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ABSTRACT 
A quasi-two-dimensional model of the melt spinning 
of hollow, compound plastic fibers is presented. The 
model is based on the leading-order one-dimensional 
equations for the fiber's geometry and axial and 
radial velocity components obtained by means of a 
perturbation method for slender Newtonian fibers at 
low Reynolds numbers, and two-dimensional 
equations for the temperature, molecular orientation 
and crystallization. Due to the nonlinear dependence 
of the viscosity on the temperature, the model is 
governed by a set of integro-differential equations. It 
is shown that a thermal boundary layer is formed at 
the outer surface of the outer fiber and that the fiber 
reaches constant diameters on account of the increase 
of dynamic viscosity as the temperature decreases. It 
is also shown that, for the conditions analyzed here, 
the flow-induced crystallization is much smaller than 
the thermal one. 
 
INTRODUCTION 
Membrane separation processes are employed in a 
variety of industries ranging from water treatment to 
industrial gas separation. These processes usually 
employ polymeric membranes in either hollow fiber 
or flat sheet forms. The hollow fiber is broadly used 
because of its high surface-to-volume ratio and is the 
preferred form in ultrafiltration, dialysis, and gas 
separation processes. Hollow fibers are also used in 
the textile industry as well as in optics, e.g., micro-
structured optical fibers, for infrared imaging and 
sensing, wave transmission, etc., in military and 
medical applications, etc. [1, 2, 3].  
Hollow compound fibers are hollow fibers that 
consist of inner and outer materials; the outer 
material may have different mechanical, chemical, 
optical, etc., characteristics than the inner one, or 
may serve simply as a protection. The combination of 

two or more different materials with different 
properties may result in composite fibers with 
highly desireable properties. 
Although some one-dimensional models have been 
developed to study the melt spinning of single-
component hollow fibers [3, 4, 5, 6, 7] based on 
Taylor's series expansions in the radial direction, 
asymptotic methods or integral formulations of the 
governing equations for slender fibers under 
isothermal and non-isothermal conditions, there 
have been few studies on the melt spinning of 
hollow, compound fibers [3, 8, 9] and these studies 
have been limited to the very small Biot numbers for 
which an asymptotic analysis for slender fibers 
indicates that the temperature across the fiber is 
uniform at leading-order. For moderate or large Biot 
numbers, such a uniform temperature approximation 
is not expected to be valid, especially at the 
interfaces between the fiber and its surrounding 
media and at the interface between the inner and 
outer fibers that make the hollow, compound fiber. 
These temperature uniformities, in turn, affect the 
velocity field through the dependence of the 
dynamic viscosity on the temperature, and the 
molecular orientation and crystallization of 
semicrystalline polymer fibers through their 
dependence on the thermal field and the strain and 
stress tensors. As a consequence, temperature non-
uniformities across a hollow, compound fiber may 
result in non-uniformities on the degrees of 
molecular orientation and crystallization which, in 
turn, affect the fiber's morphology and properties.  
In this paper, we present a quasi-two-dimensional 
model of the melt spinning of hollow, compound 
semi-crystalline polymeric fibers based on the 
leading-order equations for the fiber's geometry and 
axial and radial velocity components obtained from 
an asymptotic analysis for slender fibers at low 
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Reynolds numbers and two-dimensional equations 
for the temperature, molecular orientation and 
crystallization. The model employs a Newtonian 
rheology, an order parameter deduced from the Doi-
Edwards equation for the tensor of orientation, and 
the thermal Avrami-Kolmogorov crystallization 
kinetics modified by the effects of the flow-induced 
crystallization. 
 

 
Figure 1 

Schematic of hollow compound liquid jet/fiber. 
 

FORMULATION 
Consider an axisymmetric, hollow, compound liquid 
jet such as the one shown schematically in Figure 1, 
consisting of two immiscible, incompressible 
(constant density) Newtonian fluids. The inner and 
outer jets correspond to ),(),(1 xtRrxtR ≤≤ and 

),(),( 2 xtRrxtR ≤≤ , respectively, where r , x , 

and t  denote the radial and axial coordinates, and 
time, respectively. The fluid dynamics of the hollow, 
compound jet are governed by the conservation 
equations of mass, linear momentum and energy, and 
kinematic, dynamic and thermal conditions at the jet's 
interfaces [8]. In this study, we assume that the 
density, iρ , specific heat, iC , and thermal 

conductivity, iK , are constant, while the dynamic 

viscosity, iµ , is a function of the temperature, iT , 

through an Arrhenius-type expression and depends on 
the molecular orientation and degree of 
crystallization, where 2,1=i  denote the inner and 

outer hollow fibers, respectively. It is also assumed 
that the fluids of the inner and outer fiber are 
Newtonian and that gases surrounding the hollow, 
compound fiber are dynamically passive, i.e., their 
pressures, ip  and ep , are only a function of time, 

since, in general, they have smaller density and 
dynamic viscosity than those of liquids. This implies 

that the gases surrounding the liquid may not 
introduce strong velocity variations along each cross 
section of the jet, although they may affect its 
dynamics. In addition, ep  can be set to zero. 

For slender jets at low Reynolds number, i.e., 
1/0 <<= LRε , it is convenient to non-

dimensionalize r , x , t , u , v , ρ , C , K  and 

p with respect to 0R , L , 0/ uL , 0u , 0v , 0ρ , 0C , 

0K  and Lu /00µ , respectively, where 0R  and L  

denote a characteristic radius and a characteristic 
distance in the axial direction, e.g., the die's exit 
radius and the distance from the die's exit to the 
take-up point, respectively, 0u  is a characteristic 

(constant) axial velocity component, 00 uv ε= , and 

0ρ  and 0µ  are a reference density and viscosity, 

respectively, and v  denotes the radial velocity 
component. The temperature may be non-

dimensionalized as TTTT r ∆−= /)(ˆ where 

0TT =∆  with 0=rT . 

Using this non-dimensionalization, it is an easy 
exercise to show that the non-dimensional equations 
and boundary conditions depend on ε , and the non-
dimensional numbers Re, Fr, Ca, Pr, Br, Bi, where 
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denote the Reynolds, Froude, capillary, thermal 
Péclet, Prandtl, Brinkman and Biot numbers, 
respectively. Note that the surface tensions, iσ  

andσ , have been assumed to be constant, and 0h  is 

a characteristic film heat transfer coefficient.  
In addition, the resulting nondimensional 
conservation equations also depend on the boundary 
conditions at the die's exit and take-up point. This 
large set of parameters does not allow us to obtain 
simpler equations except for slender geometries and 
small values of the Reynolds, Biot and Brinkman 
numbers. We, therefore, consider typical operating 
conditions in the manufacture of hollow, compound 
fibers which are usually characterized by small 
values of the Reynolds, Biot and Brinkman 
numbers. 
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For small Reynolds numbers, Rε=Re  with 

)1(OR = , and ε/FFr = , ε/CCa = , 

BBi 2ε= , bBr 2ε= , where )1(OF = , 

)1(OC = , )1(OB =  and )1(Ob = , which 
correspond to small gravitational effects, small 
surface tension, small heat convection and small 
viscous disipation, expansion of the nondimensional 

dependent variables 1R̂ , R̂ , 2R̂ , iû , iv̂ , ip̂  and iT̂ , 

where 2,1=i  as )( 4
2,

2
0, εφεφφ O++= , where φ  

denotes dependent variables, into the governing 
equations and boundary conditions, together with the 

expansion of the boundary conditions at ),(ˆ
1 xtR , 

),(ˆ xtR  and ),(ˆ
2 xtR  about ≡),(ˆ

10 xtR 1R , 

00 ),(ˆ RxtR ≡  and 2020 ),(ˆ RxtR ≡ , respectively, yield 

asymptotic expansions which, after lengthy algebra 

and use of the asymptotic equations at )( 2εO , result 

in the following leading-order equations for the 
fiber's geometry 
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where )ˆ(2 xC  is given by  

 

( )
2
2

0,22
0

0,10,22
1

0,1

2

2

01

1

1
ˆ

1
ˆˆ

1
ˆ

111

1
)ˆ(2

RRR

RRR

C
xC

eeee ><−><−><+><








++








−=
µµµµ

σ
σ

σ
σ

 (5) 

 
and the following leading-order axial and radial 
velocity components 
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respectively where 
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B  denotes the nondimensional leading-order axial 

velocity component, and 2/)( 2
1

2
01 RRA −=  and 

2/)( 2
0

2
22 RRA −=  denote the nondimensional 

leading-order cross-sectional areas of the inner and 

outer jets, respectively, and 
x
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The leading-order energy equation is also one-
dimensional, i.e., the leading-order temperature is 
uniform across the hollow, compound fiber. Such an 
approximation is a consequence of the ordering of 
the Biot number employed in the asymptotic 
analysis. For moderate or large Biot numbers, 
nonuniform temperature distribution at the die's exit, 
and/or different materials for the inner and outer 
hollow jets of the compound fiber, such a one- 
dimensional equation is not valid because the 
temperature varies in the axial and radial directions. 
Under these conditions, the use of the slender 
approximation and the neglect of both the viscous 
dissipation terms and the work done by the 
gravitational acceleration allows us to write the 
following energy equation 
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where PeRP 22 Pr εε == , and the axial diffusion 
term in the energy equation can be neglected for 
slender fibers. 
The inner interface 1ˆ Rr =  was assumed adiabatic 

( 01̂ =h ); at the 0ˆ Rr =  interface, the temperature 

and the heat flux were assumed to be continuous, 
whereas, at 2ˆ Rr = , the heat flux was set equal to the 
convective one that, for slender fibers, can be written 

(neglecting terms of )( 2εO ) as 
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albeit, the boundary conditions were employed at the 
leading—order geometry. 
In the equations presented above, phase changes and 
the resulting latent heat effects have been neglected, 
the rheology has been assumed to be Newtonian and 
molecular orientation and crystallization phenomena 
have been ignored. The rate of crystallization 
depends on the molecular orientation in the melt; 
when subject to deformations that align the polymer 
molecules, the rate of crystallization increases 
dramatically, and, when the temperature drops below 
the glass transition temperature, there is a cessation 
of molecular motion and the crystallization rate 
decreases and may stop. As the crystallinity 
increases, it retards the crystallization process and 
decreases the mobility of the polymer molecules in 
the amorphous phase. Moreover, the rate of 
molecular orientation increases as as the strain rate is 
increased. This means that the crystallization depends 
on both thermal and flow-induced effects. 
In this paper, we have employed the following 
generalization of the Avrami-Kolmogorov thermal 
crystallization theory [11] 
 

L )()()( , iiiAii YYSkY −= ∞ ,                    (11) 

 
where Y  is the degree of crystallinity, 

)exp()0()( 2
2 iiAiAi SakSk =  is the linearized growth 

rate, )0(Aik  is the amorphous growth rate [11], ia2  

is a constant, iY ,∞  is the ultimate degree of 

crystallinity, and S  is an order parameter that 
characterizes the degree of orientation defined as the 
ensemble average of the alignment of the molecular 
direction to the axial direction and has been 

determined from the Doi-Edwards equation for the 
molecular orientation tensor which is, in turn, 
derived from the probability density function for the 
molecular orientation by taking moments and 
approximating the fourth-order moments in terms of 
second-order ones. By assuming that the traceless 
orientation tensor is symmetric and setting to zero 
its θr  and θx  components only fourth components 

are needed to define this tensor. Furthermore, for 
slender fibers, it is easy to show that the rx  

component of this tensor is on the order of the 
slenderness ratio and can, therefore, be neglected for 
slender fibers; this assumption implies that the 
molecular orientation tensor can be written as 
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and 2,1=i , ψ  is an anisotropic drag parameter 

( 10 ≤<ψ , 1=ψ  for isotropic models, and 

5.0≈ψ  for rigid-rod molecular models), 

))ˆ1(exp(ˆˆ
0 Tii −⋅= ωλλ  is a linearized form of the 

Arrhenius model used for the molecular relaxation 
time of the liquid-crystalline polymer, iN  is the 

dimensionless density of the liquid-crystalline 
polymer, iβ  is the crystallization viscosity rate and 

in  is the crystallization viscosity index which are 

material-dependent, e.g., 605.4=iβ  and 12=in  

for nylon-66, 4=iβ  and 2=in  for PET. 

From Eq. (12), the order parameter becomes  
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which is the expression to be used in the equation for 
the degree of crystallization. 
The initial conditions for the molecular orientation 
tensor employed in this study are 
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where )0,ˆ()ˆ(0 rSrS ii =  and χ  may be a function of 

r̂ .  
It must be pointed out that calculations were also 
performed by solving for three components of a 
diagonal molecular orientation tensor in order to 
verify that the numerical errors in the calculation of 
the trace were small. This was indeed the case when 
the initial conditions for the radial component were 
identical to those for the azimuthal one. 
The dynamic viscosity is 
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where ))ˆ1(exp(ˆ 0, iiii TEG −⋅=µ  denotes the 

linearized form of the Arrhenius dependence of the 
dynamic viscosity on temperature where G and E 
denote the nondimensional pre-exponential factor 
and activation energy, respectively.  
The formulation presented here is also valid for 
amorphous compound fibers which are characterized 
by Si=0 and 0=iβ  and, therefore, the effective 

dynamic viscosity only depends on temperature.  
It must be noted that the linearization of the 
Arrhenius expressions for the dynamic viscosity law 
and the relaxation time are really linearization of the 
argument of the exponential rather than the 
linearization of the whole Arrhenius law, i.e., in the 
expression )/exp( TTC a−  where aT  and C  are 

constants, the linearization of the argument of the 
exponential about mT  yields )/exp( ma TTC −  

)/)(exp( 2
mma TTTT −⋅  and, therefore, ma TTE /=  

and )/exp( ma TTCG =  if mTT =0 . 

Equations (13) and (14) indicate that the molecular 
orientation depends on the axial derivative of the 
leading-order axial velocity, i.e., it depends on the 

axial elongation rate, and, therefore, molecular 
orientation in the axial direction is enhanced.  
Equation (11) indicates that the molecular 
orientation affects the crystallization in an 
exponential manner through )(SkAi , and the 

crystallization, temperature and molecular 
orientation are coupled through the viscosity which, 
in turn, is affected by the temperature field and 
affects the fiber's geometry and its properties. On 
the other hand Eqs. (13) and (14) show that the 
diagonal molecular orientation tensor used in this 
study depends on the leading-order axial strain rate 
and on the temperature through the relaxation time. 
It must be noted that, if the second term in the right 
hand-sides of Eqs. (13) and (14) are neglected, and 
these equations are interpreted in Lagrangian 
coordinates, they have the following critical points 

)1,(),( −= rxiri ss γ  and )2,1( ; the latter 

corresponds to the following diagonal molecular 
orientation tensor 
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which is proportional to the leading-order velocity 
gradient tensor and coincides with molecular 
orientation tensor used by Forest et al. [10]. These 
authors used an equation for the order parameter 
rather than the two equations employed here for the  
rr and xx components of the diagonal molecular 
orientation tensor. 
Since the dynamic viscosity depends on the two-

dimensional fields of T̂ , Y  and S , the dynamic 
viscosity that appears in Eqs. (5)–(6) and (8)–(9) is  
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and the integrals that appear in these averaged 
dynamic viscosities provide an integro-differential 
character to the melt spinning of hollow, compound 
semi-crystalline fibers governed by the quasi-one-
dimensional model given by Eqs. (4), (6), (7), (10), 
(11), and (13)–(14). 
It should be emphasize that the model for the melt 
spinning of compound fibers presented here is a 
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single-phase, single-component one characterized by 
a Newtonian rheology and which does not account 
for latent heat effects associated with solidification; 
neither does it account for the presence of amorphous 
and crystalline phases in a separate manner either 
through conservation equations for these components 
or through a non-Newtonian rheology. Although the 
latent heat effects associated with phase changes may 
result in a locally small increase of temperature at the 
solidification point, they are usually small in melt 
spinning; on the other hand, the non-Newtonian 
rheology of semi-crystalline compound jets may have 
an important influence on the fluid dynamics, heat 
transfer, molecular orientation and crystallization of 
such fibers. 

 
Figure 2 

Temperature distribution in the hollow compound 
fiber. 

 
RESULTS AND DISCUSSION 
The equations of the quasi-two-dimensional model 
presented in the previous section were solved for 
steady-state fibers in meshes consisting of 1001 grid 
points in the axial direction, and 101 grid points for 
each jet in the radial one. For the numerical solution 
of the two-dimensional energy, molecular orientation 
parameter and degree of crystallization, the non-
dimensional physical domain of the hollow 
compound fiber )ˆ,ˆ( xr  was mapped into two 

rectangular domains one each for the inner and outer 

jets ( ) ( )xRRRr ˆ),/()ˆ(, 2
1

2
2

2
1

2 −−=ηξ  so that the 

interface between the inner and outer jets is located 
at V1/(V1+V2) and that between the outer one and its 
surroundings is located at 1, where V1 and V2 is the 
(nondimensional) volumetric flow of the inner jet and 
outer jets, respectively. 

The leading-order axial momentum equations and 
the two-dimensional equations for the energy, 
molecular orientation and degree of crystallization 
were solved iteratively by means of central 
differences in space for the diffusion-like terms and 
first-order upwind differences for the advection-like 
ones, until convergence was achieved. In all the 
calculations, the solution of the leading-order one-
dimensional equations for slender hollow compound 
fibers was used as initial guess and convergence was 
reached when the L2-norm of the difference between 
the solutions corresponding to two successive 
iterations was less than or equal to 10-8. 
 

 
Figure 3 

Hollow compound fiber's geometry (top left), 
leading-order axial velocity (top middle), cross-
sectional averaged temperature (top right), cross-
sectional averaged dynamic viscosity (left), cross-
sectional averaged molecular orientation parameter 

(middle) and cross-sectional averaged degree of 
crystallization (right) as functions of the axial 

distance along the fiber. Solid line: G2=1, dashed 
line: G2=0.01; dashed-dotted line: G2=100. 

 
Unless otherwise stated, the results presented in this 

section correspond to 1=R , and 1/ =FR , 

100=P , 1=C , 10=B , 0=b , 100=iE , 

1ˆˆˆ === iii KCρ , 1ˆ
2 =h , 1/ =σσ i , 1=iG , 

1=iβ , 4=in , 5=iα , 1ˆ
0, =iλ , 0=iω , 5.0=iψ , 

4=iN , 005.0)0( =Aik , 102 =ia , 8.0, =∞iY , 

5.0=iV , 1)0( =B , 100)1( =B , 1)0,ˆ(ˆ =rTi , 
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0,2 =∞T , 25.0)0,ˆ(1 =rS , 50.0)0,ˆ(2 =rS , 2=iχ , 

and 0)0,ˆ( =rYi . 

Some sample results are illustrated in Figure 2 which 
clearly indicates that a thermal boundary layer is 
formed at the fiber's outer radius due to heat 
exchanges with the surroundings. Since adiabatic 
conditions were imposed at the fiber's inner radii, no 
boundary layer is observed at that interface. 
 

 
Figure 4  

Hollow compound fiber's geometry (top left), 
leading- order axial velocity (top middle), cross-
sectional averaged temperature (top right), cross-
sectional averaged dynamic viscosity (left), cross-
sectional averaged molecular orientation parameter 

(middle) and cross-sectional averaged degree of 
crystallization (right) as functions of the axial 

distance along the fiber. Solid line: E2=100, dashed 
line: E2=50; dashed-dotted line: E2= 10. 

 
Figure 3 indicates that the three radii of the hollow 
compound fiber are monotonically decreasing 
functions of the axial distance along the fiber and 
that there is a great contraction at the beginning. This 
figure also shows that, depending on the pre-
exponential factor in the Arrhenius dependence of the 
outer jet's dynamic viscosity on the temperature, 2G , 

the leading-order axial velocity B  may exhibit a one-
sign curvature for 12 =G  and 100, or a two-sign 

curvature for 01.02 =G . The nondimensional cross-

sectional averaged temperature is higher for 12 ≥G  

than for 12 <G ; the leading-order axial velocity 

component at a given axial location is higher except 

at the die's exit and take-up point for 12 ≥G  than 

for 12 <G , in accord with the linearized Arrhenius 

dependence of the dynamic viscosity on temperature 
employed in this study. Figure 3 also indicates that 
the cross-sectional averaged viscosity of the outer 
jet increases at a greater pace for 12 ≥G  than that at 
the inner one due to heat transfer losses; the degree 
of molecular orientation increases as 2G  is 
decreased and reaches rapidly at constant value, 
whereas the degree of crystallization is similar for 
the inner and outer jets, tends to its (specified) 
ultimate value and decreases as 2G  is increased. 

Since the heat transfer losses decrease as 2G  is 
increased, this result indicates that, for the cases 
considered in Figure 3, flow-induced crystallization 
is important, at least, for high values of the pre- 
exponential factor of the Arrhenius viscosity law.  
Although not shown here, the fiber's geometry, 
molecular orientation and crystallization were found 
to be nearly independent of the activation energy of 
the dynamic viscosity law for 10050 1 ≤≤ E  and 

1002 =E , and were found to be similar to those 

corresponding to 12 =G  in Figure 3 and are 

consistent with the fact that heat exchanges with the 
surroundings only occur at the outer jet's outer 
interface. On the other hand, for 10010 2 ≤≤ E  and 

1001 =E , substantial differences are observed in 
the axial velocity profiles as indicated in Figure 4; 
these differences are somewhat expected because 
only the activation energy of the outer jet's dynamic 
viscosity law is varied and heat losses only occur at 
the outer jet's outer interface. Figure 4 also indicates 
that depending on the heat transfer rate at the outer 
radius of the outer material and the activation 
energy of the viscosity law of the outer jet, the axial 
velocity may be concave upwards from the die's exit 
to the take-up point or concave upwards first and 
then concave downwards later and reaches a 
constant value once the fiber solidifies. Of the three 
axial velocity profiles shown in Figure 4, only the 
one associated with the solid line corresponds to a 
complete solidification, and this solidification is, in 
turn, associated with a large increase in the dynamic 
viscosity. Figure 4 also shows that the averaged 
dynamic viscosity of the compound fiber, i.e., 

)/()ˆˆ( 2120,210,1 AAAA ee +><+>< µµ , increases 

with axial distance on account of the temperature 
drop and complete solidification may be reached. 
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Figure 4 also indicates that the dynamic viscosity 
increases quite rapidly at the beginning due to flow 
straining and may continue increasing if the fiber 
does not solidify before being drawn at the take-up 
point. The degree of solidification also increases 
quite rapidly at the beginning where flow straining is 
largest.  
 

 
Figure 5 

Hollow compound fiber's geometry (top left), 
leading-order axial velocity (top middle), cross-
sectional averaged temperature (top right), cross-
sectional averaged dynamic viscosity (left), cross-
sectional averaged molecular orientation parameter 

(middle) and cross-sectional averaged degree of 
crystallization (right) as functions of the axial 
distance along the fiber. Solid line: quasi-two-

dimensional model; dashed line: one-dimensional 
model. 

 
The quasi-two-dimensional model of the melt 
spinning of hollow compound fibers presented in this 
study uses the leading-order equations obtained from 
an asymptotic analysis of slender fibers at low 
Reynolds and Biot numbers, and the two-dimensional 
equations for the energy, molecular orientation and 
crystallization, but no small Biot number 
approximation is made on the two-dimensional 
energy equation. This seemingly contradictory 
approximation raises the following question: how do 
the results of the quasi-two-dimensional model 
presented here compared with those of the one-
dimensional model for low Reynolds and Biot 
numbers. The differences between these two models 
are illustrated in Figure 5 which corresponds to the 
same parameters as those of Figure 2. It must be 

noted that the cross-sectionally averaged 
temperature, order parameter for molecular 
orientation and degree of crystallization of the 
quasi-to-dimensional model are presented. 
Figure 5 indicates that the averaged temperature 
predicted by the quasi-two-dimensional model is 
slightly lower than the temperature predicted by 
one-dimensional one, whereas the two-dimensional 
model predicts a one-sign curvature axial velocity 
component and the one-dimensional one predicts a 
two-sign curvature. These differences are mainly 
due to the temperature distribution across the fiber, 
for, whereas the one-dimensional model predicts a 
uniform temperature across the fiber, the quasi-two-
dimensional one indicates that a thermal boundary 
layer is formed at the outer jet's outer interface.  
Figure 5 also shows that there are very few 
differences in the molecular orientation predicted by 
the one- and quasi-two-dimensional models and this 
is due to the dependence of the order parameter on 
the axial strain rate and the fact that there is a large 
contraction near 0ˆ =x . There are, however, some 
differences in the degree of crystallization, e.g., the 
quasi-two-dimensional model predicts a shorter 
distance for achieving full crystallization than the 
one-dimensional one, and these differences are 
mainly due to the temperature differences between 
these two models and the radial velocity component 
in the two-dimensional one, because, as indicated 
above, the crystallization kinetics employed in this 
study depends mainly on temperature through the 
axial velocity component in its advection terms in 
the axial and radial directions, and exponentially on 
the order parameter for the molecular orientation. 
Since almost complete orientation is achieved 
shortly after 0ˆ =x , the characteristic distance for 
achieving full crystallization is inversely 
proportional to the velocity along the streamlines; 
since the velocity in the radial direction is largest 
near 0ˆ =x , it is expected that the crystallization of 
the two-dimensional model be larger than that of the 
one-dimensional one, at least, initially, in accord 
with the results presented in Figure 5. Furthermore, 
the equations for the models of molecular 
orientation and crystallization are of the hyperbolic 
type and, therefore, may predict different values of 
these variables at the core-cladding interface. 
However, physical considerations indicate that, at 
that interface, there would be entanglements 
between the polymeric molecules of the inner and 
outer jets and a transition region may be appear 
there; such a transition region should, in turn, affect 
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the crystallization of the two fluids and their 
temperatures and velocities, at least, locally. 
Molecular entanglement at that interface has not been 
considered in the model presented here. 
 
CONCLUSIONS 
A quasi-two-dimensional model of the melt spinning 
of hollow compound fibers for Newtonian fluids 
which includes the molecular orientation and 
crystallization has been presented. The model uses 
the one-dimensional leading-order equations for the 
fiber's geometry and axial velocity components 
obtained from an asymptotic analysis for slender 
fibers at low Reynolds numbers together with two-
dimensional equations for the thermal energy and the 
degrees of molecular orientation and crystallization. 
The crystallization has been modeled through the 
Avrami-Kolmogorov thermal kinetics but includes 
flow-induced crystallization through the strain rate 
tensor and the molecular orientation. The Doi-
Edwards transport equation for the molecular 
orientation tensor has been employed albeit 
simplified to a scalar order parameter. 
It has been shown that, because of the nonlinear 
coupling between the variables, the exponential 
dependence of the dynamic viscosity on temperature 
and the use of a leading-order equation for the axial 
momentum, the model is integro-differential and its 
results are highly dependent on the pre-exponential 
factor and activation energy of the Arrhenius law 
used to define the dynamic viscosity of the outer jet. 
It has also been found that almost complete 
molecular orientation is achieved near the die's exit, 
solidification of the hollow compound fiber is mainly 
associated with the large increase of viscosity as the 
temperature decreases, the degree of crystallization 
increases along the fiber and tends to its ultimate 
value; whether this ultimate crystallization is or is not 
achieved depends on the fiber's cooling and viscosity. 
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