

[ASME-ATI-](#page-23-0)UIT 2010, Sorrento, Italy

J.I. Ramos and Francisco J. Blanco– Rodríguez

[Introduction](#page-2-0)

[Mathematical](#page-9-0) formulation

[Numerical](#page-18-0)

Two– dimensional [model numerical](#page-18-0) results **Comparison** with [one–dimensional](#page-21-0) model

[Conclusions](#page-22-0)

MODELLING OF MOLECULAR ORIENTATION AND CRYSTALLIZATION IN THE MANUFACTURE OF SEMI–CRYSTALLINE COMPOUND FIBRES

J.I. Ramos and Francisco J. Blanco-Rodríguez

Escuela de Ingenierías Universidad de Málaga, Spain

[Conference on Thermal and Environmental Issues in](http://www.ichmt.org/asme-ati-uit-10) [Energy Systems](http://www.ichmt.org/asme-ati-uit-10) 16–19 May 2010, Sorrento, Italy

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

Outline

[ASME-ATI-](#page-0-0)UIT 2010, Sorrento, Italy

J.I. Ramos and Francisco J. Blanco– Rodríguez

[Introduction](#page-2-0)

[Mathematical](#page-9-0) formulation

[Numerical](#page-12-0) method

[Numerical](#page-18-0)

Two– dimensional [model numerical](#page-18-0) results

Comparison with [one–dimensional](#page-21-0) model

[Conclusions](#page-22-0)

[Introduction](#page-2-0)

2 [Mathematical formulation](#page-9-0)

3 [Numerical method](#page-12-0)

4 [Numerical results](#page-18-0)

- [Two–dimensional model numerical results](#page-18-0)
- [Comparison with one–dimensional model](#page-21-0)

6 [Conclusions](#page-22-0)

Introduction

[ASME-ATI-](#page-0-0)UIT 2010, Sorrento, Italy

J.I. Ramos and Francisco J. Blanco– Rodríguez

[Introduction](#page-2-0)

[Mathematical](#page-9-0) formulation

[Numerical](#page-12-0)

[Numerical](#page-18-0)

Two– dimensional [model numerical](#page-18-0) results **Comparison**

with [one–dimensional](#page-21-0) model

[Conclusions](#page-22-0)

- Bi–component compound fibres are manufactured by MELT SPINNING processes.
- Applications
	- 1 Telecommunications: Data transmission.
	- 2 Chemical industry: Filtration and separation processes.
	- **3** Biomedical industry.
	- 4 Textile industry.
- Necessary: modelling of the drawing process for both hollow and solid semi–crystalline compound fibres.
- Previous studies are based on one–dimensional models of amorphous, slender fibres at low Re .
- NO INFORMATION ABOUT RADIAL VARIATIONS.
- Use of a hybrid model for fibre spinning.

J.I. Ramos and Francisco J. Blanco– Rodríguez

[Introduction](#page-2-0)

[Mathematical](#page-9-0) formulation

method

[Numerical](#page-18-0)

Two– dimensional [model numerical](#page-18-0) results Comparison with [one–dimensional](#page-21-0) model

[Conclusions](#page-22-0)

Involves the extrusion and drawing of a polymer cylinder. Four zones.

1 Shear Flow Region.

- 2 Flow Rearrangement Region.
- **8 Melt Drawing** Zone.
- 4 Solidification region.

Polyma

XXXX

Godet

They tokeup

Quench

[ASME-ATI-](#page-0-0)UIT 2010, Sorrento, Italy

J.I. Ramos and Francisco J. Blanco– Rodríguez

[Introduction](#page-2-0)

[Mathematical](#page-9-0) formulation

Two– dimensional [model numerical](#page-18-0) results **Comparison**

with [one–dimensional](#page-21-0) model

1 Shear Flow Region.

- 2 Flow Rearrangement Region.
- 3 Melt Drawing Zone.
- **Solidification** region.

 QQQ 4 / 19

[ASME-ATI-](#page-0-0)UIT 2010, Sorrento, Italy

J.I. Ramos and Francisco J. Blanco– Rodríguez

[Introduction](#page-2-0)

[Mathematical](#page-9-0) formulation

Two– dimensional [model numerical](#page-18-0) results **Comparison** with

[one–dimensional](#page-21-0) model

[Conclusions](#page-22-0)

Shear Flow Region.

- 2 Flow Rearrangement Region.
- 3 Melt Drawing Zone.
- **Solidification** region.

4 / 19

 QQQ

[ASME-ATI-](#page-0-0)UIT 2010, Sorrento, Italy

J.I. Ramos and Francisco J. Blanco– Rodríguez

[Introduction](#page-2-0)

[Mathematical](#page-9-0) formulation

Two– dimensional [model numerical](#page-18-0) results **Comparison**

with
one[one–dimensional](#page-21-0) model

[Conclusions](#page-22-0)

1 Shear Flow Region.

- 2 Flow Rearrangement Region.
- 3 Melt Drawing Zone.
- **Solidification** region.

[ASME-ATI-](#page-0-0)UIT 2010, Sorrento, Italy

J.I. Ramos and Francisco J. Blanco– Rodríguez

[Introduction](#page-2-0)

[Mathematical](#page-9-0) formulation

Two– dimensional [model numerical](#page-18-0) results **Comparison**

Quench

with
one[one–dimensional](#page-21-0) model

[Conclusions](#page-22-0)

Involves the extrusion and drawing of a polymer cylinder. Four zones.

4) Solidification Region

 \sim

- **1** Shear Flow Region.
- 2 Flow Rearrangement Region.
- **3** Melt Drawing Zone.
- **Solidification** region.

 $A \equiv \mathbf{1} \times \mathbf{1} + \mathbf{1} \$

4 / 19

 QQQ

[ASME-ATI-](#page-0-0)UIT 2010, Sorrento, Italy

J.I. Ramos and Francisco J. Blanco– Rodríguez

[Introduction](#page-2-0)

[Mathematical](#page-9-0) formulation

Two– dimensional [model numerical](#page-18-0) results **Comparison** with

[one–dimensional](#page-21-0) model

[Conclusions](#page-22-0)

1 Shear Flow Region.

- 2 Flow Rearrangement Region.
- **3** Melt Drawing Zone.
- **4** Solidification region.

 $A \equiv \mathbf{1} \times \mathbf{1} + \mathbf{1} \$

Mathematical formulation (I) **ASME-ATI-UIT**

[ASME-ATI-](#page-0-0)UIT 2010, Sorrento, Italy

J.I. Ramos and Francisco J. Blanco– Rodríguez

[Introduction](#page-2-0)

[Mathematical](#page-9-0) formulation

method

Two– dimensional [model numerical](#page-18-0) results Comparison with [one–dimensional](#page-21-0) model

[Conclusions](#page-22-0)

Mass conservation equation

$$
\nabla \cdot \mathbf{v}_i = 0 \qquad i = 1, 2,
$$

where $\mathbf{v} = u(r, x) \, \mathbf{e}_\mathbf{x} + v(r, x) \, \mathbf{e}_\mathbf{r}$

Linear Momentum conservation equation

$$
\rho_i \left(\frac{\partial \mathbf{v}_i}{\partial t} + \mathbf{v}_i \cdot \nabla \mathbf{v}_i \right) = -\nabla p + \nabla \cdot \boldsymbol{\tau}_i + \rho_i \cdot \mathbf{f}^m \qquad i = 1, 2,
$$

where ${\bf f}^m = g\,{\bf e}_{\bf x}$ Energy conservation equation

$$
\rho_i\,C_i\,\left(\frac{\partial T_i}{\partial t}+\mathbf{v}_i\cdot\nabla T_i\right)=-k_i\Delta T_i\qquad i=1,2
$$

- Constitutive equations
	- Rheology

$$
\boldsymbol{\tau} = \mu_{eff} \left(\nabla \mathbf{v} + \nabla \mathbf{v}^T \right) + \boldsymbol{\tau}_p,
$$

where

$$
\boldsymbol{\tau}_p = 3c k_B T \left[-\frac{\lambda}{\phi} F(\mathbf{S}) + 2\lambda (\nabla \mathbf{v}^T : \mathbf{S}) (\mathbf{S} + \mathbf{I}/3) \right]
$$

$$
\begin{array}{rcl}\n\left(\begin{array}{ccccccccc}\n\frac{1}{2} & \times & \times & \times & \times \\
\frac{1}{2} & \times & \times & \times & \times \\
& & & & \\
& & & & \\
& & & & \\
& & & & \\
& & & & \\
& & & & \\
& & & & \\
& & & & \\
& & & & \\
& & & & \\
& & & & \\
& & & & \\
& & & & \\
& & & & \\
& & & & \\
& & & & & \\
& & & & & \\
& & & & & \\
& & & & & \\
& & & & & \\
& & & & & \\
& & & & & \\
& & & & & \\
& & & & & & \\
& & & & & & \\
& & & & & & \\
& & & & & & & \\
& & & & & & & \\
& & & & & & & \\
& & & & & & & \\
& & & & & & & & \\
& & & & & & & & \\
& & & & & & & & \\
& & & & & & & & \\
& & & & & & & & & \\
& & & & & & & & & \\
& & & & & & & & & \\
& & & & & & & & & \\
&
$$

 \leftarrow \Box \rightarrow \rightarrow \Box \rightarrow

Mathematical formulation (II) **ASME-ATI-UIT**

[ASME-ATI-](#page-0-0)UIT 2010, Sorrento, Italy

J.I. Ramos and Francisco J. Blanco– Rodríguez

[Introduction](#page-2-0)

[Mathematical](#page-9-0) formulation

method

Two– dimensional [model numerical](#page-18-0) results Comparison with [one–dimensional](#page-21-0) model

[Conclusions](#page-22-0)

Molecular orientation tensor equation: Doi–Edwards theory

$$
\mathbf{S}_{(1)} = F(\mathbf{S}) + G(\nabla \mathbf{v}, \mathbf{S}),
$$

\n
$$
F(\mathbf{S}) = -\frac{\phi}{\lambda} \left\{ (1 - N/3) \mathbf{S} - N(\mathbf{S} \cdot \mathbf{S}) + N(\mathbf{S} : \mathbf{S}) (\mathbf{S} + \mathbf{I}/3) \right\}
$$

\n
$$
G(\nabla \mathbf{v}, \mathbf{S}) = \frac{1}{3} (\nabla \mathbf{v} + \nabla \mathbf{v}^T) - 2 (\nabla \mathbf{v}^T : \mathbf{S}) (\mathbf{S} + \mathbf{I}/3).
$$

where subscript (1) denote UCTD operator

$$
\Lambda_{(1)} = \frac{\partial \Lambda}{\partial t} + \mathbf{v} \cdot \nabla \Lambda - \left(\nabla \mathbf{v}^T \cdot \Lambda + \Lambda \cdot \nabla \mathbf{v} \right)
$$

Molecular orientation scalar order parameter

$$
\mathcal{S} \equiv \sqrt{\frac{3}{2} \left(\mathbf{S} : \mathbf{S} \right)} \qquad \mathbf{S} = \text{diag} \left(S_{rr}, \, S_{\theta \theta}, \, S_{xx} \right),
$$

Crystallization: Avrami–Kolmogorov's theory & Ziabicki's model

$$
\frac{\partial \mathcal{X}_i}{\partial t} + \mathbf{v} \cdot \nabla \mathcal{X}_i = k_{Ai}(\mathcal{S}_i) \left(\mathcal{X}_{\infty, i} - \mathcal{X}_i \right) \qquad i = 1, 2,
$$

where

$$
k_{Ai}(\mathcal{S}_i) = k_{Ai}(0) \exp (a_{2i} \mathcal{S}_i^2), \qquad i = 1, 2
$$

 $A \cap B \rightarrow A \cap B \rightarrow A \subseteq B \rightarrow A \subseteq B \rightarrow A$ QQQ 6 / 19

Mathematical formulation (III)

[ASME-ATI-](#page-0-0)UIT 2010, Sorrento, Italy

J.I. Ramos and Francisco J. Blanco– Rodríguez

[Mathematical](#page-9-0) formulation

method

Two– dimensional [model numerical](#page-18-0) results **Comparison** with [one–dimensional](#page-21-0) model

[Conclusions](#page-22-0)

Kinematic, dynamic and thermal boundary conditions are required:

- \bullet Initial conditions ($t = 0$)
- Symmetry conditions $(r=0)$
- \bullet Die exit conditions $(x = 0)$
- **Take-up point conditions** $(x=L)$
- **Conditions on free surfaces** of compound fibre $(r = R_1(x)$ and $r = R_2(x)$

Non–dimensionalize **ASME-ATI-UIT**

[ASME-ATI-](#page-0-0)UIT 2010, Sorrento, **Italy**

J.I. Ramos and Francisco J. Blanco– Rodríguez

[Mathematical](#page-9-0) formulation

[Numerical](#page-12-0) method

[Numerical](#page-18-0)

Two– dimensional [model numerical](#page-18-0) results Comparison with [one–dimensional](#page-21-0) model

[Conclusions](#page-22-0)

Non–dimensional variables

$$
\begin{aligned}\n\hat{t} &= \frac{t}{(L/u_0)} & \hat{r} &= \frac{r}{R_0} & \hat{x} &= \frac{x}{L} & \Rightarrow & \epsilon &= \frac{R_0}{L} \\
\hat{u} &= \frac{u}{u_0} & \hat{v} &= \frac{v}{(u_0 \epsilon)} & \hat{p} &= \frac{p}{(\mu_0 u_0/L)} & \hat{T} &= \frac{T}{T_0} \\
\hat{\rho} &= \frac{\rho}{\rho_0} & \hat{C} &= \frac{C}{C_0} & \hat{\mu} &= \frac{\mu}{\mu_0} & \hat{k} &= \frac{k}{k_0}\n\end{aligned}
$$

Non–dimensional numbers

$$
Re = \frac{\rho_0 u_0 R_0}{\mu_0}, \quad Fr = \frac{u_0^2}{g R_0}, \quad Ca = \frac{\mu_0 u_0}{\sigma_2},
$$

 $Pr = \frac{\mu_0 C_0}{k_0}, \quad Pe = Re Pr, \quad Bi = \frac{h R_0}{k_0}$

メロメ メタメ メミメ メミメー QQQ 8 / 19

Asymptotic analysis: 1D model

[ASME-ATI-](#page-0-0)UIT 2010, Sorrento, Italy

J.I. Ramos and Francisco J. Blanco– Rodríguez

[Introduction](#page-2-0)

[Mathematical](#page-9-0) formulation

[Numerical](#page-12-0) method

[Numerical](#page-18-0)

Two– dimensional [model numerical](#page-18-0) results **Comparison** with [one–dimensional](#page-21-0) model

[Conclusions](#page-22-0)

Asymptotic method using the fibre slenderness, $\epsilon \ll 1$, as perturbation parameter

$$
\Psi_i = \Psi_{i,0} + \epsilon^2 \Psi_{i,2} + O(\epsilon^4)
$$

for the variables \hat{R}_i , \hat{u}_i , \hat{v}_i , \hat{p}_i and \hat{T}_i where $i=1,2.$

Flow regime considered for steady $\left(\frac{\partial}{\partial \hat{t}}=0\right)$ jets

$$
Re = \epsilon \bar{R}, \qquad Fr = \frac{\bar{F}}{\epsilon}, \qquad Ca = \frac{\bar{C}}{\epsilon},
$$

 $Pe = \epsilon \bar{P}$, $Bi = \epsilon^2 \bar{B}$

where $\overline{\Upsilon} = O(1)$.

 $A \equiv \mathbf{1} \times \mathbf{1} + \mathbf{1} \$ Ω 9 / 19

One–dimensional equations of the $1 + 1/2D$ model

[ASME-ATI-](#page-0-0)UIT 2010, Sorrento, Italy

J.I. Ramos and Francisco J. Blanco– Rodríguez

[Introduction](#page-2-0)

[Mathematical](#page-9-0) formulation

[Numerical](#page-12-0) method

[Numerical](#page-18-0)

Two– dimensional [model numerical](#page-18-0) results **Comparison** with [one–dimensional](#page-21-0) model

[Conclusions](#page-22-0)

Asymptotic one–dimensional mass conservation equation

 $A_1 U = Q_1, \qquad A_2 U = Q_2$

where

$$
\mathcal{A}_1=\frac{\mathcal{R}_1^2}{2},\qquad \mathcal{A}_2=\frac{\mathcal{R}_2^2-\mathcal{R}_1^2}{2},
$$

Asymptotic one–dimensional linear momentum equation

$$
\bar{R}(\hat{\rho}_1 A_1 + \hat{\rho}_2 A_2) \mathcal{U} \frac{d\mathcal{U}}{d\hat{x}} = \frac{d}{d\hat{x}} \left(3 \left(\langle \hat{\rho}_{eff,1} \rangle A_1 + \langle \hat{\rho}_{eff,2} \rangle A_2 \right) \frac{d\mathcal{U}}{d\hat{x}} \right) \n+ \frac{1}{2\bar{C}} \left(\frac{d\mathcal{R}_2}{d\hat{x}} + \frac{\sigma_1}{\sigma_2} \frac{d\mathcal{R}_1}{d\hat{x}} \right) \n+ \left(\hat{\rho}_1 A_1 + \hat{\rho}_2 A_2 \right) \frac{\bar{R}}{\bar{F}}
$$

10 / 19

 OQ

 $A \cap B \rightarrow A \cap B \rightarrow A \subseteq B \rightarrow A \subseteq B \rightarrow A$

Radial velocity field

$$
\mathcal{V}(\hat{r}, \hat{x}) = -\frac{\hat{r}}{2} \frac{d\mathcal{U}}{d\hat{x}}
$$

Mapping: 2D model

[ASME-ATI-](#page-0-0)UIT 2010, Sorrento, Italy

 $(\hat{r}, \hat{x}) \mapsto (\xi, \eta)$ maps $\Omega_{\hat{r}\hat{x}} = \{[0, R_2(\hat{x})] \times [0, 1]\}$ into a rectangular domain $\Omega_{\epsilon n} = \{ [0, 1] \times [0, 1] \}$

J.I. Ramos and Francisco J. Blanco– Rodríguez

[Mathematical](#page-9-0) formulation

[Numerical](#page-12-0) method

[Numerical](#page-18-0)

Two– dimensional [model numerical](#page-18-0) results Comparison with [one–dimensional](#page-21-0) model

[Conclusions](#page-22-0)

 $\mathcal{A} \subseteq \mathbb{R} \rightarrow \mathcal{A} \oplus \mathbb{R} \rightarrow \mathcal{A} \oplus \mathbb{R} \rightarrow \mathcal{A} \oplus \mathbb{R}$ QQQ 11 / 19

Two–dimensional equations of the $1 + 1/2D$ model

[ASME-ATI-](#page-0-0)UIT 2010, Sorrento, Italy

J.I. Ramos and Francisco J. Blanco– Rodríguez

[Introduction](#page-2-0)

[Mathematical](#page-9-0) formulation

[Numerical](#page-12-0) method

[Numerical](#page-18-0)

Two– dimensional [model numerical](#page-18-0) results **Comparison** with [one–dimensional](#page-21-0) model

[Conclusions](#page-22-0)

Two–dimensional energy equation

$$
\frac{\partial \hat{T}_i}{\partial \eta} = \frac{1}{2 Q} \frac{1}{\overline{P}_i} \frac{1}{\xi} \frac{\partial}{\partial \xi} \left(\xi \frac{\partial \hat{T}_i}{\partial \xi} \right) \qquad i = 1, 2,
$$

Two-dimensional degree of crystallinity equation

$$
\hat{U}\frac{\partial \mathcal{X}_i}{\partial \eta} = k_{Ai}(0) \exp (a_{2i} \mathcal{S}_i^2) (\mathcal{X}_{\infty,i} - \mathcal{X}_i), \qquad i = 1, 2,
$$

Effective dynamic viscosity

$$
\hat{\mu}_{eff,i} = \hat{G}_i \, \exp\left(\hat{E}_i \left(1 - \hat{T}_i\right) + \beta_i \left(\frac{\mathcal{X}_i}{\mathcal{X}_{\infty,i}}\right)^{n_i}\right) \qquad i = 1, 2.
$$

Molecular orientation tensor components equations **ASME-ATI-UIT**

[ASME-ATI-](#page-0-0)UIT 2010, Sorrento, Italy

J.I. Ramos and Francisco J. Blanco– Rodríguez

[Mathematical](#page-9-0) formulation

[Numerical](#page-12-0) method

[Numerical](#page-18-0)

Two– dimensional [model numerical](#page-18-0) results Comparison with [one–dimensional](#page-21-0) model

[Conclusions](#page-22-0)

$$
\mathcal{U}\frac{\partial S_{irr}}{\partial \eta} = \left(S_{irr} + \frac{1}{3}\right)\left(S_{irr} + S_{i\theta\theta} + S_{ixx} - 1\right)\frac{d\mathcal{U}}{d\eta}
$$

$$
-\frac{\phi}{\lambda}\left\{S_{irr} - N\left[\left(S_{irr} + \frac{1}{3}\right)\left(S_{irr} - \Pi_{is}\right)\right]\right\}, \qquad i = 1, 2,
$$

$$
\mathcal{U}\frac{\partial S_i\theta\theta}{\partial\eta} = \left(S_i\theta\theta + \frac{1}{3}\right)(S_{irr} + S_i\theta\theta + S_{ixx} - 1)\frac{d\mathcal{U}}{d\eta}
$$

$$
-\frac{\phi}{\lambda}\left\{S_i\theta\theta - N\left[\left(S_i\theta\theta + \frac{1}{3}\right)(S_i\theta\theta - \Pi_{is})\right]\right\}, \qquad i = 1, 2,
$$

$$
\mathcal{U}\frac{\partial S_{i\,xx}}{\partial \eta} = \left(S_{i\,xx} + \frac{1}{3}\right)(S_{irr} + S_{i\,\theta\theta} + S_{i\,xx} + 2)\frac{d\mathcal{U}}{d\eta}
$$

$$
-\frac{\phi}{\tilde{\lambda}}\left\{S_{i\,xx} - N\left[\left(S_{i\,xx} + \frac{1}{3}\right)(S_{i\,xx} - \Pi_{i\,s})\right]\right\}, \qquad i = 1, 2,
$$

 $\Pi_{is} = S_{irr}^2 + S_{i\theta\theta}^2 + S_{ixx}^2$.

 $A \equiv \mathbf{1} \times \mathbf{1} + \mathbf{1} \$ QQQ 13 / 19

Two–dimensional velocity field ($\overline{B} = 5$)

J.I. Ramos and Francisco J. Blanco– Rodríguez

[Mathematical](#page-9-0) formulation

[Numerical](#page-12-0) method

[Numerical](#page-18-0) results

Two– dimensional [model numerical](#page-18-0) results

Comparison with [one–dimensional](#page-21-0) model

[Conclusions](#page-22-0)

 $\mathcal{U}(\hat{r},\hat{z})$ and $\mathcal{V}(\hat{r},\hat{z})$ $A \equiv \mathbf{1} \times \mathbf{1} + \mathbf{1} \$ QQQ 14 / 19

Influence of Biot number on cooling process

[ASME-ATI-](#page-0-0)UIT 2010, Sorrento, Italy

J.I. Ramos and Francisco J. Blanco– Rodríguez

[Mathematical](#page-9-0) formulation

[Numerical](#page-12-0) method

[Numerical](#page-18-0)

Two– dimensional [model numerical](#page-18-0) results

Comparison with
one[one–dimensional](#page-21-0) model

[Conclusions](#page-22-0)

 $\bar{B} = 1$ $\bar{B} = 5$ $A \cap B \rightarrow A \cap B \rightarrow A \subseteq B \rightarrow A \subseteq B$ QQQ 15 / 19

Analysis of the 2D model

J.I. Ramos and Francisco J. Blanco– Rodríguez

[Mathematical](#page-9-0) formulation

[Numerical](#page-12-0)

[Numerical](#page-18-0) results

Two– dimensional [model numerical](#page-18-0) results

Comparison with
one[one–dimensional](#page-21-0) model

[Conclusions](#page-22-0)

 $\hat{r} = 0$ (-), $\hat{r} = \mathcal{R}_1^-$

 $\eta = 0$ (–), $\eta = 0, 1$ (– –) and $\eta = 1$ (– · –) 2990 $A \cap B \rightarrow A \cap B \rightarrow A \subseteq B \rightarrow A \subseteq B$ 16 / 19

1D model vs 2D model **ASME-ATI-UIT**

[Conclusions](#page-22-0)

1D (–) and 2D $(- -)$ $\mathcal{A} \subseteq \mathcal{P} \rightarrow \mathcal{A} \oplus \mathcal{P} \rightarrow \mathcal{A} \oplus \mathcal{P} \rightarrow \mathcal{A} \oplus \mathcal{P}$ QQQ 17 / 19

[ASME-ATI-](#page-0-0)UIT 2010, Sorrento, Italy

J.I. Ramos and Francisco J. Blanco– Rodríguez

[Introduction](#page-2-0)

[Mathematical](#page-9-0) formulation

[Numerical](#page-12-0)

Two– dimensional [model numerical](#page-18-0) results **Comparison** with [one–dimensional](#page-21-0) model

[Conclusions](#page-22-0)

Contributions of the present work:

- **1** Development of a $1 + 1/2D$ model for both amorphous and semicrystalline fibres with modified Newtonian rheology.
- 2 Validation of applicability range of the 1D model with the $1 + 1/2D$ one for slender fibres.
- 3 Determination of the two–dimensional fields of temperature, molecular orientation tensor and degree of crystallinity for solid compound fibres.
- 4 Find substantial temperature non–uniformities (affect the degree of crystallization and have great effects on the properties of compound fibres) in the radial direction exist even at small Biot numbers.

About the authors...

[ASME-ATI-](#page-0-0)UIT 2010, Sorrento, Italy

J.I. Ramos and Francisco J. Blanco– Rodríguez

[Introduction](#page-2-0)

[Mathematical](#page-9-0) formulation

Two– dimensional [model numerical](#page-18-0) results **Comparison** with [one–dimensional](#page-21-0) model

[Conclusions](#page-22-0)

Francisco J. Blanco-Rodríguez e-mail: fjblanco@lcc.uma.es website: <http://www.lcc.uma.es/~fjblanco> J. I. Ramos e-mail: jirs@lcc.uma.es

Document created by LATEX(Beamer class).

THANK YOU FOR YOUR ATTENTION