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Abstract 

A mathematical model of the spinning of compound, plastic optical fibers which accounts for molecular orientation 
and crystallization is presented. The model employs a Newtonian rheology, includes the effects of both temperature and 
flow-induced crystallization, and accounts for the effects of the molecular orientation on the stress tensor through a Doi-
Edwards formulation. For slender fibers, an asymptotic procedure based on the slenderness ratio shows that the 
temperature is uniform across the compound fiber provided that the Biot number is on the order of the fourth power of the 
slenderness ratio and the leading-order equations for the fiber’s geometry and axial velocity component, temperature, 
molecular orientation and crystallization are one-dimensional. A two-dimensional model based on the leading-order 
equations for the fiber’s geometry and velocity for slender fibers is also presented; this model provides the two-
dimensional fields of temperature, molecular orientation and degree of crystallization and indicates that, for moderate Biot 
numbers, the temperature distribution across the fiber is not uniform and a thermal boundary layer is formed on the outer 
surface of the compound fiber. 
 
Keywords: Plastic optical fibers; compound fibers; orientation; crystallization. 
 

 

Nomenclature 
 

ܽଶ Constant of the linearized crystal growth rate 
 Pre-exponential factor, N s/m2 ܣ
ܿ Number of polymeric units per unit volume, 

1/m3 
 Specific heat, J/kg K  ܥ
  ,Pre-exponential factor (linear approximation)  ܦ

N s/m2 
 Activation temperature, K ܧ
  Body force per unit mass, N/kg  ࢓ࢌ
݃  Gravitational acceleration, 9.81 m/s2 
݄  Film heat transfer coefficient, W/K m2 
 Activation temperature, 1/K ܪ
݇  Thermal conductivity, W/m K 
݇஺ Linearized crystal growth rate 
݇஺ሺ0ሻ Amorphous growth rate 
݇஻ Boltzmann constant, 1.38065൉10‐23 m2 kg/s2 K 
 Characteristic length in the axial direction, m ܮ
݊ Crystallization viscosity index 
ܰ Dimensionless measure of c 
 Pressure, N/m2 ݌
 Radial coordinate, m ݎ
ܴ Radius of the jet, m 
෠ܴ Non-dimensional radius of the fiber 
ܵ Molecular orientation order parameter 
 Time, s ݐ
ܶ Temperature of the jet, K 
෠ܶ Non-dimensional temperature of the fiber 
 Stress tensor, N/m2 ࢀ

෡ܷ Non-dimensional axial velocity 
࢜  Velocity vector, m/s 
෠ܸ  Non-dimensional radial velocity 
 Axial coordinate, m  ݔ
 
Greek Symbols 
ߙ  Relation between kinetic  and internal energies 
ߚ Crystallization viscosity rate 
߳ Slenderness ratio 
ߟ Map of the non-dimensional axial coordinate 
ߠ Degree of crystallinity 
ߣ Relaxation time, s 
 Dynamic viscosity, Pa s  ߤ
ߦ Map of the non-dimensional radial coordinate 
 Mass density, kg/m3  ߩ

 Surface tension, N/m  ߪ

߶  Dimensionless parameter related to the friction 
tensor 

 
Subscripts 
0 Reference value 
1 Inner jet 
2 Outer jet 
∞ Surrounding medium 
m Melting 
eff Effective 
 
Non-dimensional numbers 

ܴ݁ Reynolds number, ቂߩ଴ݑ଴ܴ଴ ଴ൗߤ ቃ  
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ܲ݁ Péclet number, ቂߩ଴ݑ଴ܴ଴ܥ଴ ݇଴ൗ ቃ 

଴ݑ଴ߤൣ ,Capillarity number ܽܥ ଶൗߪ ൧ 

 ,Froude number ݎܨ

ۏ
ێ
ێ
ۍ
଴ଶݑ

ܴ݃଴
൘

ے
ۑ
ۑ
ې
 

Biot number, ቂ݄ܴ଴ ݅ܤ ݇ଶൗ ቃ 

1. Introduction 
 
Many optical, textile, electrically conducting, and 

reinforced fibers are manufactured by melt-spinning 
processes [1, 2, 3, 4]. There are mainly two methods for 
the fabrication of high-bandwidth, low attenuation graded-
index plastic optical fibers (POF). The first one is usually 
referred to as the preform technique and is based on 
interfacial gel polymerization, but it is too expensive to be 
adopted for mass production. The second process of 
graded-index (GI) POF manufacturing is called co-
extrusion. In this process, monomers doped with low-
molecular weight molecules and homogeneous 
monomers are polymerized as core and cladding or 
sheath polymers, respectively. The two materials are 
then melted in their respective parts and compounded in 
a die to fabricate a POF that has a concentric circular 
core/cladding structure which does not exhibit at this 
stage a graded refractive index distribution. By heating 
the fiber in a diffusion section, a radial concentration 
profile of low-weight molecules is formed as a result of 
molecular diffusion. Solidification takes place between 
the plate and a rotating drum, and large extensions rates, 
rapid cooling, and high speeds are usually involved. 
Finally, the GI POF is obtained by winding it on a take-up 
reel. 

In some compound fibers, the cladding material 
either protects the core, serves as a waveguide in signal 
transmission or is a more costly material than the core 
with more desirable surface properties. It must be noted 
that, in general, the combination of two different materials 
with different properties can result in a composite fiber 
with desirable global properties. 

The properties of plastic products manufactured by 
heating the polymer to above its melting temperature and 
then deforming the melt while simultaneously cooling it, 
depend on the processing conditions to which the 
polymer is subject during its manufacture. Depending on 
the molecular structure and processing conditions, the 
final product can be in either an amorphous or a semi-
crystalline state. Polymers that are unable to crystallize 
on cooling below their glass transition temperature, form 
amorphous solids, and, if these solids are formed by 
deforming the polymer while cooling it through the glass 
transition temperature, they can exhibit strong anisotropy. 

Previous studies of bi-component fibers have been 
mainly concerned with one-dimensional models of 
amorphous, slender fibers at low Reynolds numbers 
based on either simplified models or an asymptotic 
analysis of the full governing equations that uses the 

slenderness ratio as the small perturbation parameter. In 
addition, these studies have been mainly concerned with 
isothermal flows [5, 6, 7, 8, 9]. Non-isothermal studies of 
bi-component fibers include that of Kikutani et al. [10] 
who modelled the high-speed melt spinning of bi-
component fibers consisting of poly(ethylene 
terephthalate) (PET) in the core and polypropelene (PP) 
in the cladding by means of simple, one-dimensional 
equations of mass, linear momentum and energy 
conservation, and included both Newtonian and upper-
convected Maxwell rheologies and drag on the fiber.  

A one-dimensional model of semi-crystalline, bi-
component fibers that accounts for molecular orientation 
and crystallization but does not include the latent heat of 
crystallization was developed by one of the authors [11]. 
Such a model is governed by one-dimensional partial 
differential equations for the leading-order geometry, 
axial velocity component and temperature that were 
derived from the conservation equations of mass, linear 
momentum and energy under the assumptions that the 
fiber is slender and the Reynolds and Biot numbers are 
small. The effects of the molecular orientation and 
crystallization were added to this model by considering 
two transport equations for these two quantities. The 
molecular orientation model was based on Doi's slender 
body theory of liquid crystalline polymers, while the 
crystallization kinetics used Avrami-Kolmogorov's theory 
[12, 13] with Ziabicki's model [14] for the coupling 
between the crystallinity and the polymer orientation, and 
Kikutani's empirical law [15, 16] was employed to relate 
the elongational viscosity of the melt to the degree of 
crystallinity.  

In this paper, we present a two-dimensional model of 
semi-crystalline bi-component fiber spinning processes 
that uses a modified Newtonian rheology, accounts for 
the degrees of molecular orientation and crystallization, 
and allows to determine the radial variations of these 
quantities across the fiber. 

2. Mathematical model of melt spinning 
 

We consider an axisymmetric, bi-component or 
compound liquid jet such as the one shown schematically 
in Fig. 1, consisting of two immiscible, incompressible 
(constant density) fluids which are assumed to be 
Newtonian. The inner (subscript 1) and outer (subscript 
2) jets correspond to 0  ൏ ݎ ൏ ܴଵሺݐ, ሻݔ ؠ ܴሺݐ,  ሻݔ
and ܴଵሺݐ, ሻݔ  ൏ ݎ ൏ ܴଶሺݐ, ሻݔ , respectively, where ݎ ൌ ܴଵ 
and ݎ ൌ ܴଶ denote the core and the cladding outer radii, 
respectively. 

The fluid dynamics of bi-component fibers are 
governed by the two-dimensional conservation equations 
of mass (1), linear momentum (2) and energy (3),  

 
׏ · ࢏࢜ ൌ 0     (1) 
 
௜ߩ ቀ

డ࢜೔
డ௧
൅ ࢜௜ · ௜ቁ࢜׏  ൌ െ݌׏௜ ൅ ׏ · ௜ࢀ  ൅  ௠ (2)ࢌ ௜ߩ

 
௜ܥ ௜ߩ ቀ

డ்೔
డ௧
൅ ࢜௜ ׏  ௜ܶቁ ൌ  ݇௜∆ ௜ܶ   (3) 

 
where ࢜ ൌ ,ݎሺݑ ො࢞ࢋሻݔ ൅ ,ݎሺݒ ࢓ࢌ ො࢘ andࢋሻݔ ൌ  .ො࢞ࢋ ݃
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Fig. 1. Schematic of a compound fiber. 
 
In the model presented here, we shall assume that 

the density, specific heat, thermal conductivity, and 
surface tension, are assumed to be constant, and the 
gases surrounding the outer jet are dynamically passive. 
The latter assumption can be justified due to the small 
density and dynamic viscosity of gases compared with 
those of liquids. In addition, it is assumed that the 
dynamic viscosity, ߤ, of the two components of the fiber 
depends in an Arrhenius fashion on the temperature, T, 
and can be written as  

 
௜ߤ ൌ ݌ݔ݁ ௜ܣ ቀെ

ா೔ 
்೔ିሺ ೘்ሻ೔

ቁ    ݅ ൌ 1,2,   (4) 
 
where ܧ  and ௠ܶ  denote the activation temperature, i.e., 
the activation energy divided by the universal gas 
constant, and melting temperature, respectively. 

This equation can be linearized and written as 
 
௜ߤ ൌ ௜ ሺሺܪ൫݌ݔ݁ ௜ܦ ௠ܶሻ௜ െ ௜ܶሻ൯   ݅ ൌ 1,2,  (5) 
 

which indicates that the dynamic viscosity increases 
exponentially with the temperature for ܶ ൏ ௠ܶ , and the 
values of ܦ and ܪ can be easily deduced from Eq. (4). 

The degree of orientation for the order parameter, 
ܵሺݎ,  ሻ, has been modelled as an ensemble average ofݔ
the alignment of the molecular direction with respect  to 
the axial direction and is determined by the following 
equation 

 
డௌ
డ௧
൅ ࢜ · ܵ ׏ ൌ െథ

ఒ
ܷሺܵሻ ൅ ,࢜׏ሺܩ ܵሻ,  (6) 

 
where, 
 

ܷሺܵሻ ൌ ܵ ൬1 െ ே
ଷ
ሺ1 െ ܵሻሺ2ܵ ൅ 1ሻ൰,  (7) 

 
is a bulk free energy which is related to the intermolecular 
potential, ߶ is an anisotropic drag parameter (0 ൑ ߶ ൑ 1, 
߶ ൌ 1  for isotropic models, and ߶ ൎ 0.5  for rigid--rod 
molecular models), ߣ is the molecular relaxation time of 
the liquid-crystalline polymer, ܰ  is the dimensionless 
density of the liquid-crystalline polymer and is directly 
proportional to the excluded volume between two rigid 
rods where each rod represents a polymer molecule and 

 
,࢜׏ሺܩ ܵሻ ൌ ሺ1 െ ܵሻሺ2ܵ ൅ 1ሻ డ௨

డ௫
.                (8) 

 
In order to account for the effects of both amorphous 

and crystalline phases, we have assumed that the semi-
crystalline materials that compose the core and cladding 
behave as single-phase fluids where the degree of 
crystallization (ߠሺݎ,  ሻ) has been modelled by means ofݔ
Ziabicki’s model [14] 

 
డఏ೔
డ௧
൅ ࢜௜ ߠ ׏௜ ൌ ݇஺௜ሺܵሻ൫ߠ െ ݅  ஶ,௜൯ߠ ൌ 1,2,               (9) 

 
where  
 

݇஺௜ሺܵሻ ൌ ݇஺௜ሺ0ሻ݁݌ݔ൫ܽଶ௜  ௜ܵଶ൯   ݅ ൌ 1,2,              (10) 
 

is the linearized crystal growth rate, ݇஺௜ሺ0ሻ  is the 
amorphous growth rate.  The molecular orientation and 
crystallization of compound fibers requires the solution of 
this set of partial differential equations where ߤ௜ is to be 
replaced by an effective dynamic viscosity, ߤ௘௙௙,௜ , given 
by  

 

௘௙௙,௜ߤ ൌ ሺߤ ௜ܶሻ݁݌ݔ ൬ߚ௜ ൬
ఏ
ఏಮ,೔

൰
௡೔
൰ ൅ ଶ

ଷ
௜ߣ௜ߙ ௜ܵ

ଶ,               (11) 
 

݅ ൌ 1,2, where ߙ  is a parameter that relates the kinetic 
energy to the inertial energy of the liquid-crystalline 
polymer, ߚ and ݊ are material-dependent, e.g., ߚ ൌ 4.605 
and ݊ ൌ 12 for nylon-66, ߚ ൌ 4.0 and ݊ ൌ 2for PET, and 
the effects of crystallization on the effective dynamic 
viscosity have been assumed to be multiplicative, 
whereas those of the molecular orientation have been 
assumed to be additive. Equation (11) indicates that the 
molecular orientation and the degree of crystallization 
affect the effective viscosity and, therefore, the 
contribution of the Newtonian stress tensor. 

Equation (6) indicates that the molecular orientation 
parameter is affected velocity and the velocity gradient 
and affects the degree of crystallization through Eq. (9); 
both the orientation and crystallization affect the velocity 
(Eq. (2)) through the effective dynamic viscosities (Eq. 
(11)), and, of course, the compound fiber's geometry and 
temperature (Eq. (3)) are affected by the velocity field. 
This implies that the orientation and crystallization of the 
compound fiber are nonlinearly coupled with the fiber's 
geometry, axial velocity component and temperature.  
Therefore, Eqs. (1)-(3), (6) and (9) must be solved 
numerically in an iterative fashion subject to specified 
conditions at the die exit ݔ ൌ 0, downstream or take-up 
location ݔ ൌ  initial conditions and symmetry boundary ,ܮ
conditions at the centerline ݎ ൌ 0. In addition, at the to-
be-determined core-cladding, ݎ ൌ ܴଵ , and cladding-
surroundings, ݎ ൌ ܴଶ, interfaces which are assumed to be 
material surfaces, kinematic and dynamic boundary 
conditions that specify the  continuity of radial and axial 
velocity components and tangential stresses, and the the 
difference between normal stresses is balanced by 
surface tension, must be applied. Moreover, at ݎ ൌ ܴଵ , 
there is continuity of temperatures and heat flux, while, at 
ݎ ൌ ܴଶ, the heat flux from conduction in the cladding was 
assumed equal to ݄ሺܶሺݐ, ܴଶ, ሻݔ െ ஶܶሻ  where ஶܶ  is the 
temperature of the gases that surround the fiber, and the 
film heat transfer coefficient ݄ could depend on the local 
Reynolds and Prandtl numbers [17]. 
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3. Numerical method 
 

For steady-state slender fibers, ߳ ൌ ோబ
௅
ا 1 , it is 

convenient to non-dimensionalize the variables 
,ݎ ,ݔ ,ݑ ,ݒ ,݌ ܶ, ,ߩ ,ܥ ߤ  and  ݇  with respect  ܴ଴, ,ܮ ,଴ݑ ଴ݒ ൌ
,଴ݑ߳ ଴݌ ൌ

ఓబ௨బ
௅
, ଴ܶ, ,଴ߩ ,଴ܥ ଴ߤ  and ݇଴  respectively, where ܴ଴ 

is the die exit radius, ܮ is the distance between the die 
exit and the take-up point and ଴ܶ is the largest melting 
temperature of the core and cladding. With this non-
dimensionalization, it can be easily shown by means of 
perturbation methods based on the slenderness ratio 
that, for slender fibers, the leading-order non-dimensional 
axial velocity component is only a function of ݔො (ݑො௜ሺ̂ݎ, ොሻݔ ൌ
෡ܷሺݔොሻ ), and the leading-order non-dimensional radial 
velocity component (cf. Eq. (1)) is given by 

 
,ݎොሺ̂ݒ ොሻݔ ൌ ෠ܸሺ̂ݎ, ොሻݔ ൌ െ ௥̂

ଶ
ௗ௎෡
ௗ௫ො

.               (12) 
 
 

 
 
Fig. 2. Transformation map. 
 

The dimensionless parameters governing the 
problem are the Reynolds, Froude, capillarity, Péclet and 
Biot numbers. 

The dimensionless volumetric flow rates for the core 
and cladding are given by the kinematics conditions at 
the interfaces and can be written as 

 
ܳଵ ൌ

ோ෠భమሺ௫ොሻ
ଶ

෡ܷሺݔොሻ,     ܳଶ ൌ
ோ෠మమሺ௫ොሻିோ෠భమሺ௫ොሻ

ଶ
෡ܷሺݔොሻ.              (13) 

 
The numerical solution of the equations governing 

the two-dimensional free-surface model for compound 
plastic fibers presented in the last section was obtained 
using the transformation ሺ̂ݎ, ොሻݔ ื ሺߦ,  ሻ for the inner andߟ
outer jets, where ߟ ൌ ොݔ and ߦ ൌ ௥̂

ோమሺ௫ොሻ
 that maps the 

curvilinear geometries of the inner and outer fibers into 

rectangles, i.e., ሾ0, ܴଵሺݔොሻሿ ื ൤0,ටொభ
ொ
൨ 

and ሾܴଵሺݔොሻ, ܴଶሺݔොሻሿ ื ൤ටொభ
ொ
, 1൨ , respectively, where 

ܳ ൌ ܳଵ ൅ ܳଶdenotes the non-dimensional volumetric flow 
rate of the compound fiber. Under these conditions, the 
axial momentum equation is one-dimensional and of the 
advection-diffusion type, whereas Eq. (13) provides ෠ܴଵሺݔොሻ 
and   ෠ܴଶሺݔොሻ . The equation for the molecular orientation 
parameter and the degree of crystallization are hyperbolic 

and can be easily solved by means of an implicit method, 
whereas the (two-dimensional) energy equation is of the 
advection-diffusion type and was solved by sweeping on 
the axial direction and iterating in the radial one on grids 
consisting of 1001 and 501 (201 for the core and  301 for 
the cladding, respectively) points in the axial and radial 
directions, respectively, until the ܮଶ  norm of the 
differences between the solutions in two successive 
iterations was less than or equal to 10ି଼. 

4. Simulation results of melt spinning fibers 
 
In this section, we illustrate some sample two-

dimensional results of the axisymmetric melt spinning 
model for semi-crystalline compound fiber described 
above. 

 

 
 

Fig. 3. Non-dimensional temperature field of a compound 
fiber ( ࢏࡮ ൌ ૙. ૞). 

 
In the results presented below, we have used the 

same thermal conductivities and pre-exponential factors 
of the dynamic viscosity for the core and cladding, a 
constant film-heat transfer coefficient that corresponds to 
a Biot number equal to 0.5  and 5  and unity Reynolds, 
Froude and Péclet numbers. Imposing ෠ܴଵሺ0ሻ ൌ 1  and 
ܳଵ ൌ 0.5  (we have used the same non-dimensional 
volumetric flow for the core and the cladding,ܳଵ ൌ ܳଶ  ) 
implies (cf. Eq. 13) that the non-dimensional axial velocity 
at the die exit is unity. In the cases considered here, the 
draw ratio, ܦ௥, the relation between the axial velocity at 
the take-up location and that at the nozzle exit is 100. 
The relevant processing parameters are summarized in 
Table 1. 
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Table 1. Simulation parameters. 
 

Case  ଵܦ ݁ܲ ݅ܤ ଶܪ ଵܪ
ଶൗܦ  ܽܥ ௜ ߶௜ߣ 

1  20  10  0.5  1  1  1  0.5  10
2  20  10  5.0  1  1  1  0.5  10

 
The others parameters of the problem have been 

selected as ௜ܰ ൌ 4 ௜ߙ , ൌ 5 , ܽଶଵ ൌ 10 , ܽଶଶ ൌ 5 , ݊௜ ൌ 12 , 
௜ߚ ൌ 4 ଵߪ  , ଶൗߪ ൌ ଵߩ ଶൗߩ ൌ ଵܥ

ଶൗܥ ൌ 1 , ௜ߚ ൌ 4, ݇஺ଵሺ0ሻ ൌ
݇஺ଵሺ0ሻ ൌ 0.005, ஶܶ ൌ ஶ݌ ൌ 0 and ߠஶ,௜ ൌ 0.8. 

 
In Figures 3 and 4, we show some sample results 

that illustrate the non-dimensional temperature field in the 
compound fiber as a function of the non-dimensional 
axial and radial coordinates.  

 

 
 

Fig. 4. Non-dimensional temperature field of a compound 
fiber ( ࢏࡮ ൌ ૞). 

 
Figure 3 corresponds to an average Biot number of 

0.5 and clearly indicates that a thermal boundary layer 
forms at ܴଶ and that the temperature of the core is initially 
almost uniform in the radial direction.  

Figure 4 corresponds to an average Biot number ten 
times larger than that of Fig. 3 and shows that, as the 
Biot number increases, the heat transfer by conduction 
from the cladding to the surroundings increases, thereby 
increasing the heat flux at ܴଵ  and decreasing the 
temperature of the core. In this case a small temperature 
gradient in the radial direction can be observed at ݔො ൌ 1. 

Figure 5 illustrates the numerical results obtained for 
the leading order geometry and axial velocity component 
and the average temperature, effective dynamic viscosity 
and molecular orientation parameter and degree of 
crystallinity of the compound fiber for the conditions of 

Table 1. This figure shows that the compound fiber 
undergoes a drastic change in geometry near the die exit 
and its two radii become constant once the effective 
viscosity becomes very large. The effective viscosity 
increases as the temperature decreases in accord with 
the Arrhenius expression used in this study. 

 

 
 
Fig. 5. (From left to right) First row: Compound fiber 
geometry, axial velocity component, and average of 
temperature. Second row and third row: (decimal logarithm 
of) effective dynamic viscosity, degree of crystallization and 
molecular orientation parameter for the core and cladding 
for cases 1 (െ · െ) and 2 (െ) of Table 1. 

 
Figure 5 also shows that the fiber's axial velocity 

increases very rapidly near the die exit and reaches a 
constant value once the dynamic viscosity becomes very 
large. On the other hand, the fiber’s cross-sectionally 
averaged temperature decreases slowly, the molecular 
orientation increases rapidly towards its final value of 
unity, i.e., complete orientation is achieved, while the 
degree of crystallization is very sensitive to the values of 
the constants that appear in its evolution equation. 

 
Fig. 6. Degree of crystallization of the core at ෝ࢞ ൌ ૙. ૙૝. 
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Figure 5 also indicates that the rate of crystallization 
is positive at the take-up point in accord with the negative 
temperature gradient there. 

Figures 6 and 7 show the degree of crystallization in 
the core at ݔො ൌ 0.04  and ݔො ൌ 0.1 , respectively, for the 
core. These two figures clearly indicate that crystallization 
in the compound fiber for the conditions analyzed here is 
mainly a thermal process and that the flow-induced 
crystallization is small. Although not shown here, the 
degree of crystallization increases first rather quickly and 
then levels off. This behaviour is more clearly illustrated 
in the averaged crystallinity profiles illustrated in Fig. 5.  

 

 
Fig. 7. Degree of crystallization of the core at ෝ࢞ ൌ ૙. ૚. 

5. Discussion 
A single-phase two-dimensional model of the 

spinning of compound plastic optical fibers that employs 
a Newtonian rheology modified by the degrees of 
crystallization and molecular orientation and accounts for 
temperature through an effective dynamic viscosity, and 
the molecular orientation of the liquid crystalline polymer 
through an orientation parameter that depends on the 
velocity field, has been proposed. For slender fibers and 
very low Biot numbers, an asymptotic analysis of the 
model yields one-dimensional equations for the leading-
order axial velocity, temperature, orientation parameter 
and degree of crystallization provided that the molecular 
orientation tensor is diagonal. For higher Biot numbers, 
radial variations of temperature across the fiber are 
important and, consequently, a two-dimensional model 
was developed and solved numerically. Its results 
indicate that substantial temperature non-uniformities in 
the radial direction exist even at small Biot numbers. 
These non-uniformities affect the degree of crystallization 
and have great effects on the mechanical, electrical, 
optical, etc., properties of compound fibers. For very 
slender fibers and small Biot numbers, good agreement 
between the leading-order one-dimensional model for 
slender fibers and the two-dimensional one presented 
here has been observed. In addition, It was found that 
the crystallization of the compound fiber was mostly 
affected by thermal effects rather than by flow-induced 
ones. 
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