
Using Dynastic Exploring Recombination to
Promote Diversity in Genetic Search

Carlos Cotta, José M. Troya

Dpto. de Lenguajes y Ciencias de la Computación, Univ. de Málaga
Campus de Teatinos (3.2.49), 29071 - Málaga - Spain

{ccottap, troya}@lcc.uma.es

Abstract. A family of recombination operators is studied in this work.
These operators are based on keeping and using certain information
about the past evolution of the algorithm to guide the recombination pro-
cess. Within this framework, several recombination operators are specifi-
cally designed to preserve diversity within the population, while avoiding
implicit mutations. The empirical evaluation of these operators on in-
stances of two test problems (k−EMP and permutation flowshop) shows
an improvement of the results with respect to other classical operators.
This improvement seems to related to the increasing degree of epistasis
of the problem.

1 Introduction

One of the most distinctive features of genetic algorithms with respect to other
related techniques such as evolution strategies or evolutionary programming is
the emphasis put on the use of recombination operators. In the most classical sce-
nario, recombination is given a exploitative rôle: its purpose is to combine valu-
able portions of solutions independently discovered, while the more exploratory
task of introducing new genetic material corresponds to the mutation operator
[11]. In this context, the loss of diversity is one of the main problems that can
take place, resulting in the stagnation of the algorithm (which turns to be in-
capable of producing new promising solutions) and the increasing resampling of
solutions [4] (with the subsequent waste of computational resources).

These problems are usually tackled by means of rising the mutation rate
[10] or by using non-panmictic populations1 [17, 19]. Despite both options can
be effective, they require determining and adjusting several parameters (rate of
change of the mutation rate, interconnection topology, migration frequency, etc.).
This is generally a difficult step, and in spite of active research being conducted
to assist setting these parameters (e.g., see [2, 3]), trial-and-error is still very of-
ten used by many researchers. In this work, an alternative (and complementary)
approach is presented. This approach is termed Dynastic Exploring Recombina-
tion and comprises a family of recombination operators that consider the past
1 Populations with spatial structure: islands, grids, etc.

evolution of the algorithm, trying to build promising unexplored macroformae
[14]. This family of operators has been successfully evaluated on two problems:
the k−EMP problem (a tunable-epistasis theoretical problem) and makespan
minimisation in permutation flowshop problems [12].

The remainder of the paper is organised as follows. First, the basis of Dy-
nastic Exploring Recombination is shown (Sect. 2). Subsequently, an empirical
evaluation of these recombination operators is presented, focusing on aspects re-
lated to diversity and epistasis (Sect. 3). Finally, some conclusions are extracted
and future work is outlined (Sect. 4).

2 Dynastic Exploring Recombination

Before defining Dynastic Exploring Recombination (DER) some previous con-
cepts must be stated. Such background is presented is Subsect. 2.1. Next, some
insight on the internal mechanics of recombination is provided in Subsect. 2.2.
Finally, random transmission and dynastic exploring operators are introduced
in Subsect. 2.3.

2.1 Background

Let Ξ = {ψ1, · · · , ψn} be a set of n independent equivalence relations defined
over a discrete search space S verifying that for every possible pair of solutions
x and y, there exists at least an equivalence relation in Ξ such that x and y
belong to different equivalence classes. In this case, Ξ covers the search space
S, and every x ∈ S can be univocally represented as x = {η1, · · · , ηn}, where
ηi is the equivalence class (for simplicity, the same symbol is used both to de-
note a equivalence class and for labelling it) to which x belong under ψi. Thus,
x = {η1, · · · , ηn} ⇐⇒ x ∈ ⋂n

i=1 ηi. Each of these equivalence classes ηi is termed
a basic forma [14].

Let x = {η1, · · · , ηn} and y = {ζ1, · · · , ζn} be two feasible solutions. A re-
combination operator X can be defined as a function X : S × S × S → [0, 1],
where X(x, y, z) is the probability of generating z when x and y are recom-
bined using X. Now, the Immediate Dynastic Span [15] of x and y with re-
spect to a recombination operator X is Γ 1

X({x, y}) = {z | X(x, y, z) > 0},
i.e., the set of solutions that can be obtained when X is applied on x and y.
On the other hand, the Dynastic Potential Γ ({x, y}) of x and y is defined as
Γ ({x, y}) = {z | ∀ξ : z ∈ ξ ⇒ (x ∈ ξ) ∨ (y ∈ ξ)}, where ξ is any basic forma.
Hence, the dynastic potential of two individuals is the set of offspring that can
be constructed using nothing but the information contained in the parents.

If Γ 1
X({x, y}) ⊆ Γ ({x, y}), X is termed a transmitting operator [15]. As

already mentioned in Sect. 1, this property of transmission captures the most
classical rôle of the recombination operator. Next subsection will study the func-
tioning mechanics of these operators.

2.2 The Mechanics of Recombination

A transmitting recombination can be generally considered as a process in which
information is incrementally taken from the parents to construct the offspring:
starting from a totally unspecified solution, properties of the any of the parents
are selected and assigned to the child until a fully-specified solution is obtained.
This incremental process is not necessarily linear but may exhibit a more complex
behaviour, including some kind of backtracking in the assignment of properties
(e.g., Dynastically Optimal Recombination [5]). With this consideration in mind,
any transmitting recombination operator Xt can be defined as

Xt(x, y, z) =
n∏

i=1

δXt(Ψi−1, ξi, x, y), (1)

where z = {ξ1, · · · , ξn} and δXt is a function δXt : 2S × 2S × S × S → [0, 1].
In this function, the first parameter represents the partially-specified solution at
a certain step, i.e., Ψ0 = S, Ψi = Ψi−1 ∩ ξi. Since Ξ covers S, it is easy to see
that Ψn = {z}. Now, δXt(Ψ, ξ, x, y) is the probability that Xt selects forma ξ,
given that the partially-specified solution so far is Ψ 3 z. Clearly, a transmitting
operator must verify that

[(x /∈ ξ) ∧ (y /∈ ξ)] ⇒ δXt(Ψ, ξ, x, y) = 0. (2)

The nature of δXt allows classifying transmitting operators into different
categories. In particular, this work will focus on the case in which no backtracking
in the assignment of properties is performed. The resulting family of operators is
hence characterised for having a linear functioning mechanics, thus introducing
a lower computational overhead in the algorithm. Some elements of this family
are studied in the next subsection.

2.3 Random Transmission vs. Exploring Transmission

The simplest way of performing transmission is at random. Operators working in
this way are comprised within the so-called Random Transmitting Recombination
(RTR) [15], which is defined as follows:

RTR(x, y, z) =
{ 1
|Γ ({x,y})| z ∈ Γ ({x, y})

0 otherwise
(3)

Thus, RTR returns a random individual in the dynastic potential of the
recombined solutions. If Ξ is orthogonal, i.e., if all combinations of formae
induced by different equivalence relations are feasible, it is easy to see that
Γ ({x, y}) ≡ ∏n

i=1{ηi, ζi}, that is, the n-dimensional Cartesian product of all
basic formae to which x or y belong. In this situation, RTR is defined by the
following δRTR:

δRTR(Ψ, ξ, x, y) =





0 (x /∈ ξ) ∧ (y /∈ ξ)
1 (x ∈ ξ) ∧ (y ∈ ξ)

1/2 otherwise
(4)

Notice that RTR ≡ UX if each ψi induce two equivalence classes. In a more
general situation (non-orthogonal separability [14]), it is necessary to consider
higher-level units termed compatibility sets [5] into which solutions are struc-
tured. Using the notation ξ . Ψ to denote that, given Ψ = ∩s

j=1θj , ∃j : ξ ≡ θj ,
where ξ and θj are formae induced by the same equivalence relation ψi ∈ Ξ,
each of these compatibility sets is inductively defined as2

ηj1 . K(ηj1 , x, y) (5)

[Γ ({x, y}) ∩K(ηj1 , x, y) ∩$(ηjk
, x, y) = ∅] ⇒ ηjk

. K(ηj1 , x, y), (6)

where x ∈ ηj1 and $(ηjk
, x, y) is the dual forma of ηjk

, that is, $(ηjk
, x, y) = ζjk

if x ∈ ηjk
, y ∈ ζjk

and both ηjk
and ζjk

are formae induced by the same ψr (idem
changing x by y). For the sake of simplicity, it is assumed that K(η, x, y) =
K(η, y, x) whenever y ∈ η, x /∈ η. Now, RTR is determined by the following
function δK

RTR:

δK
RTR(Ψ, ξ, x, y) =





0 [(x /∈ ξ) ∧ (y /∈ ξ)] ∨ [∃ζ . Ψ : $(ξ, x, y) . K(ζ, x, y)]
1 [(x ∈ ξ) ∧ (y ∈ ξ)] ∨ [∃ζ . Ψ : ξ . K(ζ, x, y)]

1/2 otherwise
(7)

Thus, a random selection is done over compatibility sets rather than over
isolated formae. As mentioned in Sect. 1, defining a uniform probability distri-
bution over these compatibility sets may be inappropriate for several reasons.
First, resampling becomes a problem as the algorithm converges [4]. Second, it is
sensitive to stochastic errors due the finite size of the population (e.g., valuable
genetic material may be lost before it is exploited).

In order to avoid these undesirable effects, recombination operators that con-
sider the past evolution of the algorithm can be used. Such past evolution is com-
prised in the histogram function hA of algorithm A under consideration. This
function is defined as hA : S → 2N×IR, such that hA(x) = {(e1, f1), · · · , (ek, fk)}
implies that element x has been evaluated in iterations e1, · · · , ek, and has respec-
tively obtained the fitness values f1, · · · , fk (typically ∀i[fi = f]). Several ways
exist for using the information provided by the histogram function. For example,
it might be useful to avoid generating solutions that were already considered in
the past. However, such an operator would be computationally expensive and
would in general exhibit a non-linear behaviour. A much more efficient template
is shown below (orthogonality is assumed for simplicity):

δDER(Ψ, ξ, x, y) =





0 [(x /∈ ξ) ∧ (y /∈ ξ)] ∨ [φ($(ξ, x, y), hA) < φ(ξ, hA)]
1 [(x ∈ ξ) ∧ (y ∈ ξ)] ∨ [φ(ξ, hA) < φ($(ξ, x, y), hA)]
1/2 otherwise

(8)
2 This definition of compatibility sets slightly differs from [5] since separability implies

independence with respect to the partially specified solution Ψ .

where φ is a function that returns a metric of forma ξ with respect to the past
history of the algorithm. According to this definition, DER (Dynastic Exploring
Recombination) would try to combine formae that locally minimise such metric.
We are especially concerned about promoting diversity in the population and
hence we have considered the following possibilities:

– φ1(ξ, hA) =
∑

x∈ξ |hA(x)|, that is, the number of times a solution x ∈ ξ has
been evaluated.

– φ2(ξ, hA) =
∑

x∈ξ

∑
(e,f)∈hA(x) f , that is, the accumulated fitness of all so-

lutions in ξ evaluated so far.

These two metrics are intended to direct the search towards regions of the
search space not yet explored or at least not so explored as other regions. Thus,
both DERφ1 and DERφ2 try to mitigate the exploitative side of recombination,
boosting exploration.

In addition to these two metrics, a third metric φ3 has been considered. This
metric is defined as φ3(ξ, hA) = φ2(ξ, hA) / φ1(ξ, hA), that is, the average fitness
of solutions in ξ evaluated so far. This is an interesting measure since it fits the
traditional vision of genetic algorithms as (above-average) schema processors,
sharing some similitude with Rosete et al.’s explicit schema processing [16].

Notice that the bookkeeping involved in calculating any of these metrics
is very simple and does not require storing every visited solution. In fact, it
suffices to keep a table with the accumulated values of these metrics for each
basic forma (the size of this table would be n × m, where n is the number of
genes –equivalence relations in Ξ– and m is the number of alleles per gene –
basic formae per equivalence relation–). Subsequently, gene values are picked
according to the distribution probability shown in Eq.(8).

3 Experimental Results

This section describes the experimental evaluation of the previously described
operator. First, the experimental setup used is described. The empirical results
obtained are subsequently reported.

3.1 Experimental Setup

The test suite used for testing the operators described comprises instances of two
families of problems: k-epistatic minimal permutation problem and makespan
minimisation in permutation flowshop problems.

The k-Epistatic Minimal Permutation (k−EMP) problem is a generalisation
of the Minimal Permutation (MP) problem [5]. The latter is a minimisation
problem defined by a n × n matrix M = {mij | 1 ≤ i, j ≤ n} such that each
row of M is a permutation of the elements {0, · · · , n − 1} and no column has
more than one zero. Subsequently, a permutation p = p1p2 · · · pn is evaluated as
MP(p) =

∑
1≤i≤n mi,pi .

The constraints posed on M ensure that there is a unique permutation
(the minimal permutation) whose fitness value is 0. The k−EMP problem adds
epistatic relations to the above expression. To be precise, it is defined as

k − EMP(p) =
∑

1≤i≤n


mi,pi ·

i−1∏

j=min(1,i−k)

α(pi, pj)


 . (9)

In the instances considered in this work, the coefficients α(pi, pj) are drawn from
a uniform distribution in [1, 2].

As to the second problem, it is a well-known member of the NP-hard class.
It involves determining the order in which a set of jobs must be fed into a
production chain composed of a number of machines. Provided that each job
requires exclusive use of each machine for a certain time, the goal is to minimise
the total completion time of the jobs [6, 12].

The solution space for both problems can be adequately represented in terms
of non-orthogonal separable formae. More precisely, solutions for both problems
are permutations of a set of elements, being the properties of these permutations
appropriately grasped by means of both position and block formae. The former
are defined as assignments of elements to individual positions, while the latter
are defined as the intersection of a compact set of adjacent positions. Because
of space limitations, we refer to [6, 7] for a formal description of these formae.

All experiments have been conducted with a steady-state [18] genetic algo-
rithm (popsize = 100, pc = .9, pm = 1/n, where n is the dimensionality of the
problem) using ranking selection (η+ = 2.0) and the swap mutation operator
[13]. Each run of the algorithm comprises 105 evaluations of the target function.

3.2 Empirical Evaluation

Table 1 shows results for different recombination operators on k−EMP instances
of different dimensionalities and degrees of epistasis. As it can be seen, DER
operators (with the exception of DER∗φ3

) achieve a very good performance with
respect to transmitting operators such as UCX (RTRpos) and UBX (RTRblock),
as well as with respect to classical operators such as PMX and OX. In these
experiments, the improvement is clearer when epistasis is increased. This seems
reasonable, since exploitative behaviours are more appropriate in the case of
low (or null) epistasis in order to proceed towards near-optimal solutions. In
this context, any mechanism introduced for promoting exploration simply slows
down convergence. The scenario is different in the case of higher epistasis: keeping
diversity becomes an important issue, and DER is better than RTR at this. Fig.
1 illustrates this fact, using population-entropy as a measure of diversity [8].

An important fact that must be noted is that DER keeps a higher diversity
than UCX while manipulating the same basic units, and without introducing
implicit mutation. An operator such as OX may provide a diversity measure
similar or higher than DER, but this is done at the expense of introducing a
considerable amount of implicit mutation. In this case, such implicit mutation
is clearly detrimental as shown in Table 1.

Table 1. Results averaged for ten runs of different recombination operators on k−EMP
instances of 50 and 75 elements.

50 elements
Operator k = 0 k = 1 k = 2 k = 5 k = 10 k = 15 k = 20

OX 134.4 184.4 271.6 614.0 2465.7 8582.5 25331.8
UCX (RTRpos) 50.5 72.5 99.9 282.3 1060.5 4880.9 16303.6

UBX (RTRblock) 60.0 78.5 118.8 355.4 1256.1 4709.1 14877.1
PMX 61.3 91.2 104.9 312.6 1274.9 5103.0 17899.8
DERpos

φ1
88.6 75.0 102.8 276.2 966.8 3657.5 10483.2

DERblock
φ1

61.0 83.4 109.9 269.1 1015.8 3728.4 8154.3
DERpos

φ2
53.0 80.6 109.5 272.3 930.2 2820.6 7960.8

DERblock
φ2

53.6 71.9 102.7 267.3 943.4 3856.8 10874.4
DERpos

φ3
88.6 114.0 162.0 413.7 1810.3 8431.0 31418.4

DERblock
φ3

61.0 97.5 143.0 377.2 1612.3 6279.6 28170.5

75 elements
Operator k = 0 k = 1 k = 2 k = 5 k = 10 k = 15 k = 20

OX 358.0 529.9 787.0 1927.1 8521.9 31552.1 111858.8
UCX (RTRpos) 144.6 227.1 325.2 858.7 4309.8 18243.2 74282.2

UBX (RTRblock) 193.0 263.3 369.8 1059.6 4916.9 18388.9 75397.1
PMX 193.3 259.8 377.1 1009.2 4460.0 17644.6 76752.7
DERpos

φ1
174.0 261.3 396.5 1023.5 4193.0 15629.9 56070.4

DERblock
φ1

180.7 246.3 338.5 950.8 3988.1 16997.7 54932.3
DERpos

φ2
192.0 256.2 375.2 1028.7 4189.1 17044.3 63446.8

DERblock
φ2

180.7 245.4 354.3 904.8 3950.5 17486.6 56186.0
DERpos

φ3
213.3 300.4 449.7 1148.3 6320.1 24476.2 122873.6

DERblock
φ3

202.4 294.2 394.8 1149.6 5420.5 21559.1 91910.5

Fig. 1. Loss of diversity in a run of the GA for different recombination operators (UCX
vs. DERpos

φ1
). The graph corresponds to a 20-EMP instance. Variants in DER∗{φ1|φ2}

behave very similar to DERpos
φ1

.

Fig. 2. Loss of diversity for different recombination operators in a run of the GA on the
rec31 instance of flowshop scheduling. The left graph corresponds to UCX vs. DERpos

φ2
,

and the right one to the three variants of DERpos.

The fact that DER∗φ3
provide comparatively worse results can be explained

as follows: unlike DER∗φ1
and DER∗φ2

, DER∗φ3
does not receive any negative feed-

back from the histogram function hA. Thus, if DER∗φ3
directs the search towards

a certain region of S in which several formae have above-average fitness, it is
simply boosting the theoretical behaviour of the algorithm as a forma/schema
processor, increasing the rate of convergence (see Fig. 2 - right) and hence the
possibility of falling into local optima. On the contrary, both DER∗φ1

and DER∗φ2

receive negative feedback, and try to direct the algorithm to regions of S not yet
explored. Moreover, they try to avoid strongly-exploited regions. As mentioned
above, this compensatory strategy can be more useful in the presence of epistasis.

These results are confirmed on flowshop scheduling instances taken from the
OR-Library [1] (see Table 2). It must be noted that this problem has a high
degree of epistasis, since scheduling a task at a given position affects all tasks
subsequently scheduled. For this reason, both DER∗φ1

and DER∗φ2
yield the best

results on these instances.

4 Conclusions

This work has studied the use of recombination operators specifically designed
to promote exploration. This is done by keeping information about the past evo-
lution of the algorithm in order to compensate the exploitative side of recombi-
nation. Unlike some related approaches (e.g., CHC [9]), rather than preventing
the recombination of similar parents, the generation of different descendants is
sought. It is important to consider that, according to the No Free Lunch The-
orem [20], there exist problems in which the past information could mislead
the algorithm. This seems to be the case of low-epistatic problems, in which
exploitation is a better strategy and hence this compensation is detrimental.

Table 2. Results averaged for ten runs of different recombination operators on permu-
tation flowshop instances.

Problem instance
Operator Rec19 Rec25 Rec31 Rec37 Rec39 Rec41

OX 2121.8 2571.6 3144.1 5223.3 5296.9 5249.7
UCX (RTRpos) 2126.6 2566.7 3127.0 5192.1 5270.6 5206.4

UBX (RTRblock) 2124.3 2575.2 3124.5 5197.2 5275.6 5205.8
PMX 2123.7 2577.2 3120.0 5208.0 5282.7 5207.2
DERpos

φ1
2119.4 2557.8 3122.3 5159.5 5268.9 5189.0

DERblock
φ1

2119.5 2553.0 3122.2 5179.9 5337.2 5189.8
DERpos

φ2
2116.9 2551.8 3111.1 5172.1 5272.8 5188.6

DERblock
φ2

2115.6 2563.0 3115.0 5174.3 5247.7 5194.2
DERpos

φ3
2134.9 2607.5 3147.0 5210.0 5307.3 5245.5

DERblock
φ3

2125.6 2570.2 3137.0 5211.2 5279.5 5258.6

The experimental results are encouraging. It is empirically corroborated that
some members of the DER family keep a higher level of diversity. Furthermore,
performance improves in the presence of appreciable levels of epistasis, scenario
in which convergence to local optima becomes more of an issue.

Several lines of future work are open. Firstly, it is clearly necessary to conduct
more experiments so as to verify these results on other test problems. Secondly,
it is interesting to study the relationship and interplay between these operators
and spatially-structured evolution models. These two strategies can complement
each other as mentioned in Sect. 1. In this sense, factors such as the convenience
of using decentralised histogram functions are worth studying. Work is already
in progress in this area.

Acknowledgments

The authors wish to thank the anonymous reviewers for their interesting com-
ments. Limitation of space has prevented us for further elaborating on some of
the points they judiciously comment.
This work is partially supported by the Spanish Comisión Interministerial de
Ciencia y Tecnoloǵıa (CICYT) under grant TIC99-0754-C03-03.

References

1. J.E. Beasley. OR-library: Distributing test problems by electronic mail. Journal
of the Operational Research Society, 41(11):1069–1072, 1990.

2. E. Cantú-Paz. Designing efficient and accurate parallel genetic algorithms. Tech-
nical Report 99017, Illinois Genetic Algorithm Laboratory, 1999.

3. E. Cantú-Paz. Topologies, migration rates and multi-population parallel genetic
algorithms. Technical Report 99007, Illinois Genetic Algorithm Laboratory, 1999.

4. C. Cotta. On resampling in nature-inspired heuristics. In V. Botti, editor, Proceed-
ings of the Seventh Conference of the Spanish Association for Artificial Intelligence,
pages 145–154, 1997. In Spanish.

5. C. Cotta, E. Alba, and J.M. Troya. Utilising dynastically optimal forma recombi-
nation in hybrid genetic algorithms. In A.E. Eiben, Th. Bäck, M. Schoenauer, and
H.-P. Schwefel, editors, Parallel Problem Solving From Nature V, volume 1498 of
Lecture Notes in Computer Science, pages 305–314. Springer-Verlag, Berlin, 1998.

6. C. Cotta and J.M. Troya. Genetic forma recombination in permutation flowshop
problems. Evolutionary Computation, 6(1):25–44, 1998.

7. C. Cotta and J.M. Troya. On the influence of the representation granularity in
heuristic forma recombination. In J Carroll, E. Damiani, H. Haddad, and D. Op-
penheim, editors, ACM Symposium on Applied Computing 2000, pages 433–439.
ACM Press, 2000.

8. Y. Davidor and O. Ben-Kiki. The interplay among the genetic algorithm operators:
Information theory tools used in a holistic way. In R. Männer and B. Manderick,
editors, Parallel Problem Solving From Nature II, pages 75–84, Amsterdam, 1992.
Elsevier Science Publishers B.V.

9. L. Eshelman. The CHC adaptive search algorithm. In G.J.E. Rawlins, editor,
Foundations of Genetic Algorithms I, pages 265–283, San Mateo CA, 1991. Morgan
Kauffman.

10. T.C. Fogarty. Varying the probability of mutation in the genetic algoritm. In
J.D. Schaffer, editor, Proceedings of the Third International Conference on Genetic
Algorithms, pages 104–109, San Mateo, CA, 1989. Morgan Kaufmann.

11. D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, Reading, MA, 1989.

12. F.S. Hillier and G.J. Lieberman. Introduction to Operations Research. Holden-Day,
San Francisco CA, 1967.

13. B. Manderick, M. de Weger, and P. Spiessens. The genetic algorithm and the struc-
ture of the fitness landscape. In R.K. Belew and L.B. Booker, editors, Proceedings
of the Fourth International Conference on Genetic Algorithms, pages 143–150, San
Mateo CA, 1991. Morgan Kaufmann.

14. N.J. Radcliffe. Equivalence class analysis of genetic algorithms. Complex Systems,
5:183–205, 1991.

15. N.J. Radcliffe. The algebra of genetic algorithms. Annals of Mathematics and
Artificial Intelligence, 10:339–384, 1994.

16. A. Rosete, A. Ochoa, and M. Sebag. A comparison of schema-processing algo-
rithms. In Proceedings of the Second International Symposium on Artificial Intel-
ligence, pages 22–26, La Habana, 1999.

17. P. Spiessens and B. Manderick. A massively parallel genetic algorithm. In R.K.
Belew and L.B. Booker, editors, Proceedings of the Fourth International Conference
on Genetic Algorithms, pages 279–286, San Mateo CA, 1991. Morgan Kauffman.

18. G. Syswerda. A study of reproduction in generational and steady-state genetic
algorithms. In G.J.E. Rawlins, editor, Foundations of Genetic Algorithms I, pages
94–101, San Mateo, CA, 1991. Morgan Kaufmann.

19. R. Tanese. Distributed genetic algorithms. In J.D. Schaffer, editor, Proceedings
of the Third International Conference on Genetic Algorithms, pages 434–439, San
Mateo, CA, 1989. Morgan Kaufmann.

20. D.H. Wolpert and W.G. Macready. No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1(1):67–82, 1997.

