
Inferring Phylogenetic Trees Using
Evolutionary Algorithms

Carlos Cotta1 and Pablo Moscato2

1 Dept. Lenguajes y Ciencias de la Computación, ETSI Informática,
University of Málaga, Campus de Teatinos, 29071 - Málaga - SPAIN

ccottap@lcc.uma.es

2 Grupo de Engenharia de Computação em Sistemas Complexos,
Dept. de Engenharia de Computação e Automação Industrial,

Universidade Estadual de Campinas, C.P. 6101,
Campinas, SP, CEP 13083-970, Brazil

moscato@dca.fee.unicamp.br

Abstract. We consider the problem of estimating the evolutionary his-
tory of a collection of organisms in terms of a phylogenetic tree. This is
a hard combinatorial optimization problem for which different EA ap-
proaches are proposed and evaluated. Using two problem instances of
different sizes, it is shown that an EA that directly encodes trees and
uses ad-hoc operators performs better than several decoder-based EAs,
but does not scale well with the problem size. A greedy-decoder EA pro-
vides the overall best results, achieving near 100%-success at a lower
computational cost than the remaining approaches.

1 Introduction

The inference of phylogenetic trees is one of the most important and challenging
tasks in Systematic Biology. Such trees are used to represent the evolutionary
history of a collection of n organisms (or taxa) from their molecular sequence
data, or from other form of dissimilarity information. An accurate estimation of
this evolutionary history is a very useful tool in many areas of Biology, such as
multiple sequence alignment [4], or molecular epidemiological studies of viruses
[11] among others.

The Phylogeny Problem can then be formulated as finding the phylogenetic
tree that best –under a certain optimality criterion– represents the evolutionary
history of a collection of taxa. Unfortunately, this constitutes a very hard com-
binatorial optimization problem for most optimality criteria. Exact techniques
such as branch-and-bound can be used, but can be computationally unafford-
able for even moderate (say, 30-40 taxa) problem instances. Hence, the use of
heuristic techniques seems appropriate.

We are concerned in this work about the utilization of evolutionary algo-
rithms (EAs) for tackling the Phylogeny Problem. In this sense, we have initially
focused on distance-based measures (Section 2 will provide details about this and
other quality measures, as well as about phylogenetic trees in general). From this



starting point, several EA approaches –based on the use of different represen-
tations and/or reproductive operators– have been devised and compared. More
precisely, both EAs that directly conduct the search in the space of phyloge-
netic trees, and EAs that use auxiliary search spaces and decoders have been
considered. These EAs are detailed in Section 3. Subsequently, the results of a
thorough empirical comparison are reported in Section 4. We conclude by pre-
senting a summary of our conclusions, and outlining future work in Section 5.

2 A Gentle Introduction to Phylogenetic Trees

Assume we are given some molecular-sequence data for a collection S of n taxa.
A phylogenetic tree T is a tree with exactly n leaves, each one labeled by a
taxon in S. Internal nodes in this tree correspond to hypothetical ancestral
organisms, and edges in T represent ancestry-descent relationships. Taxa in S
are also termed OTUs (operational taxonomic units), while internal nodes are
termed HTU (hypothetical taxonomic units). Thus, a phylogenetic tree models
the evolutionary history of the OTUs, back to their common ancestor (the root
of the tree1). In the following, we will denote OTUs and HTUs with lowercase
letters, and trees with uppercase letters. A LISP-like notation will be used to
represent trees, e.g., (hTU) represents the tree rooted at h, with T and U as
subtrees2, and (o) represents a leaf labeled with o.

The goal of the Phylogeny Problem is finding the phylogenetic tree T that
best resembles the evolutionary history of OTUs in S. For this purpose, it is
clearly necessary to define an optimality criterion. Essentially, such a criterion
(and subsequently an inference method) can fall within two major categories,
sequence-based and distance-based. In sequence-based approaches, each node of
T is assigned a sequence (known for OTUs, and inferred via pairwise alignments
for HTUs). Then, the tree is evaluated using a criterion that –in most situations–
is either maximum likelihood (ML) or maximum parsimony (MP). In the former,
a stochastic model of evolution (e.g., the Jukes-Cantor model) is used in order to
assess the likelihood that the current tree generated the observed data. On the
other hand, an MP criterion specifies that the tree requiring the fewest number
of evolutionary changes to explain the data is preferred.

As to distance-based approaches, they are based on transforming the avail-
able sequence data into an n×n matrix M . This matrix is the only information
used in the subsequent inference process. More precisely, edges in T are assigned
a weight. The basic idea here is that Mij represents the evolutionary distance or
dissimilarity between OTUs i and j. Then, we have an observed distance matrix
M , and an inferred distance matrix M̂ (obtained by making M̂ij = distance from
i to j in T ). The quality of the tree can now be quantified in a variety of ways.
Firstly, it is possible to consider some “distance” measure between M and M̂ ;
1 Biologists often focus on a relaxed model based on unrooted trees as well. In this

work we will concentrate on rooted trees though. See [6, 8] for heuristic approaches
to the inference of unrooted trees.

2 Non-binary trees are also possible, but they can be easily reduced to binary ones.



usual examples are the STRESS measure (normalized sum of absolute differ-
ences), the L2 metric (least-squares approximation), or the L∞ metric (minimize
maximum absolute difference). Secondly, quality can be directly measured from
T . This is typically the case when edge-weighting has been constrained so as to
have M̂ij ≥ Mij ; in this situation, minimizing the total weight of T is usually
the criterion.

Notice that by taking Mij as the minimum number of evolutionary events
needed to transform i in j, this last approach resembles MP. Actually, distance-
based methods can be generally considered as an intermediate strategy between
ML and MP, exhibiting good performance in practice as well [5]. For these rea-
sons, we have focused in distance-based approaches in this work. To be precise,
we have considered the constraint mentioned above, regarding inferred dissimi-
larities to be greater or equal than observed ones. This is done by forcing M̂ to
be ultrametric (see [14] for details about ultrametricity); very popular when the
molecular-clock hypothesis was in vogue, this condition provides a very good
approximation to the optimal solution under more relaxed assumptions (e.g.,
mere additivity). Furthermore, it has allowed us using exact techniques in order
to estimate the absolute quality of the solutions achieved by the different EAs.

3 Evolutionary Approaches to the Phylogeny Problem

In essence, two main approaches can be considered for tackling the Phylogeny
Problem with EAs. The first one is the direct approach, in which the EA conducts
the search in the space SPh of all possible phylogenetic trees. The second one is
the indirect approach, in which an auxiliary Saux space is used by the EA. In this
latter case, a decoder [7] must be utilized in order to perform the Saux −→ SPh

mapping. Either of these approaches requires defining adequate reproductive
operators and/or representation schemes. These are described below.

3.1 Direct Search in the Phylogenetic-Tree Space

As mentioned above, a direct approach is characterized by performing the search
in the space of all possible phylogenetic trees. Thus, each individual in the EA
population directly represents a feasible tree. For this purpose, any of the en-
coding techniques commonly used in genetic programming (GP) –e.g., LISP-like
expressions, preorder traversals, etc.– can be used. Subsequently, appropriate
operators must be designed to manipulate this representation.

First of all, consider the recombination operator. This operator must take
information pieces from both parents, and combine them to create some off-
spring. Since individuals directly encode trees in this case, these information
pieces naturally emerge in the form of subtrees. Thus, recombination can be ex-
pressed in terms of pruning and grafting subtrees, much like it is typically done
in GP. However, unlike the most classical GP scenario, subtrees cannot be ran-
domly shuffled, since phylogenetic trees are constrained to have n leaves, each
one representing a different OTU. Hence, a slightly different approach must be



Fig. 1. Functioning of the PDG recombination. A subtree is selected in one of the
parents, and inserted at a random point of the other parent, right after having deleted
duplicates nodes. The root of the tree is marked with a thick node.

considered. To be precise, the recombination operator must take care of remov-
ing duplicates elements before attempting to regraft the selected subtree. Let T1

and T2 be the trees being recombined; the whole process would be as follows:

Prune-Delete-Graft Recombination (T1, T2)
1. Select a subtree T from T2.
2. for each OTU o ∈ T do

(a) Find subtree U from T1 such that U = (h(o)U ′) or U = (hU ′(o)).
(b) Replace U by U ′ in T1.

3. Select a random subtree V from T1.
4. Replace V by V ′ = (h′TV ), where h′ is a new HTU.

Figure 1 illustrates the process. This PDG operator has been used by Moila-
nen [10] in the context of a sequence-based parsimony measure.

As to mutation operators, several options are possible. The following ones
have been considered:

– SWAP: two OTUs are selected at random, and their positions are swapped.
– NNI: consider the sequence of leaves L[T ] defined as follows:

L[(hUV )] = L[U ] : L[V ]; L[(o)] = 〈o〉; (1)

where : is the sequence-concatenation operator. Then, this operator swaps
two neighboring leaves in this sequence.



– SCRAMBLE: first, a subtree T ′ is randomly selected from T . Then, its
topology is rearranged at random.

All these mutation operators fulfill the previously-mentioned constraint re-
garding the presence of exactly n leaves/OTUs in the tree. Notice also that NNI
can be seen as a particular case of SWAP. The basic idea here is that a small
reordering or nearby leaves (corresponding to closely related species) is more
likely to result in an improvement than a larger reordering (this is the case for
SWAP, that can be considered somewhat disruptive in this sense). In addition to
this, the version of NNI considered in this work checks whether the interchange
provides a better –according to the fitness function– tree-structure, and reverts
the interchange if this were not the case.

3.2 Decoder-based EAs for the Phylogeny Problem

As an alternative to directly conducting the search in the solution space, a
combination of an auxiliary search space Saux and a decoder D can be used. This
approach is very rich in possibilities, and has several advantages. On one hand, it
usually allows utilizing simpler evolutionary operators, due to the fact that Saux

is often an unconstrained search space (unlike SPh). On the other hand, problem
knowledge can be introduced by means of D. Among the potential drawbacks of
this approach, one can cite the difficulty in some situations for exploring Saux

in a parsimonious way; the use of a decoder can hinder finding an acceptable
notion of locality within Saux.

Basic Setting The first decoder approach considered resembles in some sense
the ordinal (stack-based) representation of the TSP [9]. In this case, OTUs are as-
sumed to be ordered in some sense. Let S = 〈o1, · · · , on〉 be the ordered sequence
of OTUs3. The auxiliary search space Saux is defined as Saux =

∏n−2
i=1 N2i, where

Nk = {1, · · · , k}. The decoding process of an individual s ∈ Saux is as follows:

Ordinal Decoder(s)
1. Let T = (h(o1)(o2))
2. for each i ∈ [1 : n− 2] do

(a) Let the branches of T be numbered from 1 to 2i. Let branch si join
node h and subtree U .

(b) Replace U by V = (h′(oi+2)U) in T , where h′ is a new HTU.

As it can be seen, in a phylogenetic tree with k leaves, there exist 2k − 1
nodes, and hence 2k− 2 branches. Each element in s indicates in which of these
branches the next OTU in the sequence must be inserted. Thus, the ith element
of s ranges from 1 to 2i. One of the nicest properties of this ordinal representation
is its orthogonality [12]. Plainly, this means that any s is feasible as long as each
si is in its corresponding range. Hence, any positional recombination operator
3 In this work, a maxmin sequence [14] has been considered: the two first elements are

those whose distance in M is maximal; each subsequent element oi (i > 2) is the one
for which d(oi) = min{Moi,oj | j < i} is maximal.



such as single-point crossover (SPX), or uniform crossover (UX) will produce a
feasible child when applied to feasible parents.

One of the weak points of the ordinal decoder presented above can be found
in the use of a fixed sequence: it may be harder to construct good solutions for a
certain problem instance using sequence A than using sequence B. This admits
two possible solutions. First, a smart method for constructing an appropriate
OTU sequence given a certain problem instance could be devised. Alternatively,
the EA can make this sequence evolve, along with the ordinal insertion points.
In this latter case, the search space is S ′aux = Saux×Pn, where Saux is the space
of ordinal sequences described above, and Pn is the space of n-element permuta-
tions. The decoding process would be identical as indicated above, with the sole
difference that the OTU sequence would be taken from s as well. The same con-
siderations regarding the use of standard positional operators are applicable in
this case too. Additionally, it must be noted that recombination can also be done
on the permutation segment of individuals, using any standard permutational
operator for this purpose (e.g., OX, UCX [3], etc.)4.

Using Guidance The above decoders are essentially blind, i.e., they do not
use any phenotypic information in order to guide the construction process; they
take all the information they need from the decoder input s. It is reasonable
to consider the use of some kind of guidance information though. Two main
possibilities are considered here: using this guidance during the decoding stage,
or when recombining.

Starting with this latter one, note that recombination is given two individuals
s1 and s2; rather than simply mixing information from these two individuals in
order to create the child, it might be useful to get some assessment on the quality
of the partially constructed solution in order to guide the process. A simple way
of doing this is following a greedy approach:

Greedy-Insertion XOver(s1, s2)
1. Let T = (h(o1)(o2))
2. for each i ∈ [1 : n− 2] do

(a) Let the branches of T be numbered from 1 to 2i. Let branch s1
i (resp.

s2
i ) join node h1 and subtree U1 (resp. h2 and U2).

(b) Let T1, T2 = T . Replace U1 by V = (h′(oi+2)U1) in T1. Act analo-
gously with U2 in T2.

(c) Let T=best(T1, T2).

In the above description, the OTU sequence is not necessarily fixed. Actually,
it can be taken from either of the parents, or constructed by recombining (us-
ing a standard operator) the parental sequences. Notice also that a symmetric
approach can be defined, i.e., assuming a certain insertion sequence, and taking
greedy decisions on the structure of the OTU sequence. In this case, the basic
units upon which decisions are taken cannot be single OTUs, since the positional

4 The notation O1/O2 will be used to denote that one of {O1,O2} is applied on an
individual, while O1+O2 will denote that both operators are sequentially applied.



representation of permutations is not orthogonal. On the contrary, blocks5 must
be considered. Then,

Greedy-Order XOver(o1, o2)
1. Identify block structure in o1, o2. Let B

1|2
1 , · · · , B1|2

m be the blocks.
2. Let T1 = (h(o1

1)(o
1
2)). Add remaining OTUs in B1

1 (do the same with T2

and B2
1).

3. Let T=best(T1, T2).
4. for each j ∈ [2 : m] do

(a) Let T1 = T ; for each OTU o1
k ∈ B1

j do
• Insert OTU o1

k in branch sk.
(b) Act analogously with T2 and B2

j .
(c) Let T=best(T1, T2).

This version of the recombination operator has the advantage that requires
fewer assessments of partial solutions, since OTUs are inserted in blocks rather
than one at a time. Again, the insertion sequence can be fixed, taken from one
of the parents, or obtained by recombination.

Finally, consider a similar approach to those above, but focused on the de-
coder stage rather than on recombination. In this case, the OTU sequence is
given, but the insertion sequence is not; the decoder is responsible for finding
adequate insertion points for each OTU. The process could be as follows:

Permutational Decoder(〈o1, · · · , on〉)
1. Let T = (h(o1)(o2))
2. for each j ∈ [1 : n− 2] do

(a) for each insertion point i ∈ N2i do
• Let Ti = T . Insert OTU oj+2 in branch i.

(b) Let T=best(T1, · · · , T2i).

Next section will be devoted to provide empirical evidence regarding the
potential usefulness of this and all previous approaches.

4 Empirical Results

The experiments have been done with an elitist generational EA (popsize =
100, pc = .9, pm = 0.01) using linear ranking selection (η = 2.0). No fine
tuning of these standard parameters was attempted. A maximum number of 106

evaluations has been enforced. In order to provide a fair comparison, the internal
assessments of partial solutions performed by some operators and decoders have
been accounted as well.

Two problem instances with 20 and 34 OTUs respectively have been consid-
ered [1, 13]. These instances have been obtained by using conditional Kolmogorov
complexity to calculate inter-OTU distances6 [2] from mtDNA sequences. A

5 A block is a compact subsequence of elements such that both parents have the same
elements in this segment, although in a possibly-different order (see [3]).

6 Mij = 1− K(i)−K(i|j)
K(ij)



Table 1. Results for the 20-OTU instance (averaged for 50 runs).

Algorithm best mean ± std.dev. %success #evals

SWAP 8.290368 8.290368 ± 0.000000 100% 246,092
PDG NNI 8.290368 8.290368 ± 0.000000 100% 85,435

SCRAMBLE 8.290368 8.290374 ± 0.000042 98% 146,162

SPX 8.337564 8.497876 ± 0.096093 0% –
Ordinal DPX 8.325214 8.466251 ± 0.081407 0% –

UX 8.345291 8.471477 ± 0.085760 0% –

SPX / OX 8.310436 8.417089 ± 0.066013 0% –
SPX / UCX 8.303018 8.400509 ± 0.047586 0% –
SPX + OX 8.294011 8.413814 ± 0.067423 0% –
SPX + UCX 8.304323 8.409855 ± 0.071146 0% –
DPX / OX 8.305980 8.395530 ± 0.064806 0% –

Adaptive DPX / UCX 8.302258 8.415585 ± 0.072114 0% –
ordinal DPX + OX 8.295929 8.417998 ± 0.064371 0% –

DPX + UCX 8.331137 8.416023 ± 0.061231 0% –
UX / OX 8.295403 8.409900 ± 0.077820 0% –
UX / UCX 8.294327 8.394244 ± 0.059192 0% –
UX + OX 8.305803 8.409900 ± 0.077820 0% –
UX + UCX 8.290684 8.397843 ± 0.057408 0% –

insertion 8.341772 8.481938 ± 0.072921 0% –
Greedy order 8.299083 8.453090 ± 0.088807 0% –
Xover UCX+insertion 8.350527 8.460593 ± 0.078182 0% –

UX+order 8.320109 8.407623 ± 0.052265 0% –

Permutational Decoder 8.290368 8.290368 ± 0.000000 100% 23,370

branch-and-bound algorithm following [14] has been implemented, so as to know
the exact optimal solutions. While the 20-OTU instance could be solved rather
efficiently (a couple of seconds on a DIGITAL Alpha 400), the 34-OTU instance
revealed itself as much harder to solve; it took about six hours and a half on the
same machine, and more than half a billion subproblems were evaluated.

The results for the 20-OTU instance are shown in Table 1. The %-success col-
umn indicates the number of times the optimal solution is found, and #evals is
the mean number of evaluations required in these successful runs. Notice firstly
the good results provided by the PDG operator; near 100%-success rates are
achieved in combination with any of the mutation operators discussed. While
the absolute goodness of these results can be due to the low difficulty of this
instance, its relative superiority over most decoder-based approaches is still in-
formative. As it can be seen, the ordinal representation does not manage to
find the optimal solution either with SPX, DPX (double-point crossover) or UX.
When the OTU sequence is evolved along with the insertion points, performance
is clearly improved, although no optimal solution is found. The results for the
guided crossover are not satisfactory either. The reason may lie in the high
cost of evaluating partial solutions. Actually, the greedy-order crossover yields
slightly better results, due to the fact that fewer internal evaluations are needed.
Finally, the results for the permutational decoder (using UCX) are the overall
best. Unlike the plain decoding of the previous EAs, the greedy decoding is less



Table 2. Results for the 34-OTU instance (averaged for 50 runs).

Algorithm best mean ± std.dev. %success #evals

SWAP 14.855763 14.860250 ± 0.002611 2% 933,639
PDG NNI 14.855763 14.857864 ± 0.001827 18% 427,468

SCRAMBLE 14.855763 14.858426 ± 0.002104 10% 722,502

SPX 14.959411 15.100436 ± 0.079702 0% –
Ordinal DPX 14.932403 15.141366 ± 0.093397 0% –

UX 14.939449 15.112828 ± 0.089895 0% –

SPX / OX 14.904175 15.032073 ± 0.060582 0% –
SPX / UCX 14.920124 15.034428 ± 0.066467 0% –
SPX + OX 14.930042 15.042107 ± 0.074107 0% –
SPX + UCX 14.905937 15.031634 ± 0.071966 0% –
DPX / OX 14.920697 15.048883 ± 0.080941 0% –

Adaptive DPX / UCX 14.898218 15.042495 ± 0.097559 0% –
ordinal DPX + OX 14.897718 15.016650 ± 0.073133 0% –

DPX + UCX 14.924216 15.043213 ± 0.074294 0% –
UX / OX 14.924170 15.050490 ± 0.072886 0% –
UX / UCX 14.896434 15.044002 ± 0.071149 0% –
UX + OX 14.915946 15.043606 ± 0.077418 0% –
UX + UCX 14.923092 15.035905 ± 0.077034 0% –

insertion 14.954607 15.127468 ± 0.092056 0% –
Greedy order 14.951596 15.080942 ± 0.072010 0% –
XOver UCX+insertion 14.957719 15.107558 ± 0.092509 0% –

UX+order 14.918159 15.031375 ± 0.067859 0% –

Permutational Decoder 14.855763 14.855772 ± 0.000049 96% 397,512

sensitive to the disruptive effect that genotypic recombination can have on the
phenotype. Hence, it manages to find the optimal solution in 100% of the runs,
using a lower number of evaluations (including internal calculations) than PDG
with SWAP, NNI, or SCRAMBLE.

The results for the 34-OTU instance (Table 2) are completely consistent with
this analysis. Again, PDG-based EAs perform better than EAs using ordinal de-
coders or greedy crossover. However, their success rate is notably lower here, due
to the higher difficulty of the instance. The performance of the permutational-
decoder EA is only marginally affected though. Optimal solutions are found on a
regular basis (96%-success) at a lower computational cost than EAs using PDG.

5 Conclusions

A number of EAs for solving the Phylogeny Problem have been developed and
compared. An empirical evaluation of these EAs using distance-based measures
has shown that directly evolving phylogenetic trees yields better results than in-
direct approaches using decoders. A notable exception to this rule is provided by
the greedy permutational decoder. This approach consistently provides optimal
solutions at a lower cost than PDG-based EAs. Moreover, these latter EAs suffer
from a scalability problem, exhibiting a clear performance drop when the num-
ber of OTUs increases. This does not seem to be the case for the permutational
greedy decoder, at least for the instance sizes considered in this work.



Future work will try to confirm these results on larger problem instances.
Optimal solutions will not be available in this case, but qualitative assessments
will still be possible. Work is in progress here. The use of different evaluation
measures is also an interesting line for future developments. In this sense, we
plan to test alternative distance-based criteria, as well as maximum-likelihood
approaches.

Acknowledgements The first author is partially supported by Spanish CICYT
under grant TIC1999-0754-C03. The second author is supported by Brazilian
CNPq under Proj. 52.1100/01-1.

References

1. Y. Cao, N. Okada, and M. Hasegawa. Phylogenetic position of guinea pigs revisited.
Molecular Biology and Evolution, 14(4):461–464, 1997.

2. X. Chen, S. Kwong, and M. Li. A compression algorithm for DNA sequences and
its application in genome comparisons. Genome Informatics, 10:51–61, 1999.

3. C. Cotta and J.M. Troya. Genetic forma recombination in permutation flowshop
problems. Evolutionary Computation, 6(1):25–44, 1998.

4. J. Hein. A new method that simultaneously aligns and reconstructs ancestral
sequences for any number of homologous sequences, when the phylogeny is given.
Molecular Biology and Evolution, 6:649–668, 1989.

5. S. Holmes. Phylogenies: An overview. In Halloran and Geisser, editors, Statistics
and Genetics, pages 81–119. Springer-Verlag, New York NY, 1999.

6. D. Huson, S. Nettles, and T. Warnow. Disk-covering, a fast converging method for
phylogenetic tree reconstruction. Journal of Computational Biology, 6(3):369–386,
1999.

7. S Koziel and Z. Michalewicz. A decoder-based evolutionary algorithm for con-
strained parameter optimization problems. In T. Bäeck, A.E. Eiben, M. Schoe-
nauer, and H.-P. Schwefel, editors, Parallel Problem Solving from Nature V – LNCS
1498, pages 231–240. Springer-Verlag, Berlin Heidelberg, 1998.

8. H. Matsuda. Protein phylogenetic inference using maximum likelihood with a
genetic algorithm. In Proceedings of the Pacific Symposium on Biocomputing,
pages 512–523. World Scientific, 1996.

9. Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlag, Berlin, 1992.

10. A. Moilanen. Searching for the most parsimonious trees with simulated evolution.
Cladistics, 15:39–50, 1999.

11. C.-K. Ong, S. Nee, A. Rambaut, H.-U. Bernard, and P.H. Harvey. Elucidating the
population histories and transmission dynamics of papillomaviruses using phylo-
genetic trees. Journal of Molecular Evolution, 44:199–206, 1997.

12. N.J. Radcliffe. Equivalence class analysis of genetic algorithms. Complex Systems,
5:183–205, 1991.

13. A. Reyes, C. Gissi, G. Pesole, F.M. Catzeflis, and C. Saccone. Where do rodents
fit? Evidence from the complete genome of Sciurus vulgaris. Molecular Biology and
Evolution, 17(6):979–983, 2000.

14. Bang Ye Wu, Kun-Mao Chao, and Chuan Yi Tang. Approximation and exact
algorithms for constructing minimum ultrametric trees from distance matrices.
Journal of Combinatorial Optimization, 3(2):199–211, 1999.


