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ABSTRACT
In this paper, we present a two–dimensional model of the fluiddynamics, heat transfer, molecular orientation and crystallization
processes that occur in the manufacture of semi–crystalline compound fibres by melt–spinning processes. The model employs
a Newtonian rheology, includes the effects of both temperature and flow–induced crystallization, and accounts for the effects of
the molecular orientation on both the stress tensor and the crystallization through a Doi–Edwards formulation. It is shown that,
even at moderate low Biot numbers, the temperature across the compound fibre is not uniform owing to the heat loss and thermal
boundary layer at the cladding’s outer interface. However,the cross–sectional averaged temperature exhibits the same qualitative
trends as those of an asymptotic one–dimensional model which is valid for slender fibres at low Reynolds and Biot numbers.

INTRODUCTION

In the fabrication of bi–component textile, electrically con-
ducting, optical or reinforced fibres, two polymers are co–
extruded through a small hole in a plate into ambient air to form
a compound fibre. These fibres consist of a core and a cladding
of, in general, different characteristics that are either extruded
trough an annular nozzle or are produced by heating a perform
to above its melting temperature and then extruding the resul-
ting melt trough an annular nozzle. In some of these fibres, the
cladding material either protects the core, serves as a waveguide
in signal transmission or is a more costly material than the core
with more desirable surface properties. Depending on the extru-
sion conditions and the rheology of the core and cladding, the
compound fibre may swell after exiting the nozzle.

The properties of plastic products manufactured by heating
the polymer to above its melting temperature and then defor-
ming the melt while simultaneously cooling it, depend on the
processing conditions to which the polymer is subject during its
manufacture. Furthermore, depending on the molecular struc-
ture and processing conditions, the final product can be in either
an amorphous or semi–crystalline state. Polymers that are un-
able to crystallize on cooling below their glass transitiontem-
perature, form amorphous solids, and, if these solids are formed
by deforming the polymer while cooling it through the glass
transition temperature, they can exhibit strong anisotropy.

Previous studies of bi–component fibres have been mainly
concerned with one–dimensional models of amorphous, slender
fibres at low Reynolds numbers based on either simplified mo-
dels, Taylor’s series expansion or an asymptotic analysis of the
full governing equations that uses the slenderness ratio asthe
small perturbation parameter. In addition, these studies have
been mainly concerned with isothermal flows [1; 2; 3; 4; 5].
Non–isothermal studies of bicomponent fibres include that of
Kikutani et al. [6] who modelled the high–speed melt spinning

of bicomponent fibres consisting of poly (ethylene terephtha-
late) (PET) in the core and polypropelene (PP) in the cladding
by means of simple, one–dimensional equations of mass, linear
momentum and energy conservation, and included both Newto-
nian and upper–convected Maxwell rheologies and drag on the
fibre.

An asymptotic one–dimensional model of semi–crystalline,
bi–component fibres that includes molecular orientation and
crystallization but does not include the latent heat of crystalliza-
tion was developed by the one of the authors [7]. Such a model
is governed by one–dimensional partial differential equations
for the leading–order (in the slenderness ratio) geometry,axial
velocity component and temperature that were derived from the
conservation equations of mass, linear momentum and energy
under the assumptions that the fibre is slender and the Reynolds
and Biot numbers are small. The effects of the molecular ori-
entation and crystallization were added to this model by con-
sidering two transport equations for these two quantities.The
molecular orientation model was based on Doi’s theory for li-
quid crystalline polymers, while the crystallization kinetics used
Avrami–Kolmogorov’s theory [8; 9] with Ziabicki’s model [10]
for the coupling between the crystallinity and the polymer ori-
entation, and Kikutani’s empirical law [11; 12] was employed
to relate the elongational viscosity of the melt to the degree of
crystallinity. In this paper, we present a two–dimensionalmodel
of semi–crystalline bi–component fibre spinning processesthat
uses a modified Newtonian rheology, accounts for the degrees
of molecular orientation and crystallization, and allows to de-
termine the radial variations of these quantities across the com-
pound fibre.

MATHEMATICAL FORMULATION

We consider an axisymmetric, bi–component or compound
liquid jet such as the one shown schematically in Fig. 1, consis-



ting of two immiscible, incompressible (constant density)poly-
mers. The inner (subscript 1) and outer (subscript 2) jets corres-
pond to 0≤ r ≤ R1(t,x) ≡ R(t,x) andR1(t,x) ≤ r ≤ R2(t,x),
respectively. In order to model the fluid dynamics, heat transfer,
molecular orientation and crystallization processes thatoccur in
the manufacture of semi–crystalline compound fibres, we have
assumed that the rheology of the core and cladding is Newto-
nian. Furthermore, we shall be concerned with the processes
that occur beyond the swelling section (x = 0) where the exter-
nal radius of the fibre is a decreasing function of the axial dis-
tance and where cooling due to forcing of the surrounding me-
dia and radiation cause a radial temperature distribution across
each section of the fibre which, in turn, results in a radial varia-
tion of the dynamic viscosity of the materials.

Figure 1. Schematic of a compound fibre.

The fluid dynamics of bicomponent fibres are governed by
the two–dimensional conservation equations of mass (1), linear
momentum (2) and energy (3),

∇ ·vi = 0 i = 1, 2, (1)

ρi

(

∂vi

∂t
+vi ·∇vi

)

= −∇pi + ∇ · τi + ρi · fm
i i = 1, 2, (2)

ρi Ci

(

∂Ti

∂t
+vi ·∇Ti

)

= ki ∆Ti i = 1, 2, (3)

wherev = uêx +vêr andfm = gêx.
In the model presented here, we shall assume that the den-

sity, specific heat, thermal conductivity and surface tension are
constant, and that the gases surrounding the outer jet are dy-
namically passive. The latter assumption can be justified due
to the small density and dynamic viscosity of gases compared
with those of liquids. In addition, it is assumed that the dy-
namic viscosity of the two components of the fibre depends on
a linearized Arrhenius fashion on the temperature, and can be
written as

µi(Ti) = Di exp(Hi ((Tm)i −Ti)) i = 1, 2, (4)

which indicates that the dynamic viscosity increases exponen-
tially with the temperature forT < Tm.

Polymer molecules that form liquid–crystalline phases in so-
lution generally have rigid backbones and consequently have
rod–like or disk–like shapes. In this paper, we model the so-
lution of rod–like polymers as an ensemble of rigid dumbbells
suspended in a Newtonian solvent. In such a solution, the de-
viatoric stress tensor is assumed to be

τ = µe f f(∇v+(∇v)T)+ τp, i = 1, 2, (5)

where

τp = 3ckBT(−λF(S)/φ+2λ((∇v)T : S)(S+ I/3)), (6)

andI is the identity or unit tensor andλ follows, as the dynamic
viscosity, an Arrhenius fashion,

λi = λi,0exp(ωi ((Tm)i −Ti)) i = 1, 2. (7)

Taking moments of the probability density function for the
molecular orientation and modelling the fourth–order moments
in terms of second–order ones, result in the following partial
differential equation for the molecular orientation tensor which
depends on the strain rate and the relaxation of the molecular
chains,

∂S
∂t

+v ·∇S= (∇v)T
·S+S·∇v+F(S)+G(∇v,S), (8)

whereS is traceless,

F(S) = −
φ
λ
((1−N/3)S−N(S·S)+N(S: S)(S+ I/3)), (9)

G(∇v,S) = (∇v+(∇v)T)/3−2((∇v)T : S)(S+ I/3), (10)

andN is a dimensionless measure of the polymer number den-
sity (c) and is directly proportional to the excluded volume
between two rigid rods where each rod represents a polymer
molecule, 0≤ φ ≤ 1 is a nondimensional parameter related
to the friction tensor (φ = 1 corresponds to an isotropic fric-
tion tensor and smaller values ofφ corresponds to increasing
the ratio of the resistance encountered perpendicularly tothe
dumbbell to that encounter parallel to the axis of the dumbbell).
Doi’s equation for the molecular orientation tensor corresponds
to changingφ/λ for 6DR whereDR is an averaged rotational
diffusion coefficient, andS=< uu− I/3> whereu denotes the
molecular orientation vector. The molecular orientation para-
meterS is defined by

S =

√

3
2

(S : S). (11)

In order to account for the effects of both amorphous and crys-
talline phases, we have assumed that the semi–crystalline mate-
rials that compose the core and cladding behave as single–phase



fluids where the degree of crystallization (X ) has been modelled
by means of Ziabicki’s model [12], i.e.,

∂Xi

∂t
+v ·∇Xi = kAi(S)(X∞,i −Xi) i = 1, 2, (12)

where kAi(S) = kAi(0)exp(a2iS
2
i ) is the linearized crystal

growth rate. The effective viscosity that appears in Eq. (5)can
be written as

µe f f,i = µi(Ti)exp

(

βi

(

Xi

X∞,i

)ni
)

i = 1, 2, (13)

whereβ and n are material–dependent, e.g.,βi = 4.605 and
ni = 12 for nylon–66,βi = 4 andni = 2 for PET, and the effects
of crystallization on the effective dynamic viscosity havebeen
assumed to be multiplicative. Equation (13) indicates that, in
addition to the contribution of the molecular orientation to the
deviatoric stress tensor (cf. Eq. (5)), the degree of crystalliza-
tion affects the effective viscosity and, therefore, the Newtonian
stress tensor (cf. Eq. (5)).

In this paper, it is assumed that the molecular orientation
tensor is symmetric and, therefore, has only six components.
However, since this tensor is traceless (Srr +Sθθ +Sxx = 0), one
of the components in the main diagonal can be related to the
other two and, therefore, it only has five different components.
Moreover, for slender fibres, it is an easy exercise using pertur-
bation methods based on the slenderness ratio (ε) thatSrx must
beO(ε), and, therefore, this component does not appear in the
(one–dimensional) equations at leading–order in the slender-
ness ratio. Furthermore, by assuming thatSθx = Srθ = 0 whereθ
denotes the azimuthal coordinate, the molecular orientation ten-
sor becomes diagonal with only two independent components.
If, in addition,Srr = Sθθ =−Sxx/2=−S/3, the resulting tensor
is proportional to the leading–order velocity tensor for slender
fibres and the stress tensorτ adopts a expression like

τ = µ̂e f f(∇v+(∇v)T), i = 1, 2, (14)

where

µ̂e f f,i = µi(Ti)exp

(

βi

(

Xi

X∞,i

)ni
)

+
2
3

αi λi Ti S
2
i . (15)

Equations (8) and (12) together with the Navier–Stokes equa-
tions (1–3) and Eq. (13), govern the fluid dynamics of semi–
crystalline compound fibres and are subject to specified condi-
tions at the nozzle exit,x = 0, downstream or take–up location,
x = L, initial conditions and symmetry boundary conditions at
centerliner = 0. In addition, at the to–be–determined core–
cladding,r = R1(t,x), and cladding–surrounding,r = R2(t,x),
interfaces where these are assumed to be material surfaces,
kinematic and dynamic boundary conditions that specify the
continuity of axial and radial velocity components and tangen-
tial stresses, and the balance of the normal stress difference with
surface tension, must be applied. Moreover, atr = R1, there is
continuity of temperatures and heat flux, while, atr = R2, the
heat flux from conduction in the cladding was assumed to be
equal toh(T(t,R2,x)−T∞) and the film heat transfer coefficient
h could depend on the local Reynolds and Prandtl numbers [13].

NUMERICAL METHOD

For slender fibres,ε = R0/L << 1, it is convenient nondi-
mensionalize the variablesr, x, t, u, v, p, T, ρ, C, µ and k
with respect toR0, L, t0 = L/u0, u0, v0 = εu0, p0 = µ0u0/L,
T0, ρ0, C0, µ0 andk0 respectively, whereR0 is the die exit radius
andL is the distance between the die exit and take–up location.
With this nondimensionalization, the dimensionless parameters
governing the problem are the Reynolds,Re= ρ0 u0R0

µ0
, Froude,

Fr =
u2

0
gR0

, capillarity,Ca= µ0 u0
σ2

, Peclet,Pe=
(

ρ0C0
k0

)

u0R0 and

Biot, Bi = hR0
k2

, numbers.
For steady–state slender fibres at low Reynolds and Biot

numbers, it can be easily shown by means of perturbation me-
thods based on the slenderness ratio that the leading–orderaxial
velocity component is only a function of ˆx and the dimension-
less volumetric flow rates for the core and cladding are

Q1 =
R 2

1 (x̂)
2

U(x̂), Q2 =
R 2

2 (x̂)−R 2
1 (x̂)

2
U(x̂), (16)

whereRi = Ri
R0

andU = u1(x̂)
u0

= u2(x̂)
u0

.
In this paper, we are only concerned with steady state con-

ditions and the numerical solution of the equations governing
the two–dimensional free–surface model for semi–crystalline
compound fibres presented in the last section was obtained
as follows. First, the following transformation(r,x) → (ξ,η)
for the inner and outer jets, whereξ = r̂

R2(x̂) and η = x̂, was
employed to map the curvilinear geometries of the inner and
outer fibres into rectangles, i.e.,[0,R1(x̂)] → [0,

√

Q1/Q] and
[R1(x̂),R2(x̂)]→ [

√

Q1/Q,1], respectively, whereQ= Q1+Q2

denotes the nondimensional volumetric flow rate of the com-
pound jet. Under these conditions, the axial momentum equa-
tion is one–dimensional and of the advection–diffusion type,
whereas the continuity equations for the core and cladding (16)
provideR1(x̂) andR2(x̂). The equation for the molecular ori-
entation tensor and the degree of crystallization are hyperbolic
and can be solved by means of an implicit method, whereas
the (two–dimensional) energy equation is of the advection–
diffusion type and was solved iteratively in the radial direction
in grids consisting of 1001 and 301 points in the axial and radial
directions (101 for the core and 201 for the cladding), respec-
tively, until theL2 norm of the differences between the solutions
in two successive iterations was less than or equal to 10−8.

NUMERICAL RESULTS

Some sample two–dimensional results of the axisymmetric
melt spinning model for semi–crystalline compound fibres des-
cribed above are presented here and correspond to the same
thermal conductivities and pre–exponential factors and activa-
tion energies of the dynamic viscosity for the core and cladding,
no surface tension, a constant film–heat transfer coefficient that
corresponds to Biot numbers equal to one and five, and unity
Reynolds and Froude numbers. By imposingR1(0) = 1 and
Q1 = 0.5 (we have used the same nondimensional volumetric
flow for the core and the cladding,Q1 = Q2 ), the nondimen-
sional axial velocity (cf. Eq. (16)) at the die exit is unity.In the
cases considered here, the draw ratio,Dr , the relation between
the axial velocity at the take–up location and that at the nozzle
exit is 100. The relevant simulation parameters are summarized

in Table 1 wherePei = Pe
(

ρi Ci
ki

)

.



Table 1. Simulation parameters.

Case H1 H2 Pe1 Pe2 Bi k2
k1

D2
D1

φi 1/Ca

1 30 30 1 5 5 1 1 0.5 0

2 30 30 1 5 1 1 1 0.5 0

The other parameters of the problem have been selected as
Ni = 4, αi = 5, a21 = 10,a22 = 5, λi,0 = 1, ωi = 0 ,X∞,i = 0.8,
ni = 12,βi = 4, σ1

σ2
= 1, kA1(0) = kA2(0) = 0.005, andT∞ = 0.

The following parabolic profile for the temperature of the
compound fibre at the die exit (η = 0) was imposed

T̂(ξ,0) =















1+ ∆T

(

1−
(

ξ
ξi

)2
)

0≤ ξ ≤ ξi

1−∆T

(

k̂1
k̂2

)

(

(

ξ
ξi

)2
−1

)

ξi ≤ ξ ≤ 1
(17)

whereξi =
√

Q1
Q and∆T <

(

k̂2
k̂1

)(

Q1
Q2

)

becausêT(1,0) > 0, and

the molecular orientation parameterS

S(ξ,0) =



















S10−∆S1

(

1−2
(

ξ
ξi

)2
)

0≤ ξ ≤ ξi

S20+ ∆S2

(

1− 2
(

1−ξi
2

)2 (ξ−1)(ξi − ξ)

)

ξi ≤ ξ ≤ 1
(18)

where ∆Si < min(Si0,1− Si0) for i = 1, 2. For the results
presented in the next section,∆T = 0.1 and (S10, ∆S1) =
(0.25,0.10) and(S20, ∆S2) = (0.50,0.20) have been used.

Two–dimensional model numerical results

Figure 2 illustrates that the axial velocity component(a) is
uniform across the compound fibre, while the radial one(b) is
directed towards the symmetry axis ( ˆv = −

r̂
2

∂U
∂x̂ , cf. Eq. (1)) at

a rate which first increases and then decreases along the fibre,
before it reaches a nil value upon crystallization.

Figure 3 exhibits the thermal boundary layer which is formed
at the cladding–surrounding medium interface for both simula-
tion cases and shows that the temperature of the core is nearly
uniform in the radial direction up to an axial distance equalto
about one half and one quarter of the length of the fibre for cases
1 and 2, respectively. Figure 3 also shows that the contraction
of the compound fibre increases as the Biot number is increased
on account of the increase in the dynamic viscosity due to the
increase in the heat transfer at this number is increased andthe
no radial dependence of the axial velocity. Figure 3 also indi-
cates that the thermal penetration depth is roughly proportional
to the Biot number.

Figure 4 shows that, for the conditions considered here, the
degree of crystallization is mainly a function of the temperature,
i.e., it increases as the temperature decreases, in accord with the
thermal formulation corresponding to the Avrami–Kolmogorov
crystallization formalism, and depends very little on the degree
of molecular orientation and the flow strain. This is due to the
rapid molecular orientation observed in Fig. 5 and the largein-
crease in dynamic viscosity of both the core and the cladding
(cf. Fig. 5). Figure 5 also shows that the effective dynamic vis-

(a) (b)

Figure 2. Two–dimensional nondimensional axial velocity (a) and radial

velocity (b) for Case 1.

(a) (b)

Figure 3. Nondimensional thermal fields for (a) Case 1 (Bi = 5) and

(b) Case 2 (Bi = 1).

cosity of the fibre increases by almost five orders of magnitude
from the swelling section to the take–up location.

Comparison with the one–dimensional model

In this subsection, we compare the results obtained with
the two–dimensional model presented here with those of the
asymptotic one–dimensional model [5] that uses the slenderness
ratio (ε = R0/L) as a perturbation parameter and results in a set
of one–dimensional equations for the fibre’s radii, axial velocity
component and temperature; however, the temperature of the
one–dimensional model employed here is the cross–sectionally



Figure 4. (From left to right, from top to bottom) Temperature, molecular

orientation parameter, degree of crystallization and (decimal logarithm

of) dynamic viscosity at the “die exit” (x̂ = 0) (–), x̂ = 0.1 (– –) and

take–up point, x̂ = 1 (– · –) for Case 1.

Figure 5. (From left to right, from top to bottom) Temperature, mole-

cular orientation parameter, degree of crystallization and (decimal loga-

rithm of) dynamic viscosity at the axis (r̂ = 0) (–), core–cladding internal

interface (r̂ = R −

1 ) (– –) and air–cladding interface (r̂ = R2) (–· –) for

Case 1.

average of that of the two–dimensional model. Since these
averaged temperature includes the radial variations of thether-
mal fields at, especially, the inner–outer fibre and outer fibre–
surrounding medium interfaces and the formulation of the two–
dimensional model is also valid for large Biot numbers, what
is referred to here as one–dimensional model is not the same
as the asymptotic model [5] which requires small Reynolds and
Biot numbers and yields, at first–order in the slenderness ra-
tio, a uniform temperature field at each axial location alongthe
compound fibre.

As indicated above, the two–dimensional model uses one–
dimensional equations for the geometry and axial velocity com-
ponent but solves the 2D advection–diffusion equation for the

temperature and the hyperbolic equations for the molecularori-
entation and degree of crystallization. This 2D model shows
that the temperature of the core is higher than that of the
cladding because of heat losses. Figure 6 shows that the axial
velocity exhibits a sigmoid shape characterized by a positive
slope that levels off at about a non–dimensional distance from
the nozzle equal to 0.5. From Fig. 6, it can be concluded that
the 2D model yields a cross–sectionally averaged temperature
that exhibits the same qualitative features as that of the one–
dimensional model. However, the 1D model is not able to pre-
dict accurately the temperature near the symmetry axis and near
the cladding–surrounding medium. It must be noted that de-
spite these temperature differences between the 1D and 2D mo-
dels near the symmetry axis and at the cladding’s outer surface,
there is very little effect on the fibre’s geometry and axial velo-
city which are determined from one–dimensional equations that
employ cross–sectionally averaged temperatures.

Figure 6. Comparison between one–dimensional (–) and two–

dimensional models (−·−) for Case 1.

For the conditions examined here and others not presented
in this paper, it has been observed that the molecular orienta-
tion parameterS reaches a value equal to unity very close to
the section of maximun swell, i.e., ˆx = 0, and may decrease
slightly after that if the source term in the equation for this pa-
rameter which depends on the velocity gradient is smaller than
the Maier–Saupe potential associated with the relaxation of the
molecular chains. It must be noted that, for∆T = ∆S1 = ∆S2 = 0,
i.e., uniform distribution of the temperature and molecular ori-
entation parameter at the maximun swell section, there are few
differences between the degrees of crystallization predicted by
the 1D and 2D models because the temperature at the swelling
section is assumed to be uniform.

CONCLUSIONS

A single–phase two–dimensional model of the spinning of
semi–crystalline compound fibres that employs a Newtonian



rheology modified by the degrees of crystallization and mole-
cular orientation and temperature through an effective dynamic
viscosity, and accounts for the molecular orientation of the li-
quid crystalline polymer through an orientation tensor that de-
pends on the velocity field, has been proposed. For slender fi-
bres and very low Biot numbers, an asymptotic analysis yields
one–dimensional equations for the leading–order axial velocity,
temperature, orientation parameter and degree of crystalliza-
tion provided that the molecular orientation tensor is diagonal
at leading order in the slenderness ratio. For higher Biot num-
bers or when the orientation tensor is not diagonal at leading
order, the two-dimensional model was solved numerically, and
its results indicate that substantial temperature non–uniformities
in the radial direction exist even at moderately low Biot num-
bers. These non–uniformities affect the degree of crystalliza-
tion and may have great effects on the mechanical, electrical,
etc., properties of compound fibres. For very slender fibres and
small Biot numbers, good agreement between the leading–order
one–dimensional model and the two–dimensional one has been
observed. It was found that the crystallization of the compound
fibre was mostly affected by thermal effects rather than by flow–
induced ones for the conditions considered here.
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NOMENCLATURE

a2 Constant of the linearized crystal growth rate [·]
c Number of polymeric units per unit volume [1/m3]
C Specific heat [J/kgK]
D Pre–exponential factor (linear approximation) [N s/m2]
fm Body force per unit mass [N/kg]
g Gravitational acceleration [m/s2]
h Film heat transfer coefficient [W/K m2]
H Activation temperature (linear approximation) [1/K]
k Thermal conductivity [W/K m]
kA Linearized crystal growth rate [·]
kA(0) Amorphous growth rate [·]
kB Boltzmann constant [1.3806503·10−23 m2kg/s2K]
L Characteristic length in the axial direction [m]
n Crystallization viscosity index [·]
N Dimensionless measure ofc [·]
p Pressure [N/m2]
Q Nondimensional volumetric flow rate [·]
r Radial coordinate [m]
R Jet’s radius [m]
R Nondimensional jet’s radius [·]
S Molecular orientation parameter [·]
S Molecular orientation tensor [·]
t Time [s]
T Temperature [K]
T̂ Nondimensional temperature [·]
T∞ Temperature of the gases that surround the fibre [K]
u Molecular orientation vector [·]
U Nondimensional axial velocity [·]
v Velocity vector [m/s]
x Axial coordinate [m]
X Degree of crystallinity [·]

X∞ Ultimate degree of crystallinity [·]

α Relation between kinetic energy and internal energy [·]
β Crystallization viscosity rate [·]
ε Slenderness ratio [·]
η Mapping of the nondimensional axial coordinate [·]
θ Azimuthal coordinate [·]
λ Relaxation time [s]
λ0 Relaxation time at melting temperature [s]
µ Dynamic viscosity [N/m2s]
ξ Mapping of the nondimensional radial coordinate [·]
ρ Density [kg/m3]
σ Surface tension [N/m]
τ Stress tensor [N/m2]
φ Dimensionless parameter related to the friction tensor [·]
ω Activation temperature for the relaxation time [1/K]

0 Reference values
e f f Effective
m Melting conditions
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