– and two–dimensional models because tension is a global value and the accuracy of one–
and two–dimensional models should also include comparisons with experimentally measured local
values of molecular orientation, crystallization, temperature, etc., which may be very difficult (or
impossible) to measure accurately in a direct manner in melt spinning processes. In addition, as
indicated above, the two–dimensional model presented here is a single–phase one that employs a
Newtonian rheology, and may need to account for more realistic rheologies and two–phase effects
associated with the liquid as well as the amorphous and crystalline phases as well as for the
crimp contraction and thermal shrinkage [105], weight loss [152], interfacial instabilities at the
core–cladding interface [21, 22], etc., observed in the processing of PET, PBT–PET, PE–PET,
etc., bi–component fibres.

5.3 conclusions

In this chapter, it has been found that the most important parameters that affect the thermo–fluid–
dynamics characteristics of solidifying compound fibres are associated with the pre–exponential
factor and activation energy of the dynamic viscosity for the cladding, the thermal conductivity
of the cladding, and the Biot number. For Biot numbers larger than unity, it has been observed
that the axial velocity profile is monotonously increasing until it reaches a constant value and has
a one–sign curvature, whereas, at lower Biot numbers, it may have a two–sign curvature. It has
also been shown that the Doi–Edwards formulation adopted here together with the Maier–Saupe
potential predicts an almost complete molecular orientation near the maximum swell location
where the largest contraction of the fibre occurs, while the degree of crystallization increases as
the residence time is increased.
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5.3 conclusions

For the conditions analysed here, it was found that crystallization is mainly controlled by the
thermal Avrami–Kolmogorov kinetics formulation and that flow–induced crystallization is small.
This has been attributed to the fact that, in the single–phase model employed here, solidification
is associated with a large increase in dynamic viscosity as the temperature decreases and the
viscosity dependence on temperature exerts a greater influence than the effects of crystallization
(and molecular orientation) on the dynamic viscosity.

Comparisons between the predictions of the two–dimensional model presented here and one–
dimensional ones which either account or do not account for axial conduction indicate that, even
though substantial differences between these models exist near the maximum contraction region,
these models predict similar qualitative trends, at least, for the moderate Péclet numbers and
conditions considered here.

The two–dimensional model shows that substantial temperature non–uniformities in the radial
direction exist even at moderately low Biot numbers. These non–uniformities affect the degree of
crystallization and may have great effects on the mechanical, electrical, optical, etc., properties
of compound fibres. For very slender fibres and small Biot numbers, good agreement between
predictions of one–dimensional models and the two–dimensional one have been observed.
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6.1 presentation of numerical results

In this section, some sample results† obtained with the two–dimensional melt spinning model
for semi–crystalline hollow compound fibres described in § 4.2 are presented. Unless otherwise
stated, the results shown here correspond to the same thermal conductivities and pre–exponential
factors and activation energies of the dynamic viscosity laws of the inner and outer hollow jets,
a constant film heat transfer coefficient at the outer jet’s outer interface that corresponds to
a constant external Biot number, i.e., Bi2, Reynolds, Prandtl and Froude numbers equal to
one, and no surface tension (1/C̄ = 0). In addition, we have set R2

1(0) = 1, R2(0) = 2 and
R2

2(0) = 3, so that Q1 = Q2 = Q/2 = 0.5, i.e., the non–dimensional volumetric flow rates of the
inner and outer jets are identical, and the non–dimensional axial velocity at the maximum swell
cross–section is unity, i.e., B(0) = 1.

The values of other parameters employed in the simulations reported in this section are, unless
stated otherwise, ρ̂i = Ĉ1 = k̂1 = 1, ĥ2 = 1, σi/σ = 1, D1 = 1, βi = 4, ni = 12, αi = 5; λ̂i,0 = 1,
ωi = 0, φi = 0.5, Ni = 4, kAi(0) = 0.005, a2i = 10; Ti,∞ = 0;and, Yi,∞ = 0.8 and Yi(r̂, 0) = 0.

For the simulations carried out in the present chapter, a uniform temperature profile, T̂ (ξ, 0) =
1, has been considered for hollow compound fibres at the maximum swell cross–section. This
may be obtained imposing ∆T = 0 in Eq. (5.1).

The following initial conditions for the molecular orientation tensor have been used in this
chapter

si r(0, r̂) = Si0, si x(0, r̂) = 2Si0, i = 1, 2, (6.1)

where Si0 = Si(0, r̂), and parabolic profiles for the molecular orientation order parameter of the
hollow compound fibre at the maximum swell cross–section, i.e., η = 0, were imposed following
expressions given by Eq. (5.2) where ξI = Q1

Q corresponds to the interface between the inner and
†Most of text and figures presented in this chapter have been taken from the submitted version of the
manuscript [11].
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outer hollow jets and ∆Si < min(Si0, 1− Si0) for i = 1, 2. The results presented here correspond
to, (S10, ∆S1) = (0.20, 0.10) and (S20, ∆S2) = (0.40, 0.20) and a draw ratio, Dr, is equal to
100 (moderate drawing speeds) which allow us to neglect the air drag of the gases surrounding
(T̂2 = 0) and enclosed by (T̂ = 0) the hollow compound fibre. The values of other parameters
employed in the numerical simulations reported in this section are summarized in Table 6.1.

Table 6.1: Values of the parameters employed in the simulations for semi–crystalline hollow compound fibres.

Case Bi Ĥ1 Ĥ2 P̄2
k̂2
k̂1

D̂2
D̂1

ĥ1

1 4 20 20 1 1 1 0
2 2 20 20 1 1 1 0
3 4 10 20 1 1 1 0
4 4 20 10 1 1 1 0
5 4 20 20 10 1 1 0
6 4 20 20 1 10 1 0
7 4 20 20 1 1 10 0
8 4 20 20 1 1 0.1 0

9 4 20 20 1 1 1 0.5
10 2 20 20 1 1 1 0.5
11 4 10 20 1 1 1 0.5
12 4 20 10 1 1 1 0.5
13 4 20 20 10 1 1 0.5
14 4 20 20 1 10 1 0.5
15 4 20 20 1 1 10 0.5
16 4 20 20 1 1 0.1 0.5

17 4 20 20 1 1 1 1
18 2 20 20 1 1 1 1
19 4 10 20 1 1 1 1
20 4 20 10 1 1 1 1
21 4 20 20 10 1 1 1
22 4 20 20 1 10 1 1
23 4 20 20 1 1 10 1
24 4 20 20 1 1 0.1 1

Although all the cases considered in Table 6.1 have been studied, only the most relevant results
(parameters whose changes cause greater effect on the results) will be explained in some detail in
this section. The cross–sectionally averaged temperature, orientation order parameter and degree
of crystallization at take–up cross–section are presented in Table 6.2.

Figure 6.1 corresponds to Case 1 of Table 6.1 and illustrates the temperature distribution
across the hollow compound fibre at various axial locations, as well as the iso–contours of the
molecular orientation order parameter, temperature and degree of crystallization. This figure
clearly indicates that the orientation order parameter reaches its maximum value of unity close
to the maximum swell region, while the degree of crystallization tends in a much smoother
manner to (but does not reach) its ultimate value of 0.8. Figure 6.1 also illustrates the lack of
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continuity of the degree of crystallization at the inner–outer hollow jets’ interface which is due to
the initial conditions employed in this study and the hyperbolic character of the equations for
the molecular orientation tensor and the degree of crystallization. Although not shown here, it
has been found that the magnitude of the discontinuities of both the order parameter and the
degree of crystallization at the interface between the inner and outer hollow jets decreases along
the hollow compound fibre.
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Figure 6.1: Temperature distribution at η = 0, 0.1, . . . , 1 (a), and iso–contours of temperature (b), molecular
orientation order parameter (c) and degree of crystallization (d) for Case 1 of Table 6.1.

Figure 6.1 also shows that the temperature is smooth, has a zero radial derivative at the the
inner jet’s inner interface and exhibits a boundary layer at the outer jet’s outer interface. This
figure also indicates that, initially, there is a large drop in temperature at the hollow fibre’s outer
interface.

Although not shown here, Case 2 of Table 6.1 requires a longer axial distance to achieve
complete molecular orientation and reaches a higher degree of crystallization in the inner and
outer hollow jets at the take–up cross–section than Case 1. This is due to the fact that the
Biot number for Case 2 is half that for Case 1 and, as a consequence, Case 2 has lower heat
transfer losses and takes a longer distance to solidify than Case 1 as illustrated in the temperature
profiles exhibited in Figure 6.2. Since the heat transfer losses for Case 2 are lower than in
Case 1, the hollow compound fibre’s initial contraction for Case 2 is smaller than that for Case
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1 and this results in smaller components of the strain rate tensor, a smaller flow–orientation
interaction tensor, and smaller values of the components of the molecular orientation tensor. As
a consequence, both the axial velocity component and the linearised crystal growth rate for Case
2 are smaller than that for Case 1. The net result of this is that Case 2 achieves a higher degree
of crystallization than Case 1 at the take–up cross–section.
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Figure 6.2: Temperature distributions at η = 0, 0.1, . . . , 1 for Case 2 (a), Case 4 (b), Case 5 (c) and Case 6 (d)
of Table 6.1.

Figure 6.3 shows the velocity field near the maximum swell region and clearly illustrates
the hollow compound fibre contraction. Neither the immediate vicinity of the maximum swell
region nor the region close to the take–up cross–section are presented in the figure for clarity
reasons. Note that, for the conditions considered here, the axial velocity component at the
take–up cross–section is one hundred times that at the maximum swell region; therefore, drawing
velocity vectors beyond the cross–section at which solidification occurs would unnecessarily
clutter the figure. On the other hand, as shown in Figure 6.3, the axial velocity component
increases substantially near the maximum swell region and, therefore, the velocity vectors in the
immediate vicinity of that region would not appear clearly if they were drawn.
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Figure 6.3: Velocity field for Case 1.

It has also been found that Case 3 exhibits similar molecular orientation, temperature and
crystallization profiles to those of Case 1, except that the inner jet’s effective dynamic viscosity
is higher for Case 1 than for Case 3, and this is in accord with the values of the parameters
shown in Table 6.1, for the activation energy of the effective dynamic viscosity of the inner jet
for Case 2 is half that of Case 1, and the inner hollow jet is subject to adiabatic conditions at its
inner interface.

Case 4 shows similar temperature profiles to those of Case 1 as illustrated in Figure 6.2 despite
the fact that the activation energy of the Arrhenius dependence of the effective viscosity law of
the hollow compound fibre’s outer jet for Case 1 is twice that for Case 4 and, as a consequence,
for the same heat transfer losses, the effective viscosity of the outer jet is lower for Case 4 than for
Case 1. In addition, the initial jet contraction is larger for Case 1 than for Case 4 and, therefore,
Case 4 requires a longer axial distance to achieve complete molecular orientation and, for the
same reasons as discussed above for Case 2, Case 4 reaches a higher degree of crystallization at
the take–up cross–section than Case 1. Although not shown here, the axial velocity profile for
Case 4 is initially smaller than that for Case 1, but it exceeds it before they both reach the same
constant value.

The temperature profiles for Case 5 shown in Figure 6.2 indicate that the fibre’s temperature
drop decreases as the thermal Péclet number is increased. Moreover, as this number is increased,
the heat transfer losses and the initial contraction of the hollow fibre decrease, and, as a
consequence, the magnitude of the components of the strain rate tensor and the molecular
orientation order parameter decrease and, therefore, a larger axial distance is required to achieve
complete molecular orientation for Case 5 than for Case 1. In addition, the effective dynamic
viscosities of the inner and outer jets decrease as the Péclet number is increased and, for the
same reasons as the ones discussed above for Case 2, the degree of crystallization at the take–up
cross–section for both the inner and the outer jets is larger for Case 5 than for Case 1.

Case 6 yielded analogous results for the molecular orientation and the degree of crystallization
to those of Case 5. However, substantial differences are observed in the temperature profiles
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for these two cases, especially near the outer jet’s outer interface and at the inner–outer jet
interface where the temperature is continuous by its gradient is not, due to the different thermal
conductivities for the inner and outer jets, as illustrated in Figure 6.2.

Figure 6.4 corresponds to Case 17 of Table 6.1 which includes heat transfer at the inner jet’s
inner interface. As a consequence, the temperature decreases at a faster rate for Case 17 than for
Case 1. This decrease is accompanied by an initial larger contraction of the hollow compound
fibre and an increase in the components of the strain rate tensor. As a consequence, Case 17
reaches complete molecular orientation earlier than Case 1, but the degree of crystallization at
the take–up cross–section is larger for Case 1 than for Case 17. Also, since the heat transfer
losses are larger for Case 17 than for Case 1, the effective dynamics viscosities of both the inner
and the outer hollow jets are larger for Case 17 than for Case 1.
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Figure 6.4: Temperature distribution at η = 0, 0.1, . . . , 1 (a), and iso–contours of temperature (b), molecular
orientation order parameter (c) and degree of crystallization (d) for Case 17 of Table 6.1.

Figure 6.4 also shows that the temperature gradient at the inner jet’s inner interface is larger
than that at the outer jet’s outer interface and that the temperature at the take–up cross–section
for Case 17 is lower than that for Case 1.

Figure 6.5 illustrates the temperature distributions for Cases 18, 20, 21 and 22. This figure
clearly shows that the temperature gradient at the outer jet’s outer interface decreases as the
film heat transfer coefficient at that interface is decreased; a similar behaviour is observed at the
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inner jet’s inner interface. Figure 6.5 also indicates that there are very few qualitative differences
between the temperature profiles corresponding to Cases 17 and 20, albeit the temperature at
the take–up cross–section is lower for Case 20 than for Case 17.
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Figure 6.5: Temperature distributions at η = 0, 0.1, . . . , 1 for Case 18 (a), Case 20 (b), Case 21 (c) and Case 22
(d) of Table 6.1.

The temperature profiles corresponding to Case 21 illustrated in Figure 6.5 clearly show the
coupling between the thermal processes in the inner and outer hollow jets and, in particular,
the larger heat transfer losses at the inner jet’s inner interface (∂T̂1

∂ξ (0, η)) as the Péclet number
of the outer jet is increased. For Case 22, the results presented in Figure 6.5 indicate that the
temperature is continuous at the inner–outer hollow jets’ interface and the discontinuity in the
temperature gradient there is due to the different thermal conductivities of the inner and outer
jets.

Figures 6.6– 6.8 illustrate the hollow compound fiber’s geometry, axial velocity component and
cross–sectionally averaged temperature, and the cross–sectional averages of the effective dynamic
viscosity, molecular orientation order parameter and degree of crystallization for each annular
jet, respectively, for Cases 1, 9 and 17 of Table 6.1.
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Figure 6.6: Hollow compound fiber’s geometry. (R1: —; R0: – –; R2: –·–). (Case 1, black curves; Case 9, blue
curves; Case 17 red curves.)
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Figure 6.7: Hollow compound fiber’s axial velocity (left) and cross–sectional averaged temperature (right). (Case
1: —; Case 9: – –; Case 17: –·–)

Figure 6.6 shows that the initial contraction of the hollow compound fiber increases as the
film heat transfer coefficient at the core’s (or inner jet’s) inner interface is increased. Note that
since the draw ratio for the three cases exhibited in Figure 6.6 is the same, the diameters of the
fibers at the take–up cross–section are identical. Beyond x̂ = 0.1, the fiber’s radii decrease in a
much smaller manner than that for x̂ < 0.1, and, for this reason, the hollow compound fiber’s
geometry is only shown for 0 ≤ x̂ ≤ 0.1 using a (decimal) logarithmic scale in the axial direction.

For the steady–state, hollow compound fibers considered in this study, Eq. (3.22) indicates
that the volumetric flow rates of the inner and outer annular jets are constant, i.e., BA1 and BA2
are constant, and the non–dimensional axial velocity increases from unity at the maximum swell

108



6.1 presentation of numerical results

cross–section to one hundred in a monotonic fashion as illustrated in Figure 6.7 which corresponds
to Cases 1, 9 and 17. The axial velocity profile exhibits a two–signed curvature and an inflection
point somewhere along the spin–line before reaching a constant value which corresponds to the
fiber solidification, for Cases 9 and 17. It must be noted that the fiber solidification in the model
presented here is entirely due to the large increase of the effective dynamic viscosity as the
temperature decreases in accord with Eqs. (2.19) and (2.105) and the fact that, in Cases 9 and
17, there are heat transfer losses by convection at the hollow compound’s fiber inner radius that
result in lower temperatures than in Case 1 as illustrated in Figure 6.7.
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Figure 6.8: Hollow compound fiber’s cross–sectional averaged effective dynamic viscosity (left), degree of crystalli-
zation (middle) and molecular orientation order parameter (right) for the core (a) and cladding (b).
(Case 1: —; Case 9: – –; Case 17: –·–)

Figure 6.8 shows that the cross–sectional averaged values of the effective dynamic viscosity,
the degree of crystallization and the molecular orientation order parameter of the core and
cladding increase in a monotonic manner as the axial coordinate along the fiber is increased.
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This figure also shows that the cross–sectional averaged molecular orientation order parameter
reaches a constant value of unity very close to the maximum swell cross–section due to the large
contraction of the hollow compound fiber and the magnitude of the components of the strain
rate tensor there, while the degree of crystallization does not reach its ultimate (constant) value
at the take–up cross–section and it increases along the fiber at a rate that increases as the heat
film transfer coefficient at the inner jet’s inner interface is increased. Note that a logarithmic
scale has been used for both the effective dynamic viscosity and the molecular orientation order
parameter because the former increases exponentially as the temperature decreases, while almost
complete molecular orientation occurs near the maximum swell cross–section.

According to the model employed in this study, the effects of molecular orientation on crys-
tallization are nil, once complete orientation is achieved; therefore, for non–dimensional axial
distances larger than 0.1, the results presented in Figure 6.8 indicate that the crystallization of
the hollow compound fibres considered in this study depends on the temperature and velocity
fields.

Table 6.2: Cross–sectionally averaged temperatures, degree of crystallization and orientation order parameter of
the inner and outer materials at the take–up cross–section.

Case < T̂1 > < T̂2 > < Y1 > < Y2 > < S1 > < S2 >

1 0.473 0.439 0.700 0.704 0.996 0.996
2 0.640 0.616 0.742 0.750 0.997 0.997
3 0.470 0.436 0.705 0.708 0.996 0.996
4 0.458 0.425 0.719 0.730 0.996 0.996
5 0.846 0.815 0.772 0.779 0.998 0.998
6 0.815 0.809 0.769 0.778 0.997 0.997
7 0.485 0.450 0.684 0.681 0.996 0.996
8 0.463 0.430 0.713 0.722 0.996 0.996

9 0.376 0.356 0.675 0.679 0.996 0.996
10 0.565 0.550 0.724 0.733 0.997 0.997
11 0.372 0.352 0.681 0.684 0.996 0.996
12 0.364 0.344 0.687 0.698 0.996 0.996
13 0.783 0.779 0.767 0.775 0.997 0.997
14 0.766 0.775 0.764 0.773 0.997 0.997
15 0.385 0.365 0.663 0.658 0.996 0.996
16 0.368 0.349 0.682 0.692 0.996 0.996

17 0.306 0.295 0.660 0.663 0.996 0.996
18 0.507 0.497 0.708 0.718 0.996 0.996
19 0.302 0.291 0.667 0.670 0.996 0.996
20 0.298 0.288 0.666 0.676 0.996 0.996
21 0.736 0.754 0.765 0.771 0.997 0.997
22 0.728 0.749 0.762 0.769 0.997 0.997
23 0.314 0.302 0.651 0.645 0.996 0.996
24 0.301 0.291 0.663 0.672 0.996 0.996

Table 6.2 shows the cross–sectionally averaged values of temperature, degree of crystallization,
and molecular orientation order parameter for both the inner and the outer jets of the hollow
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compound fibre at the take–up cross–section, and indicates that, for all the cases considered in
this study, almost complete molecular orientation is achieved. However, the crystallization does
not reach its ultimate value and there are some differences in the degree of crystallization between
the inner and outer hollow jets; except for Cases 7, 15 and 23, the cross–sectional average degree
of crystallization of the outer hollow jet at the take–up cross–section is larger than that for the
inner jet.

Table 6.2 also shows that, except for Cases 14, 21 and 22, the cross–sectionally averaged
temperature of the inner hollow jet at the take–up cross–section is higher than that of the
outer jet. This table also shows that neither the temperature nor the crystallinity are uniform
across the hollow compound fibre at the take–up cross–section for the conditions considered here.
The non–uniformities in the degree of crystallization may have great effects on the mechanical,
physical, chemical, optical, etc., properties of hollow compound fibres.

6.2 conclusions

In this chapter, some numerical results for the melt spinning of semi–crystalline hollow compound
fibres have been obtained using the simplified two–dimensional model developed in Chapter 4
that employs the leading–order one–dimensional equations for the hollow compound fibre’s
geometry and axial velocity component derived from an asymptotic analysis of slender fibres at
low Reynolds and Biot numbers, and two–dimensional equations for the temperature, molecular
orientation tensor and degree of crystallization

For the conditions considered here, it has been found that full molecular orientation is reached
near the maximum swell region due to the large contraction of the hollow compound fibre and
the magnitude of the components of the strain rate tensor there. The degree of crystallization
was found to increase along the fibre and was mainly a function of the velocity and temperature
fields.

In none of the cases considered in this study, the ultimate degree of crystallization was reached
at the take–up cross–section, but its value there was found to i) increase as the film heat transfer
coefficient at the outer jet’s outer interface was decreased, ii) increase slightly as the activation
energy of the Arrhenius expression for the dynamic viscosity law of the inner jet was increased,
and iii) increase as the activation energy of the Arrhenius expression for the dynamic viscosity law
of the outer jet, thermal Péclet number of the outer jet and the ratio of the thermal conductivity
of the outer jet to that of the inner one are increased. However, the degree of crystallization at
the take–up cross–section was found to decrease as the film heat transfer coefficient at the inner
jet’s inner interface was increased. This behaviour is associated with the kinetics of crystallization
model employed in this work which indicates that the crystallization is mainly a function of the
molecular orientation and the velocity field; therefore, an increase in the axial velocity component
due to an increase in the heat transfer implies a shorter crystallization time as clearly observed
in Table 6.2.

It has been found that the temperature variations in the radial direction decrease as the film
heat transfer coefficient at the inner jet’s inner interface is increased but they increase as the
thermal Péclet number of the outer jet and the ratio of the thermal conductivity of the outer jet
to that of the inner one are increased.
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CONCLUSIONS AND RECOMMENDATIONS
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7.1 conclusions

A single–phase, two–dimensional model of the spinning of semi–crystalline compound and hollow
compound fibres that employs a Newtonian rheology modified by the degrees of crystallization
and molecular orientation and temperature through an effective dynamic viscosity, was developed.
The model accounts for the molecular orientation of the liquid crystalline polymer through a
diagonal orientation tensor that depends on the velocity gradient and a Maier–Saupe potential
that enhance and hinder, respectively, the orientation. This molecular orientation tensor has
been derived from the Doi–Edwards theory applied to slender fibres. The two–dimensional model
employs the one–dimensional equations for the compound fibre’s geometry and axial velocity
component corresponding to the leading–order equations from an asymptotic analysis of slender
fibres at low Reynolds and Biot numbers, and two–dimensional equations for the temperature,
molecular orientation tensor and degree of crystallization; the latter has been modelled by means
of the thermal Avrami–Kolmogorov kinetics formulation. The model is applicable from the
maximum swell location to the take–up point.

The most important conclusions of this work can be summarized as follows.

• The two–dimensional model presented here is really a hybrid model, for it employs one–
dimensional equations for the compound fibre’s geometry, whereas two–dimensional equa-
tions are employed for the temperature, orientation and crystallization fields. As a conse-
quence, the model is not computationally as expensive as a fully two–dimensional one that
determines the fibre’s geometry in the solution process, while it is expected to be more
accurate than the second approximation of asymptotic ones, for slender fibres.

• Due to the non–linear coupling between the dependent variables, the exponential dependence
of the dynamic viscosity on temperature, the degree of crystallization and the molecular
orientation and the use of a leading–order equations for the axial momentum equation and
the compound fibre’s geometry, the model is of integro–differential type and its results are
highly dependent on the pre–exponential factor and activation energy of the Arrhenius law
used for the dynamic viscosity of the inner and outer jets.
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• The results of the two–dimensional model proposed here indicate that substantial tempe-
rature non–uniformities in the radial direction exist even for small Biot numbers. These
non–uniformities affect the degree of crystallization and may have great effects on the
mechanical, electrical, etc. properties of compound fibres.

• For very slender fibres and small Biot numbers, good agreement between the leading–order
one–dimensional model and the two–dimensional one presented here has been observed,
although some differences have been observed in the initial curvature of the axial velocity
profile when axial heat conduction is neglected in the one–dimensional model.

• For the conditions considered here, it was found that the crystallization of the compound
fibre was mostly affected by thermal effects rather than by flow–induced ones, while almost
complete orientation was observed near the maximum swell location where the strain rate
is largest.

• It must be pointed out that the solidification of the compound fibres considered here is
mainly due to the increase in dynamic viscosity as the fibre is cooled along the spinning
line.

This work is part of a larger project that has been carried out by the research group which the
author belongs to and draws heavily upon the results previously obtained by it. The contributions
of this thesis to this larger project can be summarized as follows:

a. The one–dimensional model developed by the research group was extended by means
of a perturbation method for slender fibres at low Reynolds and Biot numbers to semi–
crystalline (hollow) compound fibres by considering a molecular orientation order parameter.
This extension is based on the introduction of a molecular orientation tensor that, for
axisymmetric slender fibres with initial and axisymmetric boundary conditions, is diagonal
and traceless, and includes a model that accounts for the molecular order parameter
when the orientation tensor is proportional to the velocity gradient that results from the
leading–order approximation to slender fibres at low Reynolds and Biot numbers.

b. The model described in the previous item was implemented in a code developed on MATLAB®

and its results have been shown to agree with the analytical and computational solutions
which had been previously obtained by the research group with a code written on FORTRAN.

c. A hybrid two–dimensional model based on the one–dimensional equations for the geometry
and axial velocity which result from a leading–order approximation in the analysis of
the slender polymeric fibre at low Reynolds and Biot numbers and the two–dimensional
equations for the energy, molecular orientation tensor and degree of crystallization has
been developed. The equations for the energy and the molecular orientation and degree of
crystallization are parabolic and hyperbolic, respectively.

d. An iterative finite difference method based on a mapping transformation of the physical
geometry onto a computational one consisting of two rectangles (one per jet) was developed
and implemented on MATLAB®.

e. An extensive parametric study has been carried out in order to determine the most
influential parameters on the fluid dynamics, temperature, molecular orientation and degree
of crystallization processes that occur in the melt spinning of slender polymeric compound
and hollow compound fibres.
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f. An extensive comparison between the results of the one–dimensional model which may
or not may include axial conduction and cross–sectional averaged ones predicted by the
two–dimensional one where the axial conduction is disregarded has been carried out. From
these comparisons, the following conclusions have been obtained:

a) both models exhibit the same qualitative trends,

b) while the two–dimensional method can predict a one–sign curvature velocity profile,
the one–dimensional one may predict two–sign profile under certain conditions,

c) large differences may exist between one– and two–dimensional methods near the
maximum swell section where the deformation rate is largest, and

d) the two–dimensional model predicts non–uniformities temperature profile in the radial
direction at the take–up point, and these non–uniformities may affect the mechanical,
electrical, optical, etc., properties of the (hollow) compound fibres.

7.2 suggestions for future work

Most of the subjects on future work suggested here are aimed at the development of a two–
dimensional model of the melt spinning process that includes the study of the flow in the spinneret,
although some of them should perhaps be undertaken in order to improve the two–dimensional
model presented in this thesis. These suggestions are as follows:

• Development of a fully two–dimensional model of the melt spinning of non–isothermal
single–component single–phase semi–crystalline jets that takes into account the flow in
the spinneret. The author has spent some efforts in this direction using the open source
computational fluid dynamics toolbox OpenFOAM (Open Source Field Operation And
Manipulation).

• Development of a fully two–dimensional model of the melt spinning of non–isothermal
bi–component and hollow compound single–phase semi–crystalline jets that takes into
account the flow in the spinneret.

• The two–dimensional model presented here can be improved by accounting for the effect of
air drag and latent heat of crystallization. However, for moderate draw ratios, the author
estimates that the results provided by this improved model would be very similar to those
presented here. At high draw ratios, the model should account in a more explicit manner
for the amorphous and crystalline phases, relaxation times, non–Newtonian rheology, etc.,
so that it can predict neck–in phenomena.

• Study and modelling of the dependence of the relaxation time on the molecular orientation
tensor.

• Development and validation of a symmetric but non–diagonal molecular orientation tensor.

• The one–dimensional models for liquid–crystalline polymers previously developed by the
research group which the author belongs to and the two–dimensional one presented in this
thesis use transport equations for the molecular orientation tensor and the degree of crys-
tallization that are hyperbolic; as a consequence, these two variables may be discontinuous
at the core–cladding interface. One should, however, expect that at this interface there is
entanglement of the polymer molecules from the core and the cladding which the models
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presented here do not account for. Therefore, a model for polymer entanglement at the
interface between two polymers and a model for the molecular orientation tensor that takes
into account this entanglement may have to be developed. Such an entanglement may also
affect the crystallization at the interface and, therefore, must be taken into account in the
crystallization model.
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a.1 introducción

En los diez últimos años ha habido un gran interés en el desarrollo de fibras ópticas tanto

microestructuradas (MOF), es decir, fibras que contienen agujeros u otro tipo de estructura

repetitiva a lo largo de toda su longitud como no microestructuradas. En estas fibras, la luz

puede ser guiada a lo largo de su núcleo (core) por dos mecanismos, la reflexión total interna,

como en las fibras convencionales, y la reflexión especular de Bragg. En las primeras, el índice de

refracción del núcleo es mayor que el índice de refracción “efectivo” del revestimiento (cladding)

gracias a la presencia de la microestructura, por lo que se requiere que el núcleo sea sólido

(solid core). En las segundas, las ondas son guiadas en modos que se encuentran en la banda

prohibida (band–gap) generada por la microestructura del revestimiento, por lo que el núcleo

puede ser hueco y el revestimiento puede estar formado por capas cilíndricas concéntricas. Las

fibras microestructuradas suelen fabricarse en torres de estirado por diferentes procedimientos.

El más usado, cuando se precisan agujeros grandes en el revestimiento, es el estirado de una

preforma formada juntando varios capilares alrededor de un sólido. Hasta muy recientemente se
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han fabricado MOF’s de sílice pero, hoy en día, también se fabrican de plástico o polímero (POF),

e incluso se han llegado a fabricar fibras que combinan materiales conductores, semiconductores

y dieléctricos.

La transparencia y ancho de banda de estas POF’s junto con su alta capacidad de transmisión,

facilidad de manejo, flexibilidad y economía permiten que estas fibras puedan sustituir a los

cables de cobre y a fibras ópticas de vidrio en enlaces de comunicaciones así como en otros

dispositivos opto–electrónicos. La sección transversal de una POF puede ser microestructurada

(MOF) o circular (fibras de Bragg). En este último caso, la fibra generalmente consta de tres

capas: la capa interna es el núcleo, la parte intermedia constituye el revestimiento y la parte

externa es la cubierta de protección. En la manufactura de POF’s circulares, un cilindro sólido

llamado preforma de varios centímetros de diámetro y aproximadamente medio metro de longitud,

cuya estructura determina los perfiles de los índices de refracción tanto en el núcleo como en

el revestimiento, se extrusiona en un proceso de melt spinning análogo al que se utiliza en la

fabricación de fibras textiles y fibras de vidrio. El perfil del índice de refracción en el núcleo en

la dirección radial puede obtenerse diseñando la preforma con dicho perfil; cuando se necesitan

perfiles más complejos tales como perfiles graduales (graded indices), se utiliza un proceso de

estirado en el que un extremo de la preforma se calienta hasta alcanzar la temperatura de fusión

o melting. Actualmente, la producción de POF’s con índice de refacción gradual se basa en

procesos de polimerización de gel y difusión. La polimerización de gel requiere la fabricación de

un cilindro hueco de polímero tal como PMMA que da lugar al revestimiento y que se rellena con

monómeros, un iniciador, y un dopante que cuando se calientan dan lugar a la formación de un

polímero que constituye el núcleo de la fibra. Una vez obtenida la preforma, uno de sus extremos

se calienta en un horno hasta alcanzar la viscosidad necesaria para ser extruida a la velocidad

adecuada para obtener el diámetro deseado de la fibra. Finalmente, se aplica una protección

(coating) a la misma con objeto de mejorar su resistencia y facilitar su manejo.

a.2 características del proceso de melt spinning

El proceso de melt spinning involucra la extrusión y el estirado de un cilindro de líquido. Un

diagrama típico del proceso se muestra en la Figura 1.1 (a). Copos de polímero son fundidos en
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el dispositivo de extrusión, proceso tras el cual se bombea el líquido a través de la boquilla de

salida para formar las fibras líquidas. Este filamento es estirado y enfriado hasta que solidifica

en la zona de estirado. La velocidad final de la fibra es fijada por el tambor de recogida de la

misma el cuál consiste en una o más ruedas que giran a velocidad constante. La fibra ya sólida

se mueve a la misma velocidad lineal que las ruedas debido a las fuerzas de fricción en la zona

de contacto. Como las bobinas de hilo, la fibra es finalmente enroscada en un carrete para su

posterior almacenaje. El estirado de fibras compuestas se distingue del estirado de una fibra

sólida en que en el primero de ellos dos fluidos han de ser extruidos y estirados al mismo tiempo.

El chorro interno o núcleo, a menudo, consiste en un gas inerte pero puede ser otro fluido.

Estos procesos son, generalmente, divididos en cuatro regiones para su análisis: (1) la región

de flujo cortante que se da en el interior de la boquilla de salida; (2) la región de flujo

reorganizado en la que el flujo cortante se convierte en elongacional; (3) la zona de estirado

del fluido fundido donde la fibra es estirada hasta el diámetro deseado en contacto con un fluido

refrigerante (aire) para facilitar la transferencia de calor; (4) la región de solidificación donde

el fluido ya frío se transforma en sólido. Cada una de esas regiones están identificadas en la

Figura 1.1 (b).

Las variables de operación que se especifican de forma más habitual son el diámetro de la

boquilla de salida y la temperatura de los chorros en esa posición, la temperatura del aire

circundante y su velocidad, los flujos másicos extruidos y la velocidad de rotación del tambor de

recogida. La relación entre la velocidad media del fluido a la salida de la boquilla y la velocidad

lineal de recogida se denomina relación de estirado (draw ratio), Dr, y, a menudo, es especificada

en lugar de la tasa de extrusión. Las especificaciones correctas de las variables de operación

permiten la producción de fibras para un tamaño y tasa de fabricación dadas.

Un análisis riguroso del proceso requiere resolver las ecuaciones de conservación de masa,

cantidad de movimiento y energía en un dominio complejo tridimensional. Para evitar cálculos

numéricos costosos, se han introducido un número de aproximaciones simplificadas en la literatura,

algunas de las cuales han sido asumidas en este trabajo y, que han dado como resultado las bases

para el análisis del filamento esbelto (TFA). Los mecanismos de esta simplificación han tomado

varias formas en la literatura. De entre ellos, los métodos asintóticos de aproximación son los

más rigurosos proporcionando correcciones a los resultados de la teoría de fibra esbelta que no
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están disponibles en los otros métodos. Algunos trabajos demostraron que la única consideración

del primer orden del análisis asintótico era un aproximación muy buena para un amplio rango de

condiciones para una fibra sólida de una única fase.

En el presente estudio se evita el tratamiento explícito de las regiones 1 y 2 asumiendo

que el flujo cortante del interior de la boquilla se modifica hacia el flujo elongacional en una

distancia mucho más pequeña que la longitud total de la zona de estirado. Cálculos mediante

elementos finitos verifican esta hipótesis e indican que esta transición ocurre en una distancia

igual a dos o tres veces el diámetro de la boquilla. Aunque el origen exacto de la zona de estirado

no está definido, esta ambigüedad es mucho más pequeña que la longitud de la zona de estirado.

El diámetro de la fibra inicial suele seleccionarse igual al diámetro de la boquilla de salida o

al máximo radio de la zona de hinchado (maximum die swell radius) si éste es significante.

No obstante, para la zona de hinchado se requieren medidas experimentales o correlaciones

apropiadas.

El análisis de la región 4 se obvia aquí asumiendo la hipótesis de una transición instantánea

e isoentálpica hacia un sólido rígido a una temperatura de transición apropiada (temperatura

de fusión o de transición vítrea). El significado de esta hipótesis no está bien definido en la

literatura existente. Para materiales cristalinos, especialmente a altas velocidades (velocidades

mayores de 1000m/min), la validez es cuestionable porque la transición vítrea puede ser una

función muy dependiente de la cristalinidad y la orientación molecular. Para materiales vítreos a

bajas velocidades de estirado, el uso de una temperatura de transición vítrea acarrea resultados

razonables. Pequeñas variaciones en la temperatura de transición vítrea no provocan cambios

significativos en los niveles de esfuerzos finales en el fluido ni en la geometría final de la fibra.

Las hipótesis realizadas reducen el problema únicamente al análisis de la región 3 que

constituye la zona de estudio objeto de la presente tesis. El hecho de que el diámetro de la fibra

sea típicamente mucho más pequeño que la longitud de la zona de estirado permite simplificar el

análisis de una forma extraordinaria.
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a.3 fundamentos y resultados del modelo propuesto

En este trabajo se presenta un modelo bidimensional del proceso de melt spinning bajo condiciones

no isotermas para fibras semicristalinas compuestas tanto macizas como anulares que considera

la orientación molecular y la cristalización. Este modelo está basado en las ecuaciones asintóticas

de orden más bajo para la geometría y la componente axial de la velocidad para fibras esbeltas

a bajo número de Reynolds y Biot, y las ecuaciones bidimensionales para la temperatura,

orientación molecular y cristalización. A su vez, el modelo emplea una reología Newtoniana,

incluye los efectos tanto de temperatura como de cristalización inducida por el flujo y considera

los efectos de orientación molecular en el tensor de tensiones así como en la cristalización a

través de la formulación de Doi–Edwards y la cinética de cristalización de Avrami–Kolmogorov,

respectivamente. La orientación molecular es modelada por medio de un tensor cuya evolución

depende principalmente del tensor de tasa de deformación, mientras que la cristalización depende

de la orientación molecular y del campo de temperaturas; las ecuaciones para la cristalización y

la orientación molecular están fuertemente acopladas con las de conservación de masa, cantidad

de movimiento y energía.

El modelo presentado en este trabajo ha sido usado para estudiar numéricamente el estado

estacionario del fenómeno de melt spinning para fibras compuestas tanto macizas como anulares

por medio de ecuaciones en diferencias finitas en el dominio computacional resultado de transfor-

mar la geometría curvilínea de las fibra compuestas en dos rectángulos. Experimentos numéricos

han sido realizados para relaciones de estiramientos moderadas en el dominio físico que, en la

dirección axial, viene delimitado por la sección de máximo hinchado y el punto de recogida de la

fibra.

Los resultados numéricos obtenidos para fibras compuestas semicristalinas indican que, incluso

a bajo número de Biot, la temperatura puede no ser uniforme a través de la sección transversal

de la fibra como consecuencia de las pérdidas de calor. Para los casos reportados aquí, las no

uniformidades térmicas son principalmente función del número de Biot, la conductividad térmica

y el factor pre–exponencial y energía de activación de la ley de viscosidad dinámica que modela

el revestimiento. Los resultados también muestran que la temperatura promediada a través de la

sección transversal predicha por el modelo bidimensional exhibe la misma tendencia cualitativa
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que las de los modelos asintóticos unidimensionales que consideran la conducción axial y que

sólo son válidos para números de Reynolds y Biot bajos.

Para fibras compuestas huecas semicristalinas, se observa que casi se alcanza la orientación

molecular completa cerca de la región de máximo hinchado de la fibra debido a la enorme

contracción de ésta en esa zona, mientras que, para las condiciones consideradas aquí, en la zona

de recogida de la fibra no se obtiene el grado de cristalización máximo. También se observa que

en el punto de recogida existen no uniformidades en los perfiles de temperatura y cristalización;

estas no uniformidades pueden influir enormemente en las propiedades de la fibra.

a.4 conclusiones

Las conclusiones más importantes extraídas del presente trabajo se pueden resumir como siguen.

• El modelo bidimensional que se presenta aquí es en realidad un modelo híbrido; emplea

ecuaciones unidimensionales para la geometría y velocidad axial de la fibra compuesta,

mientras que usa ecuaciones bidimensionales para los campos de temperatura, orientación

y grado de cristalización. Como consecuencia, la resolución del mismo no supone un

coste computacional tan elevado como el de un modelo completamente bidimensional que

determina la geometría de la fibra en el propio proceso de resolución. Asimismo, es un

modelo más preciso que el de modelos asintóticos para fibras esbeltas que incluyen hasta la

segunda aproximación.

• Debido al acoplamiento no lineal entre las variables dependientes del problema, la depen-

dencia exponencial de la viscosidad dinámica con la temperatura, el grado de cristalización

y la orientación molecular y el uso de ecuaciones para el orden más bajo en las ecuaciones de

cantidad de movimiento y geometría de la fibra compuesta, el modelo es integro–diferencial

y sus resultados son altamente dependientes del factor pre–exponencial y la energía de

activación de la ley de Arrhenius usada para la viscosidad dinámica de los chorros interno

y externo.

• Los resultados del modelo bidimensional propuesto aquí indican que existen importantes

no–uniformidades en la temperatura en la dirección radial incluso para pequeños valores
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del número de Biot. Estas no–uniformidades afectan al grado de cristalización y pueden

tener grandes efectos en las propiedades mecánicas, eléctricas, etc. de las fibras compuestas.

• Para fibras muy esbeltas y pequeños números de Biot, se aprecia buena concordancia

entre el modelo unidimensional asintótico y el bidimensional presentado aquí, aunque se

observan algunas diferencias en la curvatura inicial de los perfiles de velocidad axial cuando

la conducción de calor axial es despreciada en el modelo unidimensional.

• Para las condiciones consideradas aquí, se ha encontrado que la cristalización de la fibra

compuesta viene afectada principalmente por los efectos térmicos más que por los de flujo

inducido, mientras que se ha observado también que la orientación molecular casi completa

se produce cerca de la sección de máximo hinchado donde la tasa de deformación es máxima.

• Se debe reseñar que la solidificación de la fibra compuesta considerada aquí es principalmente

debido al incremento de la viscosidad dinámica conforme ésta se va enfriando a lo largo de

la línea de estirado.

Las contribuciones de este trabajo al proyecto del que forma parte pueden ser resumidas en los

siguientes puntos:

a. El modelo unidimensional desarrollado por el grupo de investigación ha sido extendido

por medio de un método de perturbaciones para fibras esbeltas para bajos números de

Reynolds y Biot a fibras compuestas (o anulares compuestas) semicristalinas considerando

un parámetro de orden para la orientación molecular. Esta extensión está basada en la

introducción de un tensor de orientación molecular que, para fibras esbeltas axilsimétricas

con condiciones iniciales y de contorno axilsimétricas, es diagonal y con traza nula, e incluye

un modelo que tiene en cuenta el paramétro de orden cuando el tensor de orientación es

proporcional al tensor gradiente de velocidad que se obtiene a partir de una aproximación

asintótica para el orden más bajo para fibras esbeltas a bajo número de Reynolds y Biot.

b. El modelo descrito en el item previo fue implementado mediante un código numérico

desarrollado en MATLAB® y sus resultados han mostrado concordancia con las soluciones

analíticas y computacionales que fueron previamente obtenidas por el grupo de investigación

mediante un código escrito en FORTRAN.
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c. Se ha desarrollado un modelo híbrido bidimensional basado en las ecuaciones unidimen-

sionales para la geometría y la velocidad axial las cuáles provienen de una aproximación

asintótica para el orden más bajo en el análisis de fibras poliméricas esbeltas a bajo número

de Reynolds y Biot y las ecuaciones bidimensionales de la energía, tensor de orientación

molecular y grado de cristalización. Las ecuaciones para la energía son parabólicas mientras

que las de la orientación molecular y el grado de cristalización son de carácter hiperbólico.

d. Un método iterativo en diferencias finitas basado en una transformación de coordenadas

que mapea el dominio físico en uno computacional consistente en dos rectángulos (uno por

cada uno de los chorros) ha sido desarrollado e implementado usando MATLAB®.

e. Se ha llevado a cabo un vasto estudio paramétrico con objeto de determinar los parámetros

más influyentes en los procesos fluido–dinámicos, de temperatura, orientación molecular y

grado de cristalización que ocurren en el proceso de melt spinning de fibras poliméricas

esbeltas tanto compuestas como anulares compuestas.

f. En este estudio también se han llevado a cabo comparaciones entre los resultados del

modelo unidimensional que puede o no tener en cuenta la conducción axial y los resultados

promediados transversalmente previstos por el modelo bidimensional en el que la conducción

axial es despreciada. A partir de estas comparaciones las siguientes conclusiones pueden

ser obtenidas:

a) ambos modelos exhiben los mismos comportamientos cualitativos,

b) mientras que el modelo bidimensional predice perfiles de velocidad axial con una

única curvatura, el bidimensional exhibe perfiles con doble curvatura bajo ciertas

condiciones,

c) existen diferencias importantes entre los modelos uni– y bidimensional cerca de la

sección de máximo hinchado donde la tasa de deformación es máxima, y

d) el modelo bidimensional predice perfiles de temperatura no uniformes en la dirección

radial en el punto de recogida de la fibra, y estas no uniformidades pueden afectar

a las propiedades mecánicas, eléctricas, ópticas, etc., de las fibras compuestas tanto

macizas como anulares.
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a.5 sugerencias para trabajos futuros

La mayoría de las sugerencias que proponemos para desarrollar futuros trabajos relacionadas

con el tema de esta tesis están enfocadas hacía el desarrollo de un modelo completamente

bidimensional del proceso de melt spinning que incluya el estudio del flujo en la boquilla de salida,

aunque algunos de ellos deberían quizás ser emprendidos con objeto de mejorar los resultados

del modelo bidimensional presentado en esta tesis.

Estas sugerencias son las que a continuación se exponen:

• Desarrollo de un modelo completamente bidimensional del fenómeno no isotermo de melt

spinning para chorros monofásicos semicristalinos de un único componente que tenga en

cuenta el flujo en el interior de la boquilla. El autor de esta tesis ha hecho grandes esfuerzos

en esta dirección haciendo uso del paquete libre de computación fluido-dinámica OpenFOAM

(Open Source Field Operation And Manipulation).

• Desarrollo de un modelo completamente bidimensional del fenómeno no isotermo de melt

spinning para chorros monofásicos semicristalinos de dos componentes, tanto macizos como

anulares o huecos, que tenga en cuenta el flujo en el interior de la boquilla.

• El modelo bidimensional que se presenta en este trabajo puede ser mejorado sustancialmente

teniendo en cuenta en las simulaciones numéricas los efectos de arrastre del aire y el calor

latente de cristalización. Sin embargo, para relaciones de estiramiento moderadas, el autor

estima que los resultados que proporcionaría este modelo mejorado serán muy similares a

los presentados en este trabajo. Para relaciones de estiramiento altas, el modelo debe tener

en cuenta de una manera más explícita la presencia de las fases amorfa y cristalina, los

tiempos de relajación, la reología no Newtoniana, etc., para poder predecir los fenómenos

de neck–in.

• Estudio y modelado de la dependencia del tiempo de relajación con el tensor de orientación

molecular.

• Desarrollo y validación del tensor de orientación molecular simétrico pero no diagonal.

• Los modelos unidimensionales para polímeros líquidos cristalinos desarrollados previamente

por el grupo de investigación del que el autor forma parte y el bidimensional propuesto
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en esta tesis usan ecuaciones de transporte para el tensor de orientación molecular y

el grado de cristalización lo que origina ecuaciones en derivadas parciales de carácter

hiperbólico; como consecuencia, estas dos variables pueden ser discontinuas en la interfase

núcleo–revestimiento. Sin embargo, debe esperarse que en dicha interfase se produzcan

enredos entre las cadenas poliméricas del núcleo y del revestimiento que no son tenidas en

cuenta por los modelos que se presentan en este trabajo. Por tanto, se deben desarrollar

sendos modelos para las uniones entre las cadenas de ambos polímeros en la interfase así

como para el tensor de orientación molecular que considere esta interacción. Dichos enredos

entre cadenas de polímeros pueden también afectar la cristalización en la interfase y, por

tanto, ser tenidas en cuenta en el modelo de cristalización.
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Symbol Description Units

A Non–dimensional cross–sectional area [·]
a2 Constant of the linearised crystal growth rate [·]
c Number of polymeric units per unit volume [m−3]
c Conformational tensor [·]
B Non–dimensional leading–order axial velocity [·]
C Specific heat [J kg−1 K−1]
D Non–dimensional leading–order pressure [N m−2]
D Pre–exponential factor [N m−2 s]
Dr Draw ratio [·]
E Activation energy [J mol−1]
e Unit vector [·]
F Non–dimensional leading–order temperature [K]
fm Body force per unit mass [N kg−1]
g Gravitational acceleration [9.81 ms−2]
h Film heat transfer coefficient [W m−2 K−1]
H Inverse of activation temperature [K−1]
I Identity or unit tensor [·]
k Thermal conductivity [W m−1 K−1]
kA Linearised crystal growth rate [·]
kA(0) Amorphous growth rate [·]
kB Boltzmann constant [1.3806503× 10−23 m2 kg s−2 K−1]
kSB Stephan–Boltzmann constant [5.670373× 10−8 W ·m−2 ·K−4]
L Characteristic length in the axial direction [m]
n Crystallization viscosity index [·]
N Dimensionless measure of c [·]
p Pressure [N m−2]
q Heat flux [W m−2]
Q Non–dimensional volumetric flow rate [·]
r Radial coordinate [m]
R Fibre/jet’s radius [m]
Rg Ideal gas constant [8.314 J K−1 mol−1]
R Non–dimensional jet’s radius [·]
S Surface [m]
S Molecular orientation parameter [·]
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S Molecular orientation tensor [·]
t Time [s]
T Temperature [K]
T∞ Temperature of the gases [K]
u Axial velocity component [ms−1]
u Molecular orientation vector [·]
v Radial velocity component [m · s−1]
v Velocity vector [m · s−1]
x Axial coordinate [m]
Y Degree of crystallization [·]
Y∞ Ultimate degree of crystallization [·]
z Degree of transformation [·]

Greek symbols
α Relation between kinetic energy and internal energy [·]
β Crystallization viscosity rate parameter [·]
ε Slenderness ratio [·]
η Mapping of the non–dimensional axial coordinate [·]
θ Azimuthal coordinate [·]
λ Relaxation time [s]
λ0 Relaxation time at reference temperature [s]
µ Dynamic viscosity [N m−2 s]
ξ Mapping of the non–dimensional radial coordinate [·]
ρ Density [kgm−3]
σ Surface tension [N m−1]
τ Stress tensor [N m−2]
τN Newtonian contribution to the stress tensor [N m−2]
τP Polymer contribution to the stress tensor [N m−2]
φ Dimensionless parameter related to the friction tensor [·]
Φ Viscous rate of heat dissipation [N m−2 s−1]
ω Inverse of activation temperature for the relaxation time [K−1]
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Dimensionless numbers
Bi Biot number
Br Brinkmann number
Ca Capillary number
Fr Froude number
Pe Péclet number
Pr Prandtl number
Re Reynolds number
St Stanton number

Subscripts
0 Reference values
1 Inner jet
2 Outer jet
e Effective
m Melting conditions
p Polymer
r Radial direction
x Axial direction

θ Azimuthal angle

Superscripts
T Transpose
∇ Upper Convective Maxwell derivative
ˆ Non–dimensional variables
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