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ABSTRACT

In this paper, we present a two—dimensional model of the @yithmics, heat transfer, molecular orientation and cltizéion
processes that occur in the manufacture of semi—crystatiimpound fibres by melt—spinning processes. The modebgmpl
a Newtonian rheology, includes the effects of both tempeeaand flow—induced crystallization, and accounts for ffexts of
the molecular orientation on both the stress tensor andrifs¢adlization through a Doi—Edwards formulation. It isogin that,
even at moderate low Biot numbers, the temperature acresthpound fibre is not uniform owing to the heat loss and taerm
boundary layer at the cladding’s outer interface. Howeter cross—sectional averaged temperature exhibits the gaatitative
trends as those of an asymptotic one—dimensional modehvi$icalid for slender fibres at low Reynolds and Biot numbers.

INTRODUCTION of bicomponent fibres consisting of poly (ethylene terephth
late) (PET) in the core and polypropelene (PP) in the clagidin
In the fabrication of bi—-component textile, electricallgrne by means of simple, one—dimensional equations of massrline

ducting, optical or reinforced fibres, two polymers are co— momentum and energy conservation, and included both Newto-
extruded through a small hole in a plate into ambient airtmfo  nian and upper—convected Maxwell rheologies and drag on the
a compound fibre. These fibres consist of a core and a claddindibre.
of, in general, different characteristics that are eitheérugled An asymptotic one—dimensional model of semi—crystalline,
trough an annular nozzle or are produced by heating a performbi—component fibres that includes molecular orientatiod an
to above its melting temperature and then extruding thel-resu crystallization but does not include the latent heat of tatjiza-
ting melt trough an annular nozzle. In some of these fibres, th tion was developed by the one of the authors [7]. Such a model
cladding material either protects the core, serves as aguie is governed by one—dimensional partial differential euurest
in signal transmission or is a more costly material than trec  for the leading—order (in the slenderness ratio) geomaxig|
with more desirable surface properties. Depending on thre-ex  velocity component and temperature that were derived ftam t
sion conditions and the rheology of the core and cladding, th conservation equations of mass, linear momentum and energy
compound fibre may swell after exiting the nozzle. under the assumptions that the fibre is slender and the Ri=ynol
The properties of plastic products manufactured by heatingand Biot numbers are small. The effects of the molecular ori-
the polymer to above its melting temperature and then defor-entation and crystallization were added to this model by con
ming the melt while simultaneously cooling it, depend on the sidering two transport equations for these two quantitiise
processing conditions to which the polymer is subject dyitis molecular orientation model was based on Doi’s theory for li
manufacture. Furthermore, depending on the moleculac-stru quid crystalline polymers, while the crystallization kiies used
ture and processing conditions, the final product can belieei  Avrami—Kolmogorov's theory [8; 9] with Ziabicki's model {1
an amorphous or semi—crystalline state. Polymers thatrare u for the coupling between the crystallinity and the polymes o
able to crystallize on cooling below their glass transitiem- entation, and Kikutani’s empirical law [11; 12] was empldye
perature, form amorphous solids, and, if these solids anedd to relate the elongational viscosity of the melt to the deg®
by deforming the polymer while cooling it through the glass crystallinity. In this paper, we present a two—dimensionadtel
transition temperature, they can exhibit strong anisgtrop of semi—crystalline bi—-component fibre spinning procedisats
Previous studies of bi—-component fibres have been mainlyuses a modified Newtonian rheology, accounts for the degrees
concerned with one—dimensional models of amorphous, stend of molecular orientation and crystallization, and allowsde-
fibres at low Reynolds numbers based on either simplified mo-termine the radial variations of these quantities acros&tm-
dels, Taylor’s series expansion or an asymptotic analyfdisso ~ pound fibre.
full governing equations that uses the slenderness ratibeas
small perturbation parameter. In addition, these studé® h
been mainly concerned with isothermal flows [1; 2; 3; 4; 5].
Non—isothermal studies of bicomponent fibres include that o
Kikutani et al. [6] who modelled the high—speed melt spiignin

MATHEMATICAL FORMULATION

We consider an axisymmetric, bi—-component or compound
liquid jet such as the one shown schematically in Fig. 1, isans



ting of two immiscible, incompressible (constant densitgly- which indicates that the dynamic viscosity increases egpen
mers. The inner (subscript 1) and outer (subscript 2) jetese tially with the temperature fof < Tp.

pond to 0<r < Ry(t,x) = R(t,x) andRy(t,x) <r < Ra(t,x), Polymer molecules that form liquid—crystalline phasesin s
respectively. In order to model the fluid dynamics, heatdfan lution generally have rigid backbones and consequently hav
molecular orientation and crystallization processesdbatir in rod-like or disk—like shapes. In this paper, we model the so-
the manufacture of semi—crystalline compound fibres, we hav lution of rod-like polymers as an ensemble of rigid dumkbell
assumed that the rheology of the core and cladding is Newto-suspended in a Newtonian solvent. In such a solution, the de-
nian. Furthermore, we shall be concerned with the processewiatoric stress tensor is assumed to be

that occur beyond the swelling section=f 0) where the exter-

nal radius of the fibre is a decreasing function of the axisd di

tance and where cooling due to forcing of the surrounding me-

dia and radiation cause a radial temperature distributinoss

each section of the fibre which, in turn, results in a radislasa ~ Where
tion of the dynamic viscosity of the materials.

T= et t(OvV+ (OV)T) 4 1p, i=1,2, (5)

T, = 3ckeT (~AF(S)/+ (V)T :S)(S+1/3)).  (6)

L]

andl is the identity or unit tensor arxdfollows, as the dynamic
viscosity, an Arrhenius fashion,

7\i = )\i,oeXp((AJi ((Tm)i — T,)) i = 1, 2. (7)

Taking moments of the probability density function for the
molecular orientation and modelling the fourth—order motae
in terms of second-order ones, result in the following pérti
differential equation for the molecular orientation tenatich
depends on the strain rate and the relaxation of the molecula
chains,

Figure 1. Schematic of a compound fibre. dS

5 tv-Os= (OV)T-S+S-Ov+F(S)+G(0v,S),  (8)

The fluid dynamics of bicomponent fibres are governed by whereSis traceless,

the two—dimensional conservation equations of mass (9ati
momentum (2) and energy (3), F(S) = —~((1—N/3)S—N(S-S)+N(S: S)(S+1/3)), (9)

>18

O.vi=0 i=12 1)

G(Ov,S) = (Ov+ (Ov)T)/3—2((0v)T : S)(S+1/3), (10)

pi <% V- Dvi) = —Opi+0-1i+p-fM i=12 (2 andN is a dimensionless measure of the polymer number den-
sity (c) and is directly proportional to the excluded volume
between two rigid rods where each rod represents a polymer
molecule, 0< @ < 1 is a nondimensional parameter related
to the friction tensor@ = 1 corresponds to an isotropic fric-
piCi (@ FRVE DTi) — kAT, i=12 (3) tion tensor and smgller values @fcorresponds to.increasing
ot the ratio of the resistance encountered perpendiculartheo
dumbbell to that encounter parallel to the axis of the durtipbe
wherev = ug + v andf™ = gé,. Doi’s equation for the molecular orientation tensor cooasls

In the model presented here, we shall assume that the dent® changingg/A for 6Dr whereDr is an averaged rotational
sity, specific heat, thermal conductivity and surface mmsire  diffusion coefficient, and =< uu—1/3 > whereu denotes the
constant, and that the gases surrounding the outer jet are dymolecular orientation vector. The molecular orientati@mgs
namically passive. The latter assumption can be justifieel du Meters is defined by
to the small density and dynamic viscosity of gases compared

with those of liquids. In addition, it is assumed that the dy- 3

namic viscosity of the two components of the fibre depends on S=1\3 (S:9). (11)
a linearized Arrhenius fashion on the temperature, and ean b

written as

In order to account for the effects of both amorphous and-crys
talline phases, we have assumed that the semi—crystalite m
Hi(Ti) = Diexp(Hi ((Tm)i — Ti)) i=12 4) rials that compose the core and cladding behave as singleeph



fluids where the degree of crystallizatioki)(has been modelled
by means of Ziabicki's model [12], i.e.,

0Xi

=12
at !

) 3

+ V- 0X = Kai(§) (Xeojj — Xi) (12)

where kai(S) = kai(0)expazs?) is the linearized crystal
growth rate. The effective viscosity that appears in Eq.cés)

be written as
nj
))

where3 and n are material-dependent, e.§;,= 4.605 and
ni = 12 for nylon—-663; = 4 andn; = 2 for PET, and the effects
of crystallization on the effective dynamic viscosity hdexen
assumed to be multiplicative. Equation (13) indicates, timat
addition to the contribution of the molecular orientatiorntte
deviatoric stress tensor (cf. Eq. (5)), the degree of chijzta
tion affects the effective viscosity and, therefore, thevibmian
stress tensor (cf. Eq. (5)).

In this paper, it is assumed that the molecular orientation
tensor is symmetric and, therefore, has only six components
However, since this tensor is traceleSg ¢ Sg + S« = 0), one

Xi

KXo j

Hetti = Mi(Ti)exp (Bi ( =12, (13)

NUMERICAL METHOD

For slender fibress = Ry/L << 1, it is convenient nondi-
mensionalize the variables x, t, u, v, p, T, p, C, g andk
with respect toRy, L, to = L/up, Ug, Vo = €Ug, Po = HoUo/L,

To, Po, Co, o andkg respectively, wher&; is the die exit radius
andL is the distance between the die exit and take—up location.
With this nondimensionalization, the dimensionless patans
governing the problem are the Reynol&g= %, Froude,

2 . .
Fr= ;—go, capillarity,Ca= ¥°0, PecletPe= (%) upRo and

Biot, Bi = 2R numbers.

For steaéy—state slender fibres at low Reynolds and Biot
numbers, it can be easily shown by means of perturbation me-
thods based on the slenderness ratio that the leading-aodidér
velocity component is only a function afdhd the dimension-
less volumetric flow rates for the core and cladding are

20\ _ p2(g
o, RO - RZ®)

5 (

X), (16)

U(X)

wheregR;, = % andU = “t—(ox) T
In this paper, we are only concerned with steady state con-

ditions and the numerical solution of the equations governi

the two—dimensional free—surface model for semi—crystall

of the components in the main diagonal can be related to thecompound fibres presented in the last section was obtained

other two and, therefore, it only has five different compdaen
Moreover, for slender fibres, it is an easy exercise usintuper
bation methods based on the slenderness rajithét S« must

as follows. First, the following transformatiam,x) — (&,n)
for the inner and outer jets, whefe= - andn = X, was

(%)
employed to map the curvilinear geometries of the inner and

be O(g), and, therefore, this component does not appear in theg ter fibres into rectangles, i.60, ®1(X)] — [0,/Q1/Q] and

(one—dimensional) equations at leading—order in the siend
ness ratio. Furthermore, by assuming ®gt= S¢ = 0 whered
denotes the azimuthal coordinate, the molecular orientadin-

sor becomes diagonal with only two independent components
If, in addition, Sy = Sgg = —Sx/2 = —5/3, the resulting tensor

is proportional to the leading—order velocity tensor fansler
fibres and the stress tensoadopts a expression like

T=fert(Ov+(OV)T), i=1,2 (14)

where

Xi

n; 2
mei) )+§ui)\iTi5i2. (15)

Pefti= M‘(Ti)eXp(Bi (

Equations (8) and (12) together with the Navier—Stokes-equa
tions (1-3) and Eq. (13), govern the fluid dynamics of semi—
crystalline compound fibres and are subject to specifiedieond
tions at the nozzle exik = 0, downstream or take—up location,
x = L, initial conditions and symmetry boundary conditions at
centerliner = 0. In addition, at the to—be—determined core—
cladding,r = Ry(t,x), and cladding—surrounding= Ra(t, ),
interfaces where these are assumed to be material surface
kinematic and dynamic boundary conditions that specify the
continuity of axial and radial velocity components and t&mg
tial stresses, and the balance of the normal stress differeith
surface tension, must be applied. Moreover, atRy, there is
continuity of temperatures and heat flux, whilerat Ry, the

[®1(%), Ro(X)] — [/Q1/Q, 1], respectively, wher@ = Q1 + Q
denotes the nondimensional volumetric flow rate of the com-
pound jet. Under these conditions, the axial momentum equa-
tion is one—dimensional and of the advection—diffusionetyp
whereas the continuity equations for the core and claddifiyy (
provide ®;(X) and R(X). The equation for the molecular ori-
entation tensor and the degree of crystallization are tgdier

and can be solved by means of an implicit method, whereas
the (two—dimensional) energy equation is of the advection—
diffusion type and was solved iteratively in the radial difen

in grids consisting of 1001 and 301 points in the axial andalad
directions (101 for the core and 201 for the cladding), respe
tively, until theL, norm of the differences between the solutions
in two successive iterations was less than or equal t6.10

NUMERICAL RESULTS

Some sample two—dimensional results of the axisymmetric
melt spinning model for semi—crystalline compound fibres-de
cribed above are presented here and correspond to the same
thermal conductivities and pre—exponential factors arnyac
tion energies of the dynamic viscosity for the core and dlagid
no surface tension, a constant film—heat transfer coeffitien
gorresponds to Biot numbers equal to one and five, and unity
Reynolds and Froude numbers. By imposiRg0) = 1 and
Q1 = 0.5 (we have used the same nondimensional volumetric
flow for the core and the claddin@: = Q2 ), the nondimen-
sional axial velocity (cf. Eq. (16)) at the die exit is unitg.the
cases considered here, the draw rdiig, the relation between

heat flux from conduction in the cladding was assumed to bethe axial velocity at the take—up location and that at thezteoz

equal toh(T (t, Rz, x) — Te) and the film heat transfer coefficient
h could depend on the local Reynolds and Prandtl numbers [13]

exitis 100. The relevant simulation parameters are sunneri

in Table 1 wheréPg = Pe(piT_Q).



Table 1. Simulation parameters.

Case Hy H, Pe Pe Bi % %i @ 1/Ca 0 05 1 15
1 30 30 1 5 5 1 1 0.5 0
2 30 30 1 5 1 1 1 0.5 0 02 no

0.4 70

0.4 +-40

The other parameters of the problem have been selected as E
Ni=4,0i=5a1=10,a2=5Ap=1w =0, X =038, : 50
=123 =4, 2 =1,ka1(0) = kaz(0) = 0.005, andT,, = 0. 06 i 0 06

- H60

5-60

' O -80

The following parabolic profile for the temperature of the
compound fibre at the die exif) & 0) was imposed

30
20 -100

0.8
-120

f(aao): 2 1 1
- i<¢<
£) ) G @ (b)

> .
whereg; = , / % andAr < (ﬁ) (%) becausd (1,0) >0, and Figure 2. Two-dimensional nondimensional axial velocity (a) and radial

the molecular orientation parameter velocity (b) for Case 1.
g 2
slo—ASL(l—Z(g)) 0<E<
S(E.0)= ) (18)
S0+ A 1—T(E—1)(Ei—ﬁ) Li<é<1
()
where Asi < min(Sp,1 — So) for i = 1,2. For the results

presented in the next sectiofyt = 0.1 and (Sio, As1) =
(0.25,0.10) and (S0, As2) = (0.50,0.20) have been used.

Two—dimensional model numerical results

Figure 2 illustrates that the axial velocity componéat is
uniform across the compound fibre, while the radial gngeis
directed towards the symmetry axis£"— 594, cf. Eq. (1)) at
a rate which first increases and then decreases along the fibre
before it reaches a nil value upon crystallization.

Figure 3 exhibits the thermal boundary layer which is formed
at the cladding—surrounding medium interface for both &mu
tion cases and shows that the temperature of the core isynearl (@) (b)
uniform in the radial direction up to an axial distance eduoal
about one half and one quarter of the length of the fibre fazxas
1 and 2, respectively. Figure 3 also shows that the contracti
of the compound fibre increases as the Biot number is incdease
on account of the increase in the dynamic viscosity due to the
increase in the heat transfer at this number is increasethand
no radial dependence of the axial velocity. Figure 3 alsd-ind cosity of the fibre increases by almost five orders of mageitud
cates that the thermal penetration depth is roughly prapat ~ from the swelling section to the take—up location.
to the Biot number.

Figure 4 shows that, for the conditions considered here, theComparison with the one—dimensional model
degree of crystallization is mainly a function of the tengiare,

i.e., itincreases as the temperature decreases, in acibrthey In this subsection, we compare the results obtained with
thermal formulation corresponding to the Avrami—Kolmogwr  the two—dimensional model presented here with those of the
crystallization formalism, and depends very little on tiegike asymptotic one—dimensional model [5] that uses the slewdsr

of molecular orientation and the flow strain. This is due t® th ratio (€ = Ry/L) as a perturbation parameter and results in a set
rapid molecular orientation observed in Fig. 5 and the léamge  of one—dimensional equations for the fibre’s radii, axidbegy
crease in dynamic viscosity of both the core and the claddingcomponent and temperature; however, the temperature of the
(cf. Fig. 5). Figure 5 also shows that the effective dynande v one—dimensional model employed here is the cross—selijiona

Figure 3. Nondimensional thermal fields for (a) Case 1 (Bi = 5) and
(b) Case 2 (Bi=1).



temperature and the hyperbolic equations for the molecuiar
entation and degree of crystallization. This 2D model shows
that the temperature of the core is higher than that of the
cladding because of heat losses. Figure 6 shows that the axia
velocity exhibits a sigmoid shape characterized by a pa@siti
slope that levels off at about a non—dimensional distanme fr
the nozzle equal to.B. From Fig. 6, it can be concluded that
the 2D model yields a cross—sectionally averaged temperatu
that exhibits the same qualitative features as that of thee-on
dimensional model. However, the 1D model is not able to pre-
dict accurately the temperature near the symmetry axis ead n
the cladding—surrounding medium. It must be noted that de-
spite these temperature differences between the 1D and 2D mo
dels near the symmetry axis and at the cladding’s outerceyrfa
there is very little effect on the fibre’s geometry and axielos

city which are determined from one—dimensional equatibas t
employ cross—sectionally averaged temperatures.

0.8

20 0.4

Figure 4. (From left to right, from top to bottom) Temperature, molecular .
Ri1,R2 u T

orientation parameter, degree of crystallization and (decimal logarithm 0 115 0 50 100 0608 1

of) dynamic viscosity at the “die exit” (X = 0) (-), X= 0.1 (- -) and
take—up point, X = 1 (- - -) for Case 1.
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Figure 6. Comparison between one—dimensional (-) and two—

dimensional models (— - —) for Case 1.
Figure 5. (From left to right, from top to bottom) Temperature, mole-
cular orientation parameter, degree of crystallization and (decimal loga-
rithm of) dynamic viscosity at the axis (f = 0) (-), core—cladding internal For the conditions examined here and others not presented
interface (f = R;") (- -) and air—cladding interface (f = Rp) (- -) for in this paper, it has been observed that the molecular arient
Case 1. tion parametets reaches a value equal to unity very close to

the section of maximun swell, i.ex, = 0, and may decrease

slightly after that if the source term in the equation fosstha-
average of that of the two—dimensional model. Since theserameter which depends on the velocity gradient is smalkm th
averaged temperature includes the radial variations offttle  the Maier—Saupe potential associated with the relaxatidineo
mal fields at, especially, the inner—outer fibre and outeefibr  molecular chains. It must be noted that,fqr= Ag = Ag =0,
surrounding medium interfaces and the formulation of thetw  j.e., uniform distribution of the temperature and molecaia-
dimensional model is also valid for large Biot numbers, what entation parameter at the maximun swell section, thereeave f
is referred to here as one—dimensional model is not the samejifferences between the degrees of crystallization ptediby

as the asymptotic model [5] which requires small Reynolds an the 1D and 2D models because the temperature at the swelling
Biot numbers and vyields, at first—order in the slenderness ra section is assumed to be uniform.

tio, a uniform temperature field at each axial location altrey

compound fibre. CONCLUSIONS
As indicated above, the two—dimensional model uses one—
dimensional equations for the geometry and axial velod@ty¢ A single—phase two—dimensional model of the spinning of

ponent but solves the 2D advection—diffusion equationffier t semi—crystalline compound fibres that employs a Newtonian



rheology modified by the degrees of crystallization and mole
cular orientation and temperature through an effectiveadyin
viscosity, and accounts for the molecular orientation &f lih
quid crystalline polymer through an orientation tensot the

X» Ultimate degree of crystallinity-

o Relation between kinetic energy and internal enerpy [
B Crystallization viscosity rate]

pends on the velocity field, has been proposed. For slender fi£ Slenderness ratio][

bres and very low Biot numbers, an asymptotic analysis gield
one—dimensional equations for the leading—order axialos),
temperature, orientation parameter and degree of crigstall
tion provided that the molecular orientation tensor is diza

at leading order in the slenderness ratio. For higher Biotnu
bers or when the orientation tensor is not diagonal at leadin
order, the two-dimensional model was solved numericalig, a
its results indicate that substantial temperature norfetmities

in the radial direction exist even at moderately low Biot rum
bers. These non—uniformities affect the degree of crysall

n Mapping of the nondimensional axial coordinafe [

08 Azimuthal coordinate-]

A Relaxation time§]

Ao Relaxation time at melting temperatusg [

i Dynamic viscosity N/nm?s]

Mapping of the nondimensional radial coordinaie [
Density kg/m°]

Surface tensiorN/m]

Stress tensoiN/m?]

¢ Dimensionless parameter related to the friction tengor [

3
p
o
T

tion and may have great effects on the mechanical, eleGtrica @ Activation temperature for the relaxation time/K]

etc., properties of compound fibres. For very slender fibnels a

small Biot numbers, good agreement between the leadingrord o
one—dimensional model and the two—dimensional one has beenff

observed. It was found that the crystallization of the commb
fibre was mostly affected by thermal effects rather than by-flo
induced ones for the conditions considered here.
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