
A Primer on the Evolution of Equivalence
Classes of Bayesian-Network Structures

Jorge Muruzábal1 and Carlos Cotta2

1 Grupo de Estad́ıstica y Ciencias de la Decisión, ESCET,
University Rey Juan Carlos, 28933 - Móstoles, SPAIN

j.muruzabal@escet.urjc.es

2 Dept. Lenguajes y Ciencias de la Computación, ETSI Informática,
University of Málaga, Campus de Teatinos, 29071 - Málaga, SPAIN

ccottap@lcc.uma.es

Abstract. Bayesian networks (BN) constitute a useful tool to model the
joint distribution of a set of random variables of interest. To deal with the
problem of learning sensible BN models from data, we have previously
considered various evolutionary algorithms for searching the space of
BN structures directly. In this paper, we explore a simple evolutionary
algorithm designed to search the space of BN equivalence classes. We
discuss a number of issues arising in this evolutionary context and provide
a first assessment of the new class of algorithms.

1 Introduction

A Bayesian Network (BN) is a graphical model postulating a joint distribution
for a set of discrete random variables. Critical qualitative aspects in this model
are given by the underlying graphical structure, a directed acyclic graph (DAG)
G; quantitative aspects are provided by the set of marginal and conditional
probabilities attached to this DAG, say θ = θ(G). To deal with the problem
of learning sensible BN models from data (a problem known to be NP−hard),
a number of evolutionary algorithms (EAs) have been considered to search the
space of DAG structures or b-space, see e.g. [1–3]. Just like other score-and-search
methods [4], DAG structures G are often evolved according to some standard
scoring measure based on the data. Promising results have been obtained in
general following this evolutionary approach in b-space.

Two DAGs are (Markov) equivalent if they encode the same statistical model,
that is, the same set of independence and conditional independence statements.
If we denote the equivalence class containing G as [G], each [G] corresponds to
a different statistical model (our true object of interest). Hence, as DAGs can
be meaningfully grouped together in equivalence classes, we can also consider
the alternative e-space, the space of equivalence classes, as a more direct target
[5]. This strategy will be useful, of course, provided that we can traverse the
more complex e-space in some computationally efficient manner. It must be
noted that e-space is known to be not much smaller than b-space [6], and the
computational load in the former may be somewhat heavier. While the issue

seems far from settled at this point (see the concluding section), in this paper
we follow what we think is an appealing framework for initiating the investigation
of evolutionary search in e-space.

It turns out that equivalence classes [G] can be compactly represented by
certain class of partially directed acyclic graphs or PDAGs, see e.g. [7]. PDAGs
may include directed as well as undirected arcs. Let Ḡ denote the unique PDAG
structure representing some [G]. Then Ḡ and all H ∈ [G] share the same con-
nectivity pattern (ignoring directionality), and all directed arcs in Ḡ show up in
every H ∈ [G]. A complicating factor is that not all PDAGs represent equiva-
lence classes, only completed PDAGs (CPDAGs) do. On this matter, Chickering
[7] presents various operators designed to modify a given CPDAG Ḡ (represent-
ing [G]) so that the resulting PDAG H̄ represents (after being completed) some
other [H] 6= [G]. Templates are also provided for calculating the corresponding
change in score after the modification is done.

The design of efficient learning algorithms in e-space can thus be assisted by
using the CPDAG space, and building on Chickering’s basic results. We explore
below what we believe is the first EA designed to adopt exactly this approach.
The key operators look much like mutations, so we have adopted an evolutionary
programming (EP) approach as the natural paradigm to get started [2, 8].

2 Background

This section provides basic ideas and notational details. We first introduce the
central BN framework, then continue with the learning paradigm based on equiv-
alence classes.

2.1 Bayesian Networks

A Bayesian Network is a tuple (G,θ), where G is a Directed Acyclic Graph
(DAG) and θ = θ(G) is a set of probability distributions attached to G. The
DAG is the set of links or arcs among variables or nodes. If we denote the
whole set of variables as X = {X1, X2, ..., Xn}, each Xi has a set of parents,
denoted by Πi = {Xj ∈ X | (Xj → Xi) ∈ G}, and the DAG G represents
the joint distribution P (X) =P (X|G) =

∏n
i=1 P (Xi | Πi), where Πi = ∅ at

least once. A standard parametric model arises when this P (X) is viewed as a
family of distributions indexed by θ = θ(G). In particular, it is often assumed
that variables follow (conditionally) independent Multinomial distributions, that
is, P (Xi = k | Πi = j) = θijk, where j = 1, ..., qi; k = 1, ..., ri; ri is the
number of distinct values that Xi can assume and qi is the number of different
configurations that Πi can present. Hence, θ = {θijk} collects all parameters in
G with the constraint that

∑
k θijk = 1 for all (i, j).

A crucial issue is how to evaluate DAG structures. Given a standard Multino-
mial likelihood P (D|G, θ), estimates θ̂ = θ̂(D) are usually based on the sufficient
count statistics N = {Nijk} (interpreted as θ). For example, the maximum like-
lihood (frequentist) approach leads to θ̂ijk = Nijk/Nij , where Nij =

∑
k Nijk.

The (intra-network) Bayesian approach assumes a prior density on parameter

space, say π(θ|G), and uses it to compute the marginal likelihood P (D|G) =∫
P (D|G, θ)π(θ|G)dθ. This integration will be difficult in general, but it is pos-

sible analytically (under certain assumptions) if π(θ|G) =
∏

i,j π(θij), where θij

denotes the vector containing the ri probabilities θijk, π(θij) ∝
∏

k θ
αijk−1
ijk , and

α = {αijk} is the virtual count or Dirichlet hyperparameter (αijk > 0), see [9].
We adopt this criterion in what follows. Since α must be supplied by the user
just like the complete data set D, we write Ψ(G|D, α) = log P (D|G) as our
basic (standard) scoring metric in b-space.

2.2 Learning Equivalence Classes of BN Models

As mentioned earlier, an equivalence class of DAGs contains all structures yield-
ing exactly the same set of independence and conditional independence state-
ments. For example, DAGs X → Y → Z and X ← Y → Z are equivalent, for
they both express that X is conditionally independent of Z given Y . Equiva-
lence classes [G] can be compactly represented by the class of completed par-
tially directed acyclic graphs or CPDAGs [5, 7]. If an arc X → Y shows up in
all H ∈ [G], then that arc is compelled in [G]. If an arc is not compelled, then
it is reversible, i.e., there exist H,K ∈ [G] such that H contains X → Y and K
contains Y → X. The unique CPDAG Ḡ representing [G] contains a directed
arc for each compelled arc in [G] and an undirected arc for each reversible arc in
[G]. In our previous example, the CPDAG X−Y −Z represents the equivalence
class containing X → Y → Z, X ← Y → Z as well as X ← Y ← Z. However,
X → Y ← Z belongs to a different equivalence class, namely, that represented
by the CPDAG containing the v-structure (or “inmorality”) X → Y ← Z. It
follows that providing arbitrary directionality to reversible arcs in a CPDAG [G]
does not necessarily result in a member of [G]. On the contrary, very specific
algorithms must be used to obtain a correct DAG from a given CPDAG and vice
versa (see [7] and below).

With regard to some other research [4, 9, 10], Chickering’s approach intro-
duces a clear semantics and up to six different operators for performing local
variation in existing CPDAGs. These operators can be scored locally, and score-
updating formulae are provided for them. Hence, search algorithms can traverse
much faster through different equivalence classes [7]. The basic operators are
termed InsertU, DeleteU, InsertD, DeleteD, ReverseD and MakeV. The first
four either increase or reduce the number of arcs by one, the rest maintain the
number of arcs in the current CPDAG. Specifically, the fifth reverses the direc-
tionality of a single directed arc, whereas the sixth transforms the substructure
X−Y −Z (where X is not linked to Z directly) into the v-structure X → Y ← Z.

When locally manipulating a given CPDAG Ḡ in these ways, the resulting
PDAG may not be initially completed. In essence, we could use the basic PDAG-
to-DAG routine [7] to find out if any proposed operation is valid : if this routine
failed to return a proper DAG structure, say H, then the operation can not be
carried out. Otherwise the operation would be valid, and we could call the basic
DAG-to-CPDAG routine (with input H) to determine the resulting H̄ 6= Ḡ.
In practice, each operator comes with its own validity test, a compact set of

conditions to check that H exists in each case [7]. Note that there may be
“cascading” implications in this process; for example, DeleteD may make other
directed arcs undirected. Or, after applying MakeV, many arcs may switch from
undirected to directed.

Chickering also provides the corresponding change in score after the modifi-
cation is done [7]. Here it makes sense to use a basic DAG scoring metric which
is score-equivalent, that is, constant over each equivalence class. Many familiar
measures are score-equivalent — the present Ψ(G|D,α) = log P (D|G) may or
may not be depending on α. Let αij =

∑
k αijk and αi =

∑
j αij . Heckerman,

Geiger and Chickering [9] show that Ψ(G|D, α) is score-equivalent if αi ≡ α
for some α > 0 (the BDe metric). Parameter α reflects strength of belief in the
proposed priors for the θijk. We consider below the well-known BDeu(α) metric
αijk = α/riqi. Another typical option is the K2 metric αijk = 1, but this is not
score-equivalent.

Once an initial CPDAG structure is evaluated, we can update the score via
Chickering’s results. The key idea behind this local scoring is that a decomposable
scoring function Ψ — making use of local evaluations only — is typically used (for
example, both K2 and BDeu(α) are decomposable). That is, for some function
σ (and implicit data), Ψ(G) =

∑n
i=1 σ(Xi,Πi), where calculation is restricted

in each case to a single node Xi and its parents Πi. To illustrate, the change in
score attributed to a particular valid mutation deleting X → Y in Ḡ and leading
to some H̄ can be expressed as Ψ(H̄) − Ψ(Ḡ) = σ(Y, Λ1) − σ(Y, Λ2), where
Λ1 ⊂ X is the set of nodes connected to Y (with either a directed or undirected
arc), and Λ2 = Λ1 ∪ {X}. Similar (or slightly more complex) expressions hold
for the remaining operators.

3 Evolutionary Framework

A number of NP results motivate the use of heuristic methods for the problem
of learning BNs from data [7]. Score-and-search methods are relatively simple to
use and constitute a major alternative to locate sensible models. In particular,
a number of evolutionary algorithms have been proposed (see e.g., [1–3] and the
references therein). In essence, these evolutionary approaches can be classified
within two main categories: direct and indirect. Direct approaches are those in
which the search is conducted over the space of all possible DAGs (b-space). In-
direct approaches use an auxiliary space to conduct the search. Selected elements
from this auxiliary space are fed to a suitable (decoder) algorithm to obtain the
actual BNs they represent. The algorithm considered in this work falls within
the first category, although with the twist that the search is conducted over the
space of all possible CPDAGs (e-space).

The first issue to be tackled is the choice of evolutionary paradigm to work
with. The graph modifications discussed in Sect. 2.2 can be seen as natural coun-
terparts of the familiar mutation operators found in the evolutionary DAG arena,
see e.g. [2]. Thus, our basic algorithm is currently of evolutionary programming
(EP) nature (e.g., see [8, 11]). We begin with a population of P CPDAGs. At
each generation, members of the population are selected by means of binary

tournament to produce mutated structures (i.e., different CPDAGs), which we
locally evaluate and store. Finally, the best P out of the 2P available structures
are selected for the next generation (the rest are discarded) and a new muta-
tion sweep takes place. We simply let this process continue for T generations in
all experiments below. Initial CPDAGs are generated by the DAG-to-CPDAG
routine on either randomly or heuristically constructed DAGs (by applying the
K2 heuristic using a random permutation of the variables as seed). In the first
case, the initialization process is parameterized by δ ∈ [0, 1], the arc density of
the random graph [3]; in the second case, it is controlled by πmax, the maximum
number of parents per variable in the initial population. In either case, each
DAG is evaluated by our basic scoring metric Ψ(G|D, α) = log P (D|G) and the
result passed to the associated CPDAG.

There are many interesting research questions in this scenario — we pro-
vide some discussion and empirical evidence now and we discuss some further
issues later. Two key roles that we do investigate are those played by the fitness
BDeu(α) metric and the various mutation operators. More specifically, what is
the effect of α in the EP process? Are all six operators needed for best operation?
If so, how to decide which operator ω will act on a selected CPDAG Ḡ?

At the moment, we try to gain some familiarity with this environment by
analyzing a simple (default) variant. Specifically, mutation operators ω are se-
lected by (independent) drawings from the uniform probability distribution Ω
over the whole set of available operators. Note that some operators ω may not
find a suitable entry point in the selected CPDAG and hence may become non-
applicable (in which case a different operator should be selected etc.). If, on the
other hand, one or more appropriate entry points can be found for the selected
ω, then the operator is tentatively applied at a randomly selected point. Since
the mutated CPDAG H̄ =ω(Ḡ) may not pass the corresponding validity test,
we monitor the operators’ validity ratio υ = υ(ω). If the mutated CPDAG is
valid, it is incorporated to the offspring population. We also track the success
ratio of each operator ε = ε(ω) during the replacement stage, i.e., the number of
CPDAGs that ω produced and made it to the next population. We believe some
knowledge about these basic aspects of performance should be acquired before
we can embark into more elaborate designs.

4 Experimental Results

The basic algorithm described above has been deployed on the familiar ALARM
network, a 37-variable network for monitoring patients in intensive care [12]. The
equivalence class [ALARM] is represented by a CPDAG with 4 undirected and
42 directed arcs. A training set of N = 10, 000 examples was created once by
random probabilistic sampling as customary. The BDeu(α) metric Ψ(G|D, α) =
log P (D|G) is the fitness function (to be maximized). All experiments have been
performed using a population size of P = 100 individuals and T = 500 gener-
ations (i.e., 50,000 individuals generated). Five different initialization settings
have been considered: on one hand, random initialization using density values

Table 1. Results (averaged for ten runs) of the EA using a different set of operators.
Random initialization with parameter δ is denoted by Rδ, and heuristic initialization
with parameter πmax is denoted as Hπmax . U and D indicate the average number of
undirected and directed arcs in the final population.

Basic Set Basic Set ∪ {ReverseD}
best mean ± SD U D best mean ± SD U D

R0.05 −107006 −107499 ± 516 45.23 19.03 −106519 −106899 ± 357 33.79 23.30
R0.10 −106680 −107236 ± 401 39.03 23.49 −106707 −107099 ± 470 35.14 24.85
H2 −106656 −106933 ± 252 31.31 25.40 −106532 −106681 ± 113 28.07 25.00

Basic Set ∪ {MakeV} Basic Set ∪ {ReverseD, MakeV}
best mean ± SD U D best mean ± SD U D

R0.01 −107308 −108108 ± 533 6.34 56.73 −106506 −107039 ± 324 7.49 46.60
R0.05 −106994 −108191 ± 559 8.02 59.82 −106621 −107045 ± 280 10.69 47.68
R0.10 −107186 −108281 ± 820 6.22 59.45 −106703 −107175 ± 351 8.82 51.93
H1 −106594 −106915 ± 267 9.59 45.58 −106503 −106723 ± 232 7.68 43.65
H2 −106591 −106867 ± 208 7.57 46.17 −106503 −106602 ± 209 7.96 39.31

δ ∈ {0.01, 0.05, 0.10}; on the other, heuristic initialization using a greedy (K2)
heuristic with maximum number of parents per variable πmax ∈ {1, 2}.

The initial experiments aim to assess the operators as follows. We have con-
sidered a basic set of operators for traversing the space of CPDAGs, namely
InsertD, DeleteD, InsertU, and DeleteU. Subsequently, we have tested the ad-
dition of ReverseD and/or MakeV, implying a total of four operator sets. The
results are shown in Table 1. In all cases, the BDeu(α = 1) metric has been
used. To put these results in perspective, the fitness of the original network is
−106587.

Note firstly the essential role played by MakeV: by inspecting the networks
in the final populations, it can be seen that a high number of undirected arcs
arise when this operator is not available. The injection of v-structures appears
thus crucial for balancing the adequate proportion of directed and undirected
arcs. Actually, whenever the population is initialized with low-density networks
(R0.01 or H1), the lack of MakeV makes all directed arcs vanish in a few iterations.
Besides turning DeleteD and ReverseD inapplicable, the population achieves in
this situation a degenerate state of high-density undirected networks. For this
reason, we have not included these low-density initial conditions in the experi-
ments omitting MakeV. Note also that results are best when using MakeV together
with ReverseD. Indeed, the best network found in this case just differs from the
original network in a directed arc of the latter that is substituted by a different
undirected arc in the former. The ReverseD operator seems also very important
in practice. Here, it seems to help the networks size down appropriately.

Regarding the properties of the operators, consider first the validity ratio
υ = υ(ω). We note that this ratio is close to 1 for InsertU and DeleteU. For
DeleteD and ReverseD, it raises from 0.5 up to 1 in about 100 generations, then
stays at that level for the rest of the run. For InsertD, it oscillates between 0.8
and 1. Finally, MakeV exhibits the lowest υ ratio (oscillating between 0.5 and

0 2 4

x 10
4

0

0.2

0.4

0.6

0.8

1

#evaluations

su
ce

ss
 r

at
io

DeleteD

0 2 4

x 10
4

0

0.2

0.4

0.6

0.8

1

#evaluations

su
ce

ss
 r

at
io

InsertD

0 2 4

x 10
4

0

0.2

0.4

0.6

0.8

1

#evaluations

su
ce

ss
 r

at
io

DeleteU

0 2 4

x 10
4

0

0.2

0.4

0.6

0.8

1

#evaluations

su
ce

ss
 r

at
io

InsertU

0 2 4

x 10
4

0

0.2

0.4

0.6

0.8

1

#evaluations

su
ce

ss
 r

at
io

ReverseD

0 2 4

x 10
4

0

0.2

0.4

0.6

0.8

1

#evaluations

su
ce

ss
 r

at
io

MakeV

0.1

0.05

0.01

0.01

0.05

0.1

Fig. 1. Mean success ratio (averaged for ten runs) of each operator when using random
initialization.

1). As refers to success ratios, consider the trajectories shown in Fig. 1. There
exists naturally a general decreasing trend (improvements are less frequent in
the latter stages of the run). Also for this reason, lower success levels (not shown)
are obtained when using heuristic initialization (the algorithm performs its run
at a higher fitness level). The overall aspect of the trajectories is nevertheless the
same in this latter case. The different decreasing rates shed some light on the
relative contribution of operators though. In particular, note that the undirected-
arc-based, “brick and mortar” operators InsertU and MakeV tend to maintain
the highest success ratios. On the other hand, DeleteD , ReverseD and DeleteU
are the ultimately least useful. This suggests that the evolved structures manage
to consolidate some useful set of both compelled and reversible arcs.

Using the full set of operators, our second set of experiments intends to
test the influence of the BDeu parameter α. For this purpose, we compare the
difference between the best structure found in each run and the original ALARM
CPDAG. The values α ∈ {0.01, 0.1, 1, 10} have been tried, see Table 2. A first
inspection indicates that there are some trends that can be appreciated in this
range. For the randomly initialized runs, the number of shared (true) arcs of
either kind tends to decrease for larger values of α. For the heuristically initialized
runs, this is only true for the undirected arcs. On this matter, Kayaalp and
Cooper [13] show that, for big enough sample size N , arcs are more likely to
be incorporated into the network for larger values of α. Actually, the average
number of arcs (either directed or undirected) for each value of α is 48.88, 49.84,

Table 2. Networks generated by the EA for different values of α. SU and SD stand
for shared arcs (undirected or directed), i.e., arcs present in both the original and the
evolved networks). The number of arcs in the evolved network is denoted as narcs. All
results are the average of ten runs.

α = 0.01 α = 0.1 α = 1 α = 10
SU SD narcs SU SD narcs SU SD narcs SU SD narcs

R0.01 3.3 32.9 48.0 3.0 36.1 49.1 2.2 30.9 54.0 1.5 29.5 61.1
R0.05 3.1 32.6 49.3 2.8 33.0 51.3 2.2 28.9 56.5 1.3 26.9 67.6
R0.10 2.4 29.4 53.5 1.8 30.1 54.9 1.6 28.5 59.1 1.3 25.1 70.8
H1 3.8 34.6 46.7 3.6 36.8 47.4 3.7 35.0 51.3 1.5 37.8 50.9
H2 3.8 33.9 46.9 4.0 37.5 46.5 4.0 36.4 48.0 1.1 34.6 53.5

53.78, and 60.78 respectively, an uprising pattern. The simple α = 1.0 seems
to provide the best overall results. For example, the best network (according to
BDeu) found for α = 0.1 captures all 4 original undirected arcs, and 39 original
directed arcs from the ALARM structure. As to α = 10, just 1 undirected and
37 directed arcs are reflected. By contrast, 4 undirected arcs and 41 directed arcs
are captured in the best run for α = 1. This level of performance is comparable
to that achieved by the state-of-the-art algorithms [7, 14].

5 Discussion and Further Developments

We have considered a basic EP algorithm based on equivalence classes (EPQ
say) and studied a number of performance issues in a novel evolutionary frame-
work based on equivalence classes represented as CPDAGs. We have observed
the adequacy of having all six operators introduced by Chickering [7] cooperat-
ing together in order to achieve satisfactory results in the benchmark ALARM
problem. We have also illustrated the relatively low sensitivity of the evolved
structures with regard to the α scaling of the BDeu fitness metric. Our results
are thus encouraging albeit preliminary, for there are some key issues still in
dispute in the broader machine learning context. We now briefly discuss some
of these issues, and the implications for our current EPQ algorithm.

Castelo and Kočka [14] highlight the relevance of the inclusion boundary (IB)
principle in graph learning. This principle stresses the need for the traverse set
of operators to be able to produce any model in some “tight” neighbourhood of
the current model. A number of algorithms (backed by some useful convergence
results holding under reasonable sampling assumptions) have been proposed and
tested with success [14–16]. As it turns out, the desired connectivity is given by
the ENR (equivalence-no-reversals) neighbourhood of a DAG G: the set of all
DAGs that can be reached from any DAG H ∈ [G] by (valid) single directed arc
addition or deletion. This neighbourhood might appear to be relatively simpler
to implement in b-space [14] than in e-space [15]. Indeed, our traverse set made
up by the six operators proposed in [7] does not verify the IB principle since some
DAGs in ENR may not be reachable (although many other DAGs not in ENR can

be covered). Chickering [15] has subsequently introduced (more complex) Insert
and Delete operators respecting the IB principle (covering ENR). Thus, a first
line for future work would address the tradeoff between simplicity and ENR-
coverage towards the design of more efficient traverse operators in e-space [16].
On the other hand, we have already begun the evaluation of EPQ with regard
to other inclusion-driven EP algorithms in b-space.

Moving beyond this overview of the general learning scenario, we would also
like to furnish some prospects for future evolutionary developments based on the
present EPQ. First of all, there is a very interesting research line in connection
with the Ω distribution used for selecting operators. We would like to tackle the
design of strategies for dynamically adapting Ω. In this sense, we envision both
adaptive approaches — in which some population-wide rules are used to modify
Ω during the run —, and self-adaptive approaches — in which each individual
l carries its own Ωl distribution (whose population is also subject to evolution).
Some lessons from the utilization of these mechanisms in the field of evolution
strategies can be used for this purpose [17].

Recombination operators are also in perspective. We face here a difficult
scenario for recombination, for not only acyclicity constraints apply (as in the
case of DAGs), but also additional constraints due to the nature of CPDAGs.
Of course, we could instantiate Ḡ and H̄ (using the PDAG-to-DAG routine) to
obtain DAGs G and H, use standard operators over DAGs as in [3] to produce
some DAG K, and finally apply the DAG-to-CPDAG routine to obtain an off-
spring K̄ derived from Ḡ and H̄. However, we could not guarantee that K̄ 6= Ḡ
and K̄ 6= H̄. To deal with this, we have in mind the decomposition of the recom-
bination process in a sequence of basic operations assimilable to the mutation
operators we have used, much in the line of what is done in path-relinking [18].
This and the basic EP approaches can be completed with the incorporation of
phenotypic measures based on the availability of local scoring measures, e.g. [3].

We have used a variant of BDe or log P (D|G) as our basic scoring metric.
An alternative is provided by the log posterior Ψ(G|D, α) = log π(G|D) =
log π(G) + log P (D|G) , where π(G) is some prior on DAG structures [9]. For
example, letting g =

∑
i(ri − 1)qi, the number of free parameters in θ, π(G) ∝

N−g/2 penalizes complex structures (as in our previous work [3]). These ideas
may be useful to counter-balance biases towards denser networks that could
appear when working with BDeu [13].

Acknowledgement. We are grateful to D.M. Chickering and R. Castelo for
some useful conversations on these ideas, and to Alicia Puerta and Quique
López for valuable assistence. The authors are partially supported by the DMR
Foundation’s Decision Engineering Lab and by grants TIC2001-0175-C03-03 and
TIC2002-04498-C05-02 from the Spanish MCyT.

References

1. Larrañaga, P., Poza, M., Yurramendi, Y., Murga, R., Kuijpers, C.H.: Structure
learning of bayesian networks by genetic algorithms: A performance analysis of con-

trol parameters. IEEE Transactions on Pattern Analysis and Machine Intelligence
10 (1996) 912–926

2. Wong, M., Lam, W., Leung, K.: Using evolutionary programming and minimum
description length principle for data mining of bayesian networks. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 21 (1999) 174–178

3. Cotta, C., Muruzábal, J.: Towards a more efficient evolutionary induction of
bayesian networks. In Merelo, J., Adamidis, P., Beyer, H.G., Fernández-Villacañas,
J.L., Schwefel, H.P., eds.: Parallel Problem Solving From Nature VII. Volume 2439
of Lecture Notes in Computer Science. Springer-Verlag, Berlin (2002) 730–739

4. Heckerman, D.: A tutorial on learning with bayesian networks. In Jordan, M., ed.:
Learning in Graphical Models. Kluwer, Dordrecht (1998) 301–354

5. Andersson, S., Madigan, D., Perlman, M.: A characterization of markov equivalence
classes for acyclic digraphs. Annals of Statistics 25 (1997) 505–541

6. Gillespie, S., Perlman, M.: Enumerating Markov equivalence classes of acyclic
digraph models. In Goldszmidt, M., Breese, J., Koller, D., eds.: Proceedings of the
Seventh Conference on Uncertainty in Artificial Intelligence, Seatle WA, Morgan
Kaufmann (2001) 171–177

7. Chickering, D.: Learning equivalence classes of Bayesian-network structures. Jour-
nal of Machine Learning Research 2 (2002) 445–498

8. Fogel, L., Owens, A., Walsh, M.: Artificial Intelligence Through Simulated Evolu-
tion. Wiley, New York NY (1966)

9. Heckerman, D., Geiger, D., Chickering, D.: Learning bayesian networks: the com-
bination of knowledge and statistical data. Machine Learning 20 (1995) 197–243

10. Acid, S., de Campos. L.M.: Searching for bayesian network structures in the space
of restricted acyclic partially directed graphs. Journal of Artificial Intelligence
Research 18 (2003) 445–490

11. Eiben, A., Smith, J.: Introduction to Evolutionary Computing. Springer-Verlag,
Berlin Heidelberg (2003)

12. Beinlich, I., Suermondt, H., Chavez, R., Cooper, G.: The ALARM monitoring
system: A case study with two probabilistic inference techniques for belief networks.
In Hunter, J., Cookson, J., Wyatt, J., eds.: Proceedings of the Second European
Conference on Artificial Intelligence and Medicine, Berlin, Springer-Verlag (1989)
247–256

13. Kayaalp, M., Cooper, G.: A bayesian network scoring metric that is based on glob-
ally uniform parameter priors. In Darwiche, A., Friedman, N., eds.: Proceedings
of the Eighteenth Annual Conference on Uncertainty in Artificial Intelligence, San
Francisco CA, Morgan Kaufmann (2002) 251–258

14. Castelo, R., Kočka, T.: On inclusion-driven learning of bayesian networks. Journal
of Machine Learning Research 4 (2003) 527–574

15. Chickering, D.: Optimal structure identification with greedy search. Journal of
Machine Learning Research 3 (2002) 507–554

16. Nielsen, J., Kočka, T., Peña, J.: On local optima in learning bayesian networks. In
Rulff, U., Meek, C., eds.: Proceedings of the Nineteenth Conference on Uncertainty
in Artificial Intelligence, Acapulco, Mexico, Morgan Kaufmann (2003) 435–442

17. Beyer, H.G.: Toward a theory of evolution strategies: Self adaptation. Evolutionary
Computation 3 (1996) 311–347

18. Glover, F., Laguna, M., Mart́ı, R.: Fundamentals of scatter search and path re-
linking. Control and Cybernetics 39 (2000) 653–684

