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a b s t r a c t

In this article we provide an exact expression for computing the autocorrelation coefficient
ξ and the autocorrelation length ℓ of any arbitrary instance of the Quadratic Assignment
Problem (QAP) in polynomial time using its elementary landscape decomposition. We also
provide empirical evidence of the autocorrelation length conjecture in QAP and compute
the parameters ξ and ℓ for the 137 instances of theQAPLIB. Our goal is to better characterize
the difficulty of this important class of problems to ease the future definition of new
optimization methods. Also, the advance that this represents helps to consolidate QAP as
an interesting and now better understood problem.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

A landscape for a combinatorial optimization problem is a triple (X,N, f ), where f : X → R is the objective function to
be minimized (or maximized) and the neighborhood function N maps a solution x ∈ X to the set of neighboring solutions. If
y ∈ N(x) then y is a neighbor of x. There is a especial kind of landscape, called an elementary landscape, which is of particular
interest in present research due to its properties. They are characterized by the Grover’s wave equation [1]:

avg{f (y)}
y∈N(x)

= f (x)+
k
d
(f − f (x)) (1)

where d is the size of the neighborhood, |N(x)|, which we assume the same for all the solutions in the search space
(regular neighborhood), f is the average solution evaluation over the entire search space, and k is a characteristic (problem-
dependent) constant. A general landscape (X,N, f ) cannot always be said to be elementary, but even in this case it
is possible to characterize the function f as a sum of elementary landscapes [2], called the elementary components of
the landscape.

The Quadratic Assignment Problem (QAP) is a well-known NP-hard combinatorial optimization problem that is at the
core of many real-world optimization problems [3]. A lot of research has been devoted to analyze and solve the QAP itself,
and in fact some other problems can be formulated as special cases of the QAP, e.g., the Traveling Salesman Problem (TSP).
Let P be a set of n facilities and L a set of n locations. For each pair of locations i and j, an arbitrary distance is specified rij and
for each pair of facilities p and q, a flow is specifiedwpq. The QAP consists of assigning to each location in L one facility in P in
such a way that the total cost of the assignment is minimized. Each location can only contain one facility and all the facilities
must be assigned to one location. For each pair of locations the cost is computed as the product of the distance between
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the locations and the flow associated to the facilities in the locations. The total cost is the sum of all the costs associated to
each pair of locations. One solution to this problem is a bijection between L and P , that is, x : L → P such that x is bijective.
Without loss of generality, we can just assume that L = P = {1, 2, . . . , n} and each solution x is a permutation in Sn, the set
permutations of {1, 2, . . . , n}. The cost function to be minimized can be formally defined as:

f (x) =

n
i,j=1

rijwx(i)x(j). (2)

In [4,5] the authors analyzed the QAP from the point of view of landscapes theory [6] and they found the elementary
landscape decomposition of the problemusing themethodology presented in [7], providing expressions for each elementary
component. In this paper we use the elementary decomposition of the previous work to compute the autocorrelation
length ℓ and the autocorrelation coefficient ξ of any QAP instance in polynomial time (Section 2). We also present
in Section 3 empirical evidence of the autocorrelation length conjecture [8], which links these values to the number
of local optima of a problem, and we numerically compute ℓ and ξ for the well-known public instances of the
QAPLIB [9].

2. Autocorrelation of QAP

Let us consider an infinite random walk {x0, x1, . . .} on the solution space such that xi+1 ∈ N(xi). The random walk
autocorrelation function r : N → R is defined as [10]:

r(s) =
⟨f (xt)f (xt+s)⟩x0,t − ⟨f (xt)⟩2x0,t

⟨f (xt)2⟩x0,t − ⟨f (xt)⟩2x0,t
(3)

where the subindices x0 and t indicate that the averages are computed over all the starting solutions x0 and along
the complete random walk. The autocorrelation coefficient ξ of a problem is a parameter proposed by Angel and
Zissimopoulos [11] that gives a measure of its ruggedness. It is defined after r(s) by ξ = (1− r(1))−1 [12]. Another measure
of ruggedness is the autocorrelation length ℓ [13] whose definition is ℓ =


∞

s=0 r(s). The autocorrelation coefficient ξ for the
QAPwas exactly computed by Angel and Zissimopoulos in [14]. However, recent results (see [4]) suggest that the expression
in [14] could be invalid for some instances of the QAP. Using the landscape decomposition of the QAP we provide here a
simple derivation for the expressions of ξ and ℓ. First, let us present (without proof) the results of [5] that are relevant to
our goal.

Proposition 1 (Decomposition of the QAP). For the swap neighborhood, the function f defined in (2) can be written as the sum
of at most three elementary landscapes with constants k1 = 2n, k2 = 2(n − 1), and k3 = n: f = fc1 + fc2 + fc3. The elementary
components can be defined as

fc1 =

n
i,j,p,q=1
i≠j,p≠q

ψijpq
Ω1
(i,j),(p,q)

2n
(4)

fc2 =

n
i,j,p,q=1
i≠j,p≠q

ψijpq
Ω2
(i,j),(p,q)

2(n − 2)
(5)

fc3 =

n
i,j,p,q=1
i≠j,p≠q

ψijpq
Ω3
(i,j),(p,q)

n(n − 2)
+

n
i,p=1

ψiippϕ(i,i),(p,p) (6)

where ψijpq = rijwpq, ϕ(i,i),(p,p) is the function defined using Kronecker’s delta by ϕ(i,i),(p,p)(x) = δ
p
x(i), and the Ω functions are

particular cases of the parameterized φ functions defined as:

φ
α,β,γ ,ε,ζ

(i,j),(p,q) (x) =


α if x(i) = p ∧ x(j) = q
β if x(i) = q ∧ x(j) = p
γ if x(i) = p ⊕ x(j) = q
ε if x(i) = q ⊕ x(j) = p
ζ if x(i) ≠ p, q ∧ x(j) ≠ p, q.

(7)

The definition of the Ω functions is as follows: Ω1
(i,j),(p,q) = φ

n−3,1−n,−2,0,−1
(i,j),(p,q) , Ω2

(i,j),(p,q) = φ
n−3,n−3,0,0,1
(i,j),(p,q) , and Ω3

(i,j),(p,q) =

φ
2n−3,1,n−2,0,−1
(i,j),(p,q) .

Proof. See [5] for the proof. �
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Proposition 2 (Autocorrelation Measures). The autocorrelation coefficient ξ , the autocorrelation length ℓ, and the autocorrela-
tion function r(s) can be computed from the actual problem data (instance) using the expressions:

ξ =


W1

4
n − 1

+ W2
4
n

+ W3
2

n − 1

−1

=
n(n − 1)

2n(1 + W1)+ 2W2(n − 2)
(8)

ℓ = d

W1

2n
+

W2

2(n − 1)
+

W3

n


=

W1(1 − n)+ W2(2 − n)+ 2(n − 1)
4

(9)

r(s) = W1


1 −

4
n − 1

s

+ W2


1 −

4
n

s

+ W3


1 −

2
n − 1

s

(10)

where the coefficients Wi for i = 1, 2, 3 are defined by

Wi =
f 2ci − fci

2

f 2 − f
2 . (11)

Proof. A proof for (8) and (11) can be found in [5]. Eq. (9) is justified in [13] and (10) is proven in [2]. We also used the fact
that W1 + W2 + W3 = 1 to removeW3 in the expressions for ξ and ℓ. �

As a consequence, we only need to compute W1 and W2 to obtain ξ and ℓ. Thus, we provide in this paper some
propositions that allow us to efficiently compute W1 and W2. According to (11) we need to compute f 2, f

2
, f 2c1, fc1

2
, f 2c2,

and fc2
2
. Let us start with fc1 and fc2.

Proposition 3. Two expressions for fc1 and fc2 are:

fc1 = −
rtwt

2n
(12)

fc2 =
rtwt(n − 3)

2(n − 1)(n − 2)
, (13)

where rt andwt are defined as:

rt =

n
i,j=1
i≠j

rij; wt =

n
p,q=1
p≠q

wpq. (14)

Proof. The average value of Ω1 and Ω2 is Ω1 = −1, and Ω2 = (n − 3)/(n − 1) [4]. Using these average values we can
compute fc1 and fc2 with the help of (4) and (5) as:

fc1 =
−1
2n

n
i,j,p,q=1
i≠j,p≠q

ψijpq; fc2 =
n − 3

2(n − 1)(n − 2)

n
i,j,p,q=1
i≠j,p≠q

ψijpq. (15)

Taking into account that ψijpq = rijwpq and using the notation rt , wt defined above we can transform (15) in (12) and
(13). �

Both expressions (12) and (13) can be computed in O(n2). Before giving an expression for f let us first introduce a new
function tn defined as:

tn : P ({1, . . . , n}2) → N

Q → tn(Q ) =


x∈Sn


(i,p)∈Q

δ
p
x(i). (16)

This function will be useful later in the computation of f , f 2, f 2c1, and f 2c2. According to its definition, the evaluation of tn
is not efficient since it requires a summation over all the permutations in Sn. However, we can simplify the expression of tn
to make the computation more efficient as the following proposition states.

Proposition 4. The function tn satisfies the following equality:

tn(Q ) =


(n − |Q |)! if |Q1| = |Q2| = |Q |

0 otherwise, (17)

where Q1 (Q2) denotes the set of all the first (second) elements of the pairs in Q .
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Proof. The function tn is, in fact, a counting function that is counting the number of elements in Sn that fulfill the condition
(i,p)∈Q x(i) = p. Now, we must observe that if we find two pairs (i, p) and (j, q) in Q such that i = j and p ≠ q, then the

value of tn(Q )must be zero because it is not possible to satisfy at the same time x(i) = p and x(j) = q. We can characterize
this situation using the condition |Q1| ≠ |Q |. That is, if the number of pairs in Q is not equal to the number of first elements
of these pairs, then there exist in Q at least two pairs of the form (i, p) and (i, q) with p ≠ q and tn(Q ) = 0. For the same
reason, t(Q ) = 0 if |Q2| ≠ |Q |. If |Q | = |Q1| = |Q2| then the pairs in Q fix the value for |Q | components of the solution
vector and the number of solutions in Sn with the fixed components is tn(Q ) = (n − |Q |)!. �

Once we have defined the tn function and we know an efficient way of computing it we can provide an expression for f .

Proposition 5. An expression for f is:

f =
rtwt

n(n − 1)
+

rdwd

n
(18)

where rd =
n

i=1 rii andwd =
n

p=1wpp.

Proof. Using the definition of f and tn we can write:

f =
1

|Sn|

n
i,j,p,q=1

ψijpq


x∈Sn

δ
p
x(i)δ

q
x(j)


=

1
n!

n
i,j,p,q=1

ψijpqtn({(i, p), (j, q)}). (19)

If we take into account that tn can only take two different values, we can rewrite the previous expression as:

f =
(n − 2)!

n!

n
i,j,p,q=1
i≠j,p≠q

ψijpq +
(n − 1)!

n!

n
i,p=1

ψiipp =
rtwt

n(n − 1)
+

rdwd

n
. � (20)

With the help of the function tn we can also provide an expression for f 2.

Proposition 6. An expression for f 2 is:

f 2 =
1
n!

n
i,j,p,q=1

n
i′,j′,p′,q′=1

ψijpqψi′j′p′q′ tn

{(i, p), (j, q), (i′, p′), (j′, q′)}


(21)

which can be computed in O(n8).

Proof. Using the definition of f we can write:

f 2 =
1

|Sn|


x∈Sn


n

i,j,p,q=1

ψijpqδ
p
x(i)δ

q
x(j)

2

=
1
n!


x∈Sn

n
i,j,p,q=1

n
i′,j′,p′,q′=1

ψijpqψi′j′p′q′δ
p
x(i)δ

q
x(j)δ

p′

x(i′)δ
q′

x(j′) (22)

which can be transformed into (21) by commuting the sums and using the definition of tn. �

The computation of f 2c1, f
2
c2 requires a more complex treatment. We present their expressions in the following

Proposition 7. Two expressions for f 2c1 and f 2c2 are:

f 2c1 =
1

4n2 · n!

n
i,j,p,q=1
i≠j,p≠q

n
i′,j′,p′,q′=1
i′≠j′,p′≠q′

ψijpqψi′j′p′q′


7

m=1

7
m′=1

cΩ
1

m cΩ
1

m′ tn

vi,j,p,qm ∪ v

i′,j′,p′,q′

m′


(23)

f 2c2 =
1

4(n − 2)2 · n!

n
i,j,p,q=1
i≠j,p≠q

n
i′,j′,p′,q′=1
i′≠j′,p′≠q′

ψijpqψi′j′p′q′


7

m=1

7
m′=1

cΩ
2

m cΩ
2

m′ tn

vi,j,p,qm ∪ v

i′,j′,p′,q′

m′


(24)

where the 7-dimensional parameterized vectors v ∈ (P (N2))7 and c ∈ R7 are given in Table 1 and cΩ
1
and cΩ

2
denote the

c vectors whose parameters α, β, γ , ε, ζ are those of Ω1 and Ω2, respectively, that is, cΩ
1

= cn−3,1−n,−2,0,−1 and cΩ
2

=

cn−3,n−3,0,0,1.
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Table 1
Content of the vectors vi,j,p,q and cα,β,γ ,ε,ζ .

Component (m) vi,j,p,q cα,β,γ ,ε,ζ

1 ∅ ζ

2 {(i, p)} (γ − ζ )

3 {(i, q)} (ε − ζ )

4 {(j, q)} (γ − ζ )

5 {(j, p)} (ε − ζ )

6 {(i, p), (j, q)} (α−2γ +ζ )

7 {(i, q), (j, p)} (β− 2ε+ ζ )

Proof. After the definition of fc1 and fc2 we can write:

f 2c1 =
1

4n2 · n!

n
i,j,p,q=1
i≠j,p≠q

n
i′,j′,p′,q′=1
i′≠j′,p′≠q′

ψijpqψi′j′p′q′


x∈Sn

Ω1
(i,j),(p,q)(x)Ω

1
(i′,j′),(p′,q′)(x)


(25)

f 2c2 =
1

4(n − 2)2 · n!

n
i,j,p,q=1
i≠j,p≠q

n
i′,j′,p′,q′=1
i′≠j′,p′≠q′

ψijpqψi′j′p′q′


x∈Sn

Ω2
(i,j),(p,q)(x)Ω

2
(i′,j′),(p′,q′)(x)


. (26)

In this case it is not so simple to write the inner summation as a function of tn. We will write the Ω functions as linear
combinations of Kronecker’s deltas using the definition of the Ω functions and the following characterization of the φ
functions, which can be easily obtained after (7):

φ
α,β,γ ,ε,ζ

(i,j),(p,q) (x) = αδ
p
x(i)δ

q
x(j) + βδ

q
x(i)δ

p
x(j) + γ (δ

p
x(i) − δ

q
x(j))

2

+ ε(δ
q
x(i) − δ

p
x(j))

2
+ ζ (1 − δ

p
x(i))(1 − δ

q
x(i))(1 − δ

p
x(j))(1 − δ

q
x(j))

= (γ − ζ )(δ
p
x(i) + δ

q
x(j))+ (ε − ζ )(δ

q
x(i) + δ

p
x(j))

+ δ
p
x(i)δ

q
x(j)(α − 2γ + ζ )+ δ

q
x(i)δ

p
x(j)(β − 2ε + ζ )+ ζ . (27)

Thus, φα,β,γ ,ε,ζ(i,j),(p,q) is a sum of six terms with δ and one constant, and the summation
x∈Sn

φ
α,β,γ ,ε,ζ

(i,j),(p,q) (x)φ
α,β,γ ,ε,ζ

(i′,j′),(p′,q′)
(x) (28)

can be written as a weighted sum of 49 tn terms. In order to write this summation in a compact way we define one vector
denoted with vi,j,p,q containing the sets to be considered in the tn terms and a vector cα,β,γ ,ε,ζ containing the coefficients
for the tn terms. The content of the previous vectors is shown in Table 1. Using v and c we can write the summation of the
product of φ functions in the following way:


x∈Sn

φ
α,β,γ ,ε,ζ

(i,j),(p,q) (x)φ
α,β,γ ,ε,ζ

(i′,j′),(p′,q′)
(x) =

7
m=1

7
m′=1

cα,β,γ ,ε,ζm cα,β,γ ,ε,ζm′ tn

vi,j,p,qm ∪ v

i′,j′,p′,q′

m′


(29)

and using the previous equality in (25) and (26) we obtain (23) and (24). �

Now we have efficient expressions for computing f , f 2, fc1, f 2c1, fc2, and f 2c2. With these expressions we are in conditions
enabling us to efficiently compute the autocorrelation measures ξ and ℓ. This result is summarized in the following

Theorem 1 (Efficient Computation of ξ and ℓ). In the QAP, the values of ξ and ℓ related to the swap neighborhood and defined by

ξ =
n(n − 1)

2n(1 + W1)+ 2W2(n − 2)
(8)

ℓ =
W1(1 − n)+ W2(2 − n)+ 2(n − 1)

4
(9)

can be computed in polynomial time over the size of the problem n using Eqs. (12), (13), (18), (21), (23) and (24).

Proof. After computing f , fc1, fc2, f 2, f 2c1, and f 2c2 using the Eqs. (12), (13), (18), (21), (23) and (24) we should compute W1
andW2 using Eq. (11). Then, the autocorrelation coefficient ξ can be obtainedwith (8) and ℓ can be computedwith (9). None
of the previous equations requires more than eight nested summations over n and, thus, the computation can be done in
O(n8). �
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Table 2
Spearman correlation coefficient ρ for the number of local optima and the autocorrelation length.

n 4 5 6 7 8 9 10 11

ρ −0.3256 −0.2317 −0.2126 −0.3195 −0.3032 −0.2943 −0.2131 −0.1640

Fig. 1. Number of local optima against the autocorrelation length ℓ for random instances of QAP with n = 10.

Wehave gone one step further andwe have expanded the expressions for f 2, f 2c1, and f 2c2 in order tomake amore efficient
computation. The result is a O(n2) algorithm (which we omit due to space constraints) to compute ℓ and ξ . It is not difficult
to prove that such an algorithm is optimal in complexity, since the data of a QAP instance is composed of 2n2 numberswhich
have to be taken into account in order to compute the autocorrelation measures.

3. Autocorrelation length conjecture

The autocorrelation length is specially important in optimization because of the autocorrelation length conjecture, which
claims that in many landscapes the number of local optima M can be estimated by the expression M ≈

|X |

|X(x0,ℓ)|
[8], where

X(x0, ℓ) is the set of solutions reachable from x0 in ℓ (the autocorrelation length) or less local movements (jumps between
neighbors). The previous expression is not an equation, but an approximation. It can be useful to compare the estimated
number of local optima in two instances of the same problem. In effect, for a given problem in which the conjecture is
applicable, the higher the value of ℓ (or ξ ) the lower the number of local optima. In a landscape with a low number of local
optima, a local search strategy can a priori find the global optimumusing fewer steps. This phenomenon has been empirically
observed for the Quadratic Assignment Problem (QAP) by Angel and Zissimopoulos in [14].

In order to check the autocorrelation length conjecture in the QAP we have generated 4000 random instances of QAP
with sizes varying between n = 4 and n = 11 (500 for each value of n) using a random generator where the elements of the
matrices are uniformly selected from the range [0,99]. For each instance we computed the autocorrelation length ℓ using
(9) and the number of local optima (minima) by complete enumeration of the search space. We computed the Spearman
correlation coefficient ρ of the number of local optima and ℓ for the instances of the same size. The results are shown in
Table 2. We can observe an inverse correlation (around −0.3) between the number of local optima and the autocorrelation
length. Although this fact is in agreement with the autocorrelation length conjecture, the correlation coefficient is low.
However, Angel andZissimopoulos [14] used a simulated annealing algorithmbasedon the swapneighborhood and reported
a better performance of the algorithm as the autocorrelation length increased. Assuming that the number of local optima
is a parameter with an important influence on the search, we conclude that even in problems in which the number of
local optima is lowly correlated with ℓ (like QAP) the autocorrelation measures (ξ and ℓ) can be useful as estimators of the
performance of local search algorithms.

In Fig. 1 we plot the number of local optima against the autocorrelation length ℓ for all the instances of size n = 10. We
can observe a slight trend: as the autocorrelation length increases the number of local optima decreases. The trend is the
same in all the instances with different sizes (we omit their plots).

In a second experiment we check that the autocorrelation measures provided by the elementary landscape
decomposition are the same as the ones computed using statistical methods. For this experiment we have chosen six
instances of the QAPLIB [9]: two small, two medium and two large instances. For each instance we have generated one
random walk of length 1000000 and we have computed the r(s) values for s ∈ [0, 49]. This process has been repeated 100
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Table 3
Experimental (E) and exact (T ) values for the autocorrelation function r(s) in six instances of the QAPLIB (s from 1 to 6).

Instances r(1) r(2) r(3) r(4) r(5) r(6)

tai10a E 0.624255 0.393489 0.250810 0.161890 0.106102 0.070590
T 0.624380 0.393590 0.250903 0.162013 0.106129 0.070617

esc16a E 0.749984 0.562424 0.421759 0.316365 0.237300 0.177939
T 0.750000 0.562500 0.421875 0.316406 0.237305 0.177979

esc64a E 0.937402 0.878700 0.823668 0.772063 0.723672 0.678292
T 0.937500 0.878906 0.823975 0.772476 0.724196 0.678934

lipa70a E 0.943369 0.890041 0.839723 0.792267 0.747507 0.705296
T 0.943479 0.890170 0.839890 0.792466 0.747735 0.705545

tho150 E 0.975680 0.951974 0.928863 0.906338 0.884384 0.862981
T 0.975722 0.952060 0.928997 0.906518 0.884607 0.863251

tai256c E 0.984364 0.968983 0.953843 0.938935 0.924256 0.909805
T 0.984375 0.968994 0.953854 0.938950 0.924279 0.909837

Table 4
Autocorrelation coefficient ξ and autocorrelation length ℓ for the 137 instances of the QAPLIB.

Instance ξ ℓ Instance ξ ℓ Instance ξ ℓ Instance ξ ℓ

bur26a 11.825 12.130 esc32b 8.000 8.000 nug16a 4.475 4.796 tai100b 35.472 39.613
bur26b 11.727 12.073 esc32c 8.000 8.000 nug16b 4.472 4.792 tai10a 2.662 2.774
bur26c 12.109 12.291 esc32d 8.000 8.000 nug17 4.836 5.220 tai10b 3.002 3.253
bur26d 12.050 12.258 esc32e 8.000 8.000 nug18 5.111 5.516 tai12a 3.419 3.674
bur26e 12.032 12.248 esc32f 8.000 8.000 nug20 5.800 6.311 tai12b 3.358 3.586
bur26f 11.962 12.208 esc32g 8.000 8.000 nug21 6.218 6.807 tai150b 40.458 42.947
bur26g 12.323 12.407 esc32h 8.000 8.000 nug22 6.751 7.446 tai15a 3.858 3.946
bur26h 12.296 12.392 esc64a 16.000 16.000 nug24 7.067 7.737 tai15b 7.000 7.000
chr12a 3.096 3.171 had12 3.743 4.092 nug25 7.308 7.987 tai17a 4.402 4.526
chr12b 3.201 3.346 had14 4.319 4.732 nug27 8.023 8.813 tai20a 5.211 5.385
chr12c 3.044 3.079 had16 4.405 4.690 nug28 8.181 8.949 tai20b 6.866 7.582
chr15a 3.917 4.049 had18 5.084 5.477 nug30 8.613 9.373 tai256c 64.000 64.000
chr15b 4.126 4.388 had20 5.830 6.352 rou12 3.158 3.275 tai25a 6.373 6.482
chr15c 3.843 3.920 kra30a 9.131 10.089 rou15 3.927 4.066 tai25b 6.896 7.374
chr18a 4.585 4.658 kra30b 9.086 10.031 rou20 5.354 5.628 tai30a 7.779 8.021
chr18b 4.632 4.742 kra32 9.848 10.908 scr12 3.407 3.657 tai30b 7.599 7.689
chr20a 5.105 5.195 lipa20a 5.072 5.135 scr15 4.303 4.650 tai35a 8.922 9.077
chr20b 5.035 5.067 lipa20b 5.196 5.358 scr20 5.514 5.885 tai35b 9.382 9.895
chr20c 5.260 5.469 lipa30a 7.622 7.732 sko100a 27.800 29.985 tai40a 10.216 10.413
chr22a 5.763 5.980 lipa30b 7.652 7.787 sko100b 28.106 30.470 tai40b 10.583 11.074
chr22b 5.672 5.819 lipa40a 10.154 10.295 sko100c 27.548 29.578 tai50a 12.675 12.839
chr25a 6.490 6.693 lipa40b 10.355 10.669 sko100d 27.535 29.557 tai50b 12.824 13.119
els19 5.178 5.494 lipa50a 12.684 12.855 sko100e 27.600 29.663 tai60a 15.292 15.563
esc128 32.000 32.000 lipa50b 12.854 13.174 sko100f 27.346 29.247 tai60b 17.837 19.691
esc16a 4.000 4.000 lipa60a 15.111 15.217 sko42 11.559 12.378 tai64c 16.000 16.000
esc16b 4.000 4.000 lipa60b 15.124 15.243 sko49 13.413 14.331 tai80a 20.214 20.419
esc16c 4.000 4.000 lipa70a 17.693 17.876 sko56 15.598 16.817 tai80b 24.021 26.612
esc16d 4.000 4.000 lipa70b 17.785 18.052 sko64 17.504 18.706 tho150 41.190 44.174
esc16e 4.000 4.000 lipa80a 20.102 20.201 sko72 19.929 21.436 tho30 8.326 8.938
esc16f – – lipa80b 20.191 20.373 sko81 22.739 24.629 tho40 11.492 12.531
esc16g 4.000 4.000 lipa90a 22.610 22.716 sko90 25.046 27.024 wil100 28.362 30.868
esc16h 4.000 4.000 lipa90b 22.733 22.957 ste36a 10.954 12.122 wil50 13.832 14.860
esc16i 4.000 4.000 nug12 3.135 3.237 ste36b 11.821 13.177
esc16j 4.000 4.000 nug14 3.892 4.155 ste36c 11.270 12.525
esc32a 8.000 8.000 nug15 4.029 4.234 tai100a 25.195 25.383

times and we have computed the average value for the 100 independent runs. The results empirically obtained and those
theoretically predicted with (10) can be found in Table 3 (only for s ∈ [1, 6]). We can observe a great matching between
the empirical and the theoretical value, as expected. The advantage of the theoretical approach is that it is much faster. The
experimental results of Table 3 were obtained after 157783 s of computation (more than 43 h). However, the exact values
were obtained evaluating Eq. (10) in 0.4 s, nearly half a million times faster.

Finally, we have computed the values of ξ and ℓ for the 137 QAP instances found in the QAPLIB database [9]. The results,
shown in Table 4 in alphabetical order, could be helpful for future investigations on the QAP. In the table we can observe
some interesting behaviors, like that of the esc instances, which have always a value of n/4 for ξ and ℓ. This happens
because in those instances W1 = W3 = 0 and W2 = 1, that is, they are elementary landscapes with k = 2(n − 1). All the
elementary landscapes have a value for the autocorrelation measures that does not depend on the instance data, but only
on the problem size. In the case of esc16f, the objective function is a constant, that is, it takes the same value for every
solution and the autocorrelation measures make no sense.
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We should also notice that the value of ℓ and ξ depend on n, the size of the problem instance. In effect, the values are
bounded (see [4]) by

n − 1
4

≤ ξ, ℓ ≤
n − 1
2

. (30)

Thus, the values of ξ and ℓ usually increase with the problem size n. As a consequence, the autocorrelation length
conjecture can be applied only when the comparison is performed over instances with the same size n and, in general,
it is not true that the higher the value of ℓ the easier to solve the instance, since the largest instances are usually the most
difficult ones and have the highest value for ℓ (and ξ ). A good indicator of the difficulty of an instance could be the pair (n, ℓ).

4. Conclusions

In this article we give an optimal way of exactly computing the autocorrelation measures ξ and ℓ for the QAP. These two
parameters are important to better characterize QAP and to guide practitioners in the relative difficulty of the existing
problem instances. These results can be automatically applied to all the subproblems of QAP, like de TSP. The main
contributions of this work are:

• An exact expression for computing the autocorrelation coefficient ξ and the autocorrelation length ℓ of the QAP in
polynomial time.

• Empirical evidence of the autocorrelation length conjecture in practice for the QAP, by using arbitrarily generated
instances.

• The numerical value of ξ and ℓ for all the instances in the QAPLIB database.

As a future work we plan to obtain exact expressions for the autocorrelation measures in other problems, and study the
actual practical applications of the information obtained from them.
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