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ABSTRACT two or more different materials with different
A quasi-two-dimensional model of the melt spinning properties may result in composite fibers with
of hollow, compound plastic fibers is presentede Th highly desireable properties.

model is based on the leading-order one-dimensionahlthough some one-dimensional models have been
equations for the fiber's geometry and axial anddeveloped to study the melt spinning of single-
radial velocity components obtained by means of acomponent hollow fibers [3, 4, 5, 6, 7] based on
perturbation method for slender Newtonian fibers atTaylor's series expansions in the radial direction,
low Reynolds numbers, and two-dimensional asymptotic methods or integral formulations of the
equations for the temperature, molecular orientatio governing equations for slender fibers under
and crystallization. Due to the nonlinear dependenc isothermal and non-isothermal conditions, there
of the viscosity on the temperature, the model ishave been few studies on the melt spinning of
governed by a set of integro-differential equatidhs hollow, compound fibers [3, 8, 9] and these studies
is shown that a thermal boundary layer is formed ahave been limited to the very small Biot numbers fo
the outer surface of the outer fiber and that therf ~ which an asymptotic analysis for slender fibers
reaches constant diameters on account of the iereaindicates that the temperature across the fiber is
of dynamic viscosity as the temperature decreases. uniform at leading-order. For moderate or largetBio
is also shown that, for the conditions analyzedcher numbers, such a uniform temperature approximation
the flow-induced crystallization is much smalleath is not expected to be valid, especially at the

the thermal one. interfaces between the fiber and its surrounding
media and at the interface between the inner and
INTRODUCTION outer fibers that make the hollow, compound fiber.

Membrane separation processes are employed in Bhese temperature uniformities, in turn, affect the
variety of industries ranging from water treatm@mt Velocity field through the dependence of the
industrial gas separation. These processes usualfynamic viscosity on the temperature, and the
employ polymeric membranes in either hollow fiber molecular orientation and crystallization of
or flat sheet forms. The hollow fiber is broadlyeds semicrystalline polymer fibers through their
because of its high surface-to-volume ratio anthés ~ dependence on the thermal field and the strain and
preferred form in ultrafiltration, dialysis, and ga Stress tensors. As a consequence, temperature non-
separation processes. Hollow fibers are also used juniformities across a hollow, compound fiber may
the textile industry as well as in optics, e.g.crmi ~ result in non-uniformities on the degrees of
structured optical fibers, for infrared imaging and molecular orientation and crystallization which, in
sensing, wave transmission, etc., in military andturn, affect the fiber's morphology and properties.
medical applications, etc. [1, 2, 3]. In this paper, we present a gquasi-two-dimensional
Hollow compound fibers are hollow fibers that model of the melt spinning of hollow, compound
consist of inner and outer materials; the outerS€mi-crystalline polymeric fibers based on the
material may have different mechanical, chemical,leading-order equations for the fiber's geometny an
optical, etc., characteristics than the inner ome, @axial and radial velocity components obtained from

may serve simply as a protection. The combination oan asymptotic analysis for slender fibers at low
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Reynolds numbers and two-dimensional equationghat the gases surrounding the liquid may not
for the temperature, molecular orientation andintroduce strong velocity variations along eaclssro
crystallization. The model employs a Newtonian section of the jet, although they may affect its
rheology, an order parameter deduced from the Doidynamics. In additionp, can be set to zero.
Edwards equation for_ the tensor of orlentat_lon,_ anq:Or slender jets at low Reynolds number, i.e.,
the thermal Avrami-Kolmogorov crystallization £=R/L<<1, it is convenient to non-
kinetics modified by the effects of the flow-indace B '

crystallization. dimensionalizer, x, t, u, v, p, C, K and
pwith respect toR,, L, L/u,, Uy, V,, g, C,,

K, and g,u, /L, respectively, whereR, and L

denote a characteristic radius and a characteristic
distance in the axial direction, e.g., the die'd# ex
radius and the distance from the die's exit to the

take-up point, respectivelyl, is a characteristic
(constant) axial velocity component, = £U,, and

P, and 1, are a reference density and viscosity,
respectively, andv denotes the radial velocity
component. The temperature may be non-

Schematic of holl Figure 1 4 liauid ietfib dimensionalized as T =(T -T.)/AT where
chematic of hollow compound liquid jetfiber. . _ " i —

FORMULATION Using this non-dimensionalization, it is an easy

Consider an axisymmetric, hollow, compound liquid €xercise to show that the non-dimensional equations

jet such as the one shown schematically in Figure 1and boundary conditions depend &nand the non-
consisting of two immiscible, incompressible dimensional numberRe, Fr, Ca, Pr, Br, Bi, where

(constant density) Newtonian fluids. The inner and Re= PoUoR, Fr = uz Ca = JZNV )
outer jets correspond tdz, (t,x) <r < R(t, x)and Uy, gR, o

R(t, x) <r < R,(t, x), respectively, wherer, X, 1, Cy

and t denote the radial and axial coordinates, and Pe=RePr, Pr=—""—, )
time, respectively. The fluid dynamics of the huljo ) 0

compound jet are governed by the conservation r= Holg Bi :ho_Ro 3)
equations of mass, linear momentum and energy, and K, AT ' K, '

kinematic, dynamic and thermal conditions at this je
interfaces [8]. In this study, we assume that th

density, o, specific heat, C, and thermal

denote the Reynolds, Froude, capillary, thermal
ePéclet, Prandtl, Brinkman and Biot numbers,
respectively. Note that the surface tensious,

conductivity, K,, are constant, while the dynamic ando , have been assumed to be constant, kynis

viscosity, 4, is a function of the temperaturd,, 3 characteristic film heat transfer coefficient.

through an Arrhenius-type expression and depends om  addition, the resulting nondimensional
the molecular orientation and degree of conservation equations also depend on the boundary
crystallization, wherei =1,2 denote the inner and conditions at the die's exit and take-up point.sThi
outer hollow fibers, respectively. It is also assdm large set of parameters does not allow us to obtain
that the fluids of the inner and outer fiber are Simpler equations except for slender geometries and
Newtonian and that gases surrounding the hollowSmall values of the Reynolds, Biot and Brinkman
compound fiber are dynamically passive, i.e., theirnumbers. We, therefore, consider typical operating
pressures,pandp,, are only a function of time, conditions in the manufacture of hollow, compound

. . . ibers which are usually characterized by small
since, in general, they have smaller density an

o i e S alues of the Reynolds, Biot and Brinkman
dynamic viscosity than those of liquids. This inegli numbers.
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FEr small Reynolds num_bers,Re: eR _With N 2C(>?)(< [181’0 >-< /}ez’o > OF\ij
R=0@), and Fr=F/e, Ca=Cle¢, R, ox
Bi=¢’B, Br=&’b, where F =00, _ ALaD1 Y D, )
C=0@0, B=0@1) and b=0(@1), which 0x ox
correspond to small gravitational effects, small 7 :@ _foB )

surface tension, small heat convection and small : f 20%’

viscous disipation, expansion of the nondimensional
dependent variableR , R, R,, G, V., p, andT,,  respectively where

wherei =12 as @= g, + £, + O(e*), whereg¢

_ _ _ _ N 2C(X) 1(o\1
denotes dependent variables, into the governing Dl__</’1el,0>—2_€ ; —, (8)
equations and boundary conditions, together wi¢h th Ry R
expansion of the boundary conditions B t,X), ~
P > y ons Bi(t,x) b oecp 200, 1(0)1 .
R(t,X) and R,(t,x) about R,(t,X)=R, 2 =~ < Hezp " 'clo/r’ ©)

R,(t,x) =R, and Ii’zo(t,x) = R,,, respectively, yield
asymptotic expansions which, after lengthy algebraB denotes the nondimensional leading-order axial
and use of the asymptotic equationd{t?) , result ~ velocity component, andA = (R, -R?)/2 and

in the following leading-order equations for the A =(RZ-R?)/2 denote the nondimensional

fiber's geometry

OA D (4.
ot +6)?(BA1) 0
OA, . 0 (i
5 "oz BA)=0

R 0 (42 mmre
= +&(BRO)—2C(X)

where 2C(X) is given by

[aljl 1 (JZJI
R B IS ) 2
200 = oJR R \oJR

Ol ~

R

N N N 1 N
<My > E + (< Heop >~ < Heyo >)7 “<Hepo >

R

(4)

()

leading-order cross-sectional areas of the inndr an
%, 5%
ot oX

The leading-order energy equation is also one-
dimensional, i.e., the leading-order temperature is
uniform across the hollow, compound fiber. Such an
approximation is a consequence of the ordering of
the Biot number employed in the asymptotic
analysis. For moderate or large Biot numbers,
nonuniform temperature distribution at the die', ex
and/or different materials for the inner and outer
hollow jets of the compound fiber, such a one-
dimensional equation is not valid because the
temperature varies in the axial and radial diretio
Under these conditions, the use of the slender
approximation and the neglect of both the viscous
dissipation terms and the work done by the

outer jets, respectively, an%% =

and the following leading-order axial and radial grayitational acceleration allows us to write the

velocity components

(B.A+ 5 ARZE= (DA +2,A)

0 N N 0B
+ &(3(< Hero > At < ey > Az)&j

SHeso > OR, | < Hgo > OR,
R

¥ ZC()A()(_ % R 0%

|

|| |

following energy equation

oT,

gl
o0X

. oT,
+Vi,0¥

(10)
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where P = £2 R Pr=£?Pe, and the axial diffusion determined from the Doi-Edwards equation for the

term in the energy equation can be neglected fOImoI_ecuIar orientation t_e_nsor W.hiCh is! in_ turn,
slender fibers 9y €d g derived from the probability density function fdret

) : ~ . . molecular orientation by taking moments and
The inner interfacer = R was assumed adiabatic L :
approximating the fourth-order moments in terms of

(ﬁl =0); at the f =R, interface, the temperature second-order ones. By assuming that the traceless
and the heat flux were assumed to be COntinuousqrientation tensor is symmetric and setting to zero
whereas, af = R,, the heat flux was set equal to the it , and ,, components only fourth components
convective one that, for slender fibers, can bétewi are needed to define this tensor. Furthermore, for
(neglecting terms 00(£?)) as slender fibers, it is easy to show that the

component of this tensor is on the order of the

ot slenderness ratio and can, therefore, be neglémted
2

~K,—2(f,R,, %) =Bh,(T{,R, %) -T,.). slender fibers; this assumption implies that the
or ’ molecular orientation tensor can be written as
albeit, the boundary conditions were employed at th s 0 0
leading—order geometry. 1
In the equations presented above, phase changes and 525 0 _(Sr + Sx) 0 (12)
the resulting latent heat effects have been neglect 0 0
the rheology has been assumed to be Newtonian andh
molecular orientation and crystallization phenomenaW ere
have been ignored. The rate of crystallization L(s,)=(01-5s,)1+ SX)O_LT’
depends on the molecular orientation in the melt; )%
when subject to deformations that align the polymer : N,
molecules, the rate of crystallization increases _%{Sr +?[(s1r -1(s, -G )]}’ (13)

dramatically, and, when the temperature drops below '

the glass transition temperature, there is a dessat L(s)=0+s,)2-5 )B_B

of molecular motion and the crystallization rate X X X7 A%

decreases and may stop. As the crystallinity 7 N.

increases, it retards the crystallization procesd a ‘T'{Sx‘?'[(ﬁx"'l)(ﬁx _C)i)]}v (14)
decreases the mobility of the polymer molecules in A
the amorphous phase. Moreover, the rate of _2(5 .

molecular orientation increases as as the strégnisa Q= E(S“ T8k SFSX)' (15)
increased. This means that the crystallization dépe g i = 1,2, ¢ is an anisotropic drag parameter

on both thermal and flow-induced effects. _ . .
In this paper, we have employed the foIIowing(O<‘/jS1"/j_1 for isotropic models, and

generalization of the Avrami-Kolmogorov thermal ¥ =05 for rigid-rod molecular ~models),
crystallization theory [11] A = A, exp@{L-T)) is a linearized form of the
Arrhenius model used for the molecular relaxation
time of the liquid-crystalline polymerN, is the
dimensionless density of the liquid-crystalline
polymer, £ is the crystallization viscosity rate and

L(¥) =ky(S) (Y.; =¥). (11)

where Y is the degree of crystallinity,
K, (S) =k, (0)expla, S°) is the linearized growth

n is the crystallization viscosity index which are
rate, K, (0) is the amorphous growth rate [11,

material-dependent, e.gf = 4605 and n =12
for nylon-66, 5 =4 andn =2 for PET.
From Eq. (12), the order parameter becomes

is a constant,Y_ ., is the ultimate degree of

] oo,i

crystallinity, and S is an order parameter that
characterizes the degree of orientation definethas
ensemble average of the alignment of the molecular
direction to the axial direction and has been
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P 1( s ) axial elongation rate, and, therefore, molecular
S = E(S :9)= 3 S T Sx ~ S Sk (16)  orientation in the axial direction is enhanced.
Equation (11) indicates that the molecular

which is the expression to be used in the equdtion orientation affects the crystallization in an

the degree of crystallization. exponential manner throughk, (S), and the

The initial conditions for the molecular orientatio crystallization,  temperature  and  molecular
tensor employed in this study are orientation are coupled through the viscosity which
in turn, is affected by the temperature field and

R 6 A affects the fiber's geometry and its properties. On
§:(r0) == [5——=S0(") (17)  the other hand Egs. (13) and (14) show that the

2+ ) diagonal molecular orientation tensor used in this

s, (f.0)=xs,(f0) (18) study depends on the leading-order axial strai@ rat

and on the temperature through the relaxation time.

It must be noted that, if the second term in tightri

r. hand-sides of Eqgs. (13) and (14) are neglected, and
It must be pointed out that calculations were alsoese equations are interpreted in Lagrangian

performed by solving for three components of acoordinates, they have the following critical psint
diagonal molecular orientation tensor in order to (s..5,) =/, -] and (12): the latter
r1=x r? '

verify that the numerical errors in the calculatimh ) ]
the trace were small. This was indeed the case whefPrresponds to the following diagonal molecular
the initial conditions for the radial component wer ©ri€ntation tensor

where S,(f) =S (F,0) and ¥ may be a function of

identical to those for the azimuthal one. -1 0 O
The dynamic viscosity is S:E 0 -1 0|, (19)
n 0O 0 2
iy o= I, [BX Ig{i} +Eai A 32 which is proportional to the leading-order velocity
' ' ... 3 gradient tensor and coincides with molecular

~ -~ orientation tensor used by Forest et al. [10]. €hes
where [, =G expE [{1-T))) denotes the authors used an equation for the order parameter
linearized form of the Arrhenius dependence of therather than the two equations employed here for the
dynamic viscosity on temperature where G and E'r and xx components of the diagonal molecular

denote the nondimensional pre-exponential factororientation tensor.
and activation energy, respectively. Since the dynamic viscosity depends on the two-

The formulation presented here is also valid fordimensional fields off, Y and S, the dynamic
amorphous compound fibers which are characterizegjscosity that appears in Egs. (5)—(6) and (8)ig9)
by S=0 and £ =0 and, therefore, the effective

dynamic viscosity only depends on temperature. . N

It must be noted that the linearization of the <l > (X) = _[ﬂel,o(rix)r ar/A,  (20)
Arrhenius expressions for the dynamic viscosity law R

and the relaxation time are really linearizatiorttod R

argument of the exponential rather than the < flogo > (X) = jﬂez,o(fj()fdf/Az , o (21)
linearization of the whole Arrhenius law, i.e., time R

expressionCexp(-T,/T) where T, and C are
and the integrals that appear in these averaged

constants, the linearization of the argument of the o " ) . i .
tial  about T ields  Cexp(T. /T ) dynamic viscosities provide an integro-differential
exponen m Y PEla character to the melt spinning of hollow, compound

[exp(T,(T,,—-T)/T?) and, therefore, E=T,/T,,  semi-crystalline fibers governed by the quasi-one-
- : - dimensional model given by Egs. (4), (6), (7), (10)

and G' Cexp(,/T,) if T? .Tm. (11), and (13)—(14).

Equations (13) and (14) indicate that the moleculan; shoyld be emphasize that the model for the melt

orientation depends on the axial derivative of thespinning of compound fibers presented here is a
leading-order axial velocity, i.e., it depends dwe t
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single-phase, single-component one characterized byhe leading-order axial momentum equations and
a Newtonian rheology and which does not accounthe two-dimensional equations for the energy,
for latent heat effects associated with solidifimat  molecular orientation and degree of crystallization
neither does it account for the presence of amarpho were solved iteratively by means of central
and crystalline phases in a separate manner eithatifferences in space for the diffusion-like ternmsla
through conservation equations for these componentfirst-order upwind differences for the advectiokeli

or through a non-Newtonian rheology. Although the ones, until convergence was achieved. In all the
latent heat effects associated with phase changgs mcalculations, the solution of the leading-order-one
result in a locally small increase of temperaturtha  dimensional equations for slender hollow compound
solidification point, they are usually small in mel fibers was used as initial guess and convergense wa
spinning; on the other hand, the non-Newtonianreached when the,tnorm of the difference between
rheology of semi-crystalline compound jets may havethe solutions corresponding to two successive
an important influence on the fluid dynamics, heatiterations was less than or equal t6°.10

transfer, molecular orientation and crystallizatimh

such fibers. Ri, Ro, Re B <T>

7 00 1 2 0 50 100 0.97 1
N

d

«0.05

0.1
<8 >

0.75 1

< 0.05

0.1

. Figure 3
Figure 2 Holl d fiber try (top left
Temperature distribution in the hollow compound 0ll0W compound Tiber's geometry (top left),
fiber. leading-order axial velocity (top middle), cross-

sectional averaged temperature (top right), cross-
sectional averaged dynamic viscosity (left), cross-
sectional averaged molecular orientation parameter
(middle) and cross-sectional averaged degree of
crystallization (right) as functions of the axial
distance along the fiber. Solid line>€, dashed
line: G,=0.01; dashed-dotted line,;&100.

RESULTSAND DISCUSSION

The equations of the quasi-two-dimensional model
presented in the previous section were solved for
steady-state fibers in meshes consisting of 10@l gr
points in the axial direction, and 101 grid poifds
each jet in the radial one. For the numerical smhut
of the two-dimensional energy, molecular orientatio Unless otherwise stated, the results presenteusn t
parameter and degree of crystallization, the non

dimensional physical domain of the hollow S€ction correspond toR=1, and R/F =1,
compound fiber (f,X) was mapped into two P =100, C =1, B=10, b =0, E =100,

A

rectangular domains one each for the inner androute ;, _ 3 — K =1 ﬁz -1 olo=1 G =1

jets (&.47)=((F?-R)I(RZ-R?), %) so that the ' ' o _ B
interface between the inner and outer jets is @mtat =l n=4,a=524,=10=0, ¢ =05,
at Vi/(V1+V>) and that between the outer one and itsN;, =4, k, (0) = 0005, a, =10, Y, =08,
surroundings is located at 1, wherg and \4 is the _ _ AL
(nondimensional) volumetric flow of the inner jetda Vi =05, B(0)=1, B@)=100, T(r0)=1,
outer jets, respectively.
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T,. =0, S(F,0)= 025, S,(f,0)=050, x, =2, at the die's exit and take-up point f@&, =1 than
andY,(f,0)=0. for G, <1, in accord with the linearized Arrhenius

Some sample results are illustrated in Figure Zwhi dependence of the dynamic viscosity on temperature

clearly indicates that a thermal boundary layer is€mployed in this study. Figure 3 also indicates tha
formed at the fiber's outer radius due to heatthe cross-sectional averaged viscosity of the outer

exchanges with the surroundings. Since adiabatiget increases at a greater pace @r=1 than that at
conditions were imposed at the fiber's inner rawi, the inner one due to heat transfer losses; thesdegr
boundary layer is observed at that interface. of molecular orientation increases a6, is

decreased and reaches rapidly at constant value,

Q 5)100 0.0 whereas the degree of crystallization is similar fo
N the inner and outer jets, tends to its (specified)
©05 M 205 ultimate value and decreases &s is increased.

Since the heat transfer losses decreasdsasis
increased, this result indicates that, for the ase
considered in Figure 3, flow-induced crystallizatio
is important, at least, for high values of the pre-

©0.05 i exponential factor of the Arrhenius viscosity law.
Although not shown here, the fiber's geometry,
s> molecular orientation and crystallization were fdun
0«07%‘ to be nearly independent of the activation enefgy o

the dynamic viscosity law foS0< E, <100 and

R E, =100, and were found to be similar to those

0.1 corresponding toG, =1 in Figure 3 and are
Figure 4 consistent with the fact that heat exchanges wvaigh t
Hollow compound fiber's geometry (top left), surroundings only occur at the outer jet's outer

leading- order axial velocity (top middle), cross-  interface. On the other hand, fb®< E, <100 and
sectional averaged temperature (top right), cross- E, =100, substantial differences are observed in
sectional averaged dynamic viscosity (left), cross- ’

sectional averaged molecular orientation parameter the @xial velocity profiles as indicated in Figutp
(middle) and cross-sectional averaged degree of these differences are somewhat expected because

crystallization (right) as functions of the axial ~ °nly the activation energy of the outer jet's dyiam

distance along the fiber. Solid line;200, dashed viscosity law is varied and heat losses only oetur
line: E,=50: dashed-dotted lineE 10. the outer jet's outer interface. Figure 4 alsodatdis

that depending on the heat transfer rate at ther out
Figure 3 indicates that the three radii of the il fadius of the outer material and the activation
compound fiber are monotonically decreasing€"€rgy of the viscosity law of the outer jet, théead
functions of the axial distance along the fiber andV€l0City may be concave upwards from the die's exit

that there is a great contraction at the beginriihgs ~ [© the take-up point or concave upwards first and
figure also shows that, depending on the pre_then concave downwards later and reaches a

exponential factor in the Arrhenius dependencéef t constant value once the fiber solidifies. Of thes¢h

. . . axial velocity profiles shown in Figure 4, only the
outer jet's dynamic viscosity on the temperat(g, one associated with the solid line corresponds to a

the leading-order axial velocitip may exhibit a Oneé- complete solidification, and this solidification is
sign curvature forG, =1 and 100, or a two-sign turn, associated with a large increase in the dymam

curvature forG, = 001. The nondimensional cross- Viscosity. Figure 4 also shows that the averaged
dynamic viscosity of the compound fiber, i.e.,
(< Hoo > At < flego > A)I(A+A,),  increases
with axial distance on account of the temperature
drop and complete solidification may be reached.

sectional averaged temperature is higher @r=1

than for G, <1; the leading-order axial velocity
component at a given axial location is higher ekxcep
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Figure 4 also indicates that the dynamic viscositynoted that the cross-sectionally averaged
increases quite rapidly at the beginning due tavflo temperature, order parameter for molecular
straining and may continue increasing if the fiberorientation and degree of crystallization of the
does not solidify before being drawn at the take-upquasi-to-dimensional model are presented.
point. The degree of solidification also increasesFigure 5 indicates that the averaged temperature
quite rapidly at the beginning where flow strainisg predicted by the quasi-two-dimensional model is
largest. slightly lower than the temperature predicted by
one-dimensional one, whereas the two-dimensional
model predicts a one-sign curvature axial velocity
component and the one-dimensional one predicts a
\ 4 two-sign curvature. These differences are mainly
“05 ®05 A\ ®05 due to the temperature distribution across ther fibe
Y | for, whereas the one-dimensional model predicts a
T > uniform temperature across the fiber, the quasitwo
025 1 dimensional one indicates that a thermal boundary
layer is formed at the outer jet's outer interface.
©0.05 Figure 5 also shows that there are very few
differences in the molecular orientation predidbgd
BT s the one- and quasi-two-dimensional models and this
0.75 1 is due to the dependence of the order parameter on
the axial strain rate and the fact that there lerge
©0.05 contraction nearkx =0. There are, however, some
differences in the degree of crystallization, etlye,
0.1 guasi-two-dimensional model predicts a shorter
distance for achieving full crystallization thareth
one-dimensional one, and these differences are
mainly due to the temperature differences between

Figure 5
Hollow compound fiber's geometry (top left),
leading-order axial velocity (top middle), cross- < !
sectional averaged temperature (top right), cross- these two models and the radial velocity component
sectional averaged dynamic viscosity (left), cross- N the two-dimensional one, because, as indicated

sectional averaged molecular orientation parameter 2P0Ve, the crystallization kinetics employed irsthi
(middle) and cross-sectional averaged degree of Study depends mainly on temperature through the

crystallization (right) as functions of the axial ~ @xial velocity component in its advection terms in
distance along the fiber. Solid line: quasi-two- the axial and radial directions, and exponentiafty

dimensional model: dashed line: one-dimensional the order parameter for the molecular orientation.
model. Since almost complete orientation is achieved

shortly after X =0, the characteristic distance for

The quasi-two-dimensional model of the melt achieving full crystallization is inversely
spinning of hollow compound fibers presented iis thi Proportional to the velocity along the streamlines;
study uses the leading-order equations obtained fro Since the velocity in the radial direction is lsge
an asymptotic analysis of slender fibers at lownearX=0, it is expected that the crystallization of
Reynolds and Biot numbers, and the two-dimensionathe two-dimensional model be larger than that ef th
equations for the energy, molecular orientation andone-dimensional one, at least, initially, in accord
crystallization, but no small Biot number With the results presented in Figure 5. Furthermore
approximation is made on the two-dimensionalthe equations for the models of molecular
energy equation. This seemingly contradictoryorientation and crystallization are of the hypeibol
approximation raises the following question: how dotype and, therefore, may predict different valués o
the results of the quasi-two-dimensional modelthese variables at the core-cladding interface.
presented here compared with those of the oneHowever, physical considerations indicate that, at
dimensional model for low Reynolds and Biot that interface, there would be entanglements
numbers. The differences between these two modelgetween the polymeric molecules of the inner and
are illustrated in Figure 5 which corresponds te th outer jets and a transition region may be appear
same parameters as those of Figure 2. It must bthere; such a transition region should, in turfecf
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the crystallization of the two fluids and their REFERENCES

temperatures and velocities, at least, locally.1.
Molecular entanglement at that interface has nehbe
considered in the model presented here.

CONCLUSIONS

A quasi-two-dimensional model of the melt spinning
of hollow compound fibers for Newtonian fluids
which includes the molecular orientation and
crystallization has been presented. The model uses.
the one-dimensional leading-order equations for the
fiber's geometry and axial velocity components
obtained from an asymptotic analysis for slender4.
fibers at low Reynolds numbers together with two-
dimensional equations for the thermal energy ard th
degrees of molecular orientation and crystallizatio
The crystallization has been modeled through the
Avrami-Kolmogorov thermal kinetics but includes 5.
flow-induced crystallization through the strain eat
tensor and the molecular orientation. The Doi-
Edwards transport equation for the molecular
orientation tensor has been employed albeitg,
simplified to a scalar order parameter.

It has been shown that, because of the nonlinear
coupling between the variables, the exponential
dependence of the dynamic viscosity on temperature
and the use of a leading-order equation for thalaxi
momentum, the model is integro-differential and its 7.
results are highly dependent on the pre-exponential
factor and activation energy of the Arrhenius law
used to define the dynamic viscosity of the ouggr |

It has also been found that almost complete
molecular orientation is achieved near the dielg ex
solidification of the hollow compound fiber is mgin 8.
associated with the large increase of viscositthas
temperature decreases, the degree of crystallizatio
increases along the fiber and tends to its ultimatey,
value; whether this ultimate crystallization isi®@not
achieved depends on the fiber's cooling and viscosi

10.
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