
Solving the Multidimensional Knapsack Problem
Using an Evolutionary Algorithm Hybridized

with Branch and Bound

José E. Gallardo, Carlos Cotta, and Antonio J. Fernández

Dept. Lenguajes y Ciencias de la Computación, ETSI Informática,
University of Málaga, Campus de Teatinos, 29071 - Málaga, Spain.

{pepeg,ccottap,afdez}@lcc.uma.es

Abstract. A hybridization of an evolutionary algorithm (EA) with the
branch and bound method (B&B) is presented in this paper. Both tech-
niques cooperate by exchanging information, namely lower bounds in the
case of the EA, and partial promising solutions in the case of the B&B.
The multidimensional knapsack problem has been chosen as a bench-
mark. To be precise, the algorithms have been tested on large problems
instances from the OR-library. As it will be shown, the hybrid approach
can provide high quality results, better than those obtained by the EA
and the B&B on their own.

1 Introduction

Branch and Bound (B&B) [1] is an algorithm for finding optimal solutions to
combinatorial problems. Basically, the method produces convergent lower and
upper bounds for the optimal solution using an implicit enumeration scheme.
The algorithm starts from the original problem, and proceeds iteratively. In
each stage, the problem is split into subproblems such that the union of feasible
solutions for these subproblems gives the whole set of feasible solutions for the
current problem. Subproblems are further divided until they are solved, or their
upper bounds are below the best feasible solution found so far (maximization is
assumed here). Thus, the approach produces a branching tree in which each node
corresponds to a problem and the children of the node represent the subproblems
into which it is split. Several strategies can be used to traverse the search tree.
The most efficient one consists of expanding more promising (according to the
attainable solution, i.e., the upper bound) problems first, but memory resources
may be exhausted. A depth-first expansion requires less memory, but will likely
expand much more nodes than the previous strategy.

A different approach to optimization is provided by evolutionary algorithms
[2, 3] (EAs). These are powerful heuristics for optimization problems based on
principles of natural evolution, namely adaptation and survival of the fittest.
Starting from a population of randomly generated individuals (representing so-
lutions), a process consisting of selection, (promising solutions are chosen from
the population) reproduction (new solutions are created by combining selected



ones) and replacement (some solutions are replaced by the new ones) is repeated.
A fitness function measuring the quality of the solution is used to guide the pro-
cess.

A key aspect of EAs is robustness, meaning that they can be deployed on a
wide range of problems. However, it has been shown that some kind of domain
knowledge has to be incorporated into EAs for them to be competitive with
other domain specific optimization techniques [4–6]. A promising approach to
achieve this knowledge-augmentation is the hybridization with other (domain-
specific) heuristics for the optimization problem to be solved. In this paper a
hybridization of an EA with B&B is presented. This hybridization is aimed to
combining their search capabilities in a synergetic way.

The remainder of the article is organized as follows: Sect. 2 presents the mul-
tidimensional knapsack problem (MKP) –the benchmark used to test our hybrid
model– and describes both an efficient evolutionary algorithm and two different
B&B implementations that have been successfully applied to solve the MKP.
Then, Sect. 3 discusses related work regarding the hybridization of evolutionary
algorithms and B&B models; a novel proposal for this hybridization is described
here too. Subsequently, Sect. 4 shows and analyzes the empirical results obtained
by the application of each of the described approaches (i.e., the EA, pure B&B
models and the hybrid model) on different instances of the benchmark. Finally,
Sect. 5 provides the conclusions and outlines ideas for future work.

2 The Multidimensional Knapsack Problem

Let us firstly describe the target problem, and several approaches –both meta-
heuristic and exact– used for solving it.

2.1 Description of the Problem

The Multidimensional Knapsack Problem (MKP) is a generalization of the clas-
sical knapsack problem, so it is worth starting with the description of the latter.
There is a knapsack with an upper weight limit b, and a collection of n items
with different values pj and weights rj . The problem is to choose the collection
of items which gives the highest total value without exceeding the weight limit
of the knapsack.

In the MKP, m knapsacks with different weight limits bi must be filled with
the same items. Furthermore, these items have a different weight rij for each
knapsack i. Formally, the problem can be formulated as:

maximise
n∑

j=1

pjxj , (1)

subject to
n∑

j=1

rijxj ≤ bi, i = 1, . . . , m, (2)

xj ∈ {0, 1}, j = 1, . . . , n. (3)



Each of the m constraints in Eq. (2) is called a knapsack constraint, and
vector x describes which objects are chosen in the solution. The problem is
NP-hard [7], and can be seen as a general statement of any zero-one integer
programming problem with non-negative coefficients. Many practical problems
can be formulated as an instance of the MKP, for example, the capital budgeting
problem, project selection and capital investment, budget control, and numerous
loading problems (see e.g. [8]).

2.2 An Evolutionary Algorithm

EAs have been used in several works for solving the MKP, e.g., [9–13] among
others. To the best of our knowledge, the EA developed by Chu and Beasley in
[11] represents the state-of-the-art in solving the MKP with EAs. This particular
algorithm has an additional advantage: it uses the natural representation of
solutions, i.e., n-bit binary strings, where n is the number of items in the MKP.
For this representation, a value of 0 or 1 in the j-th bit indicates the value of xj

in the solution.
Since this representation allows infeasible solutions, a repair operator is used

to correct them. In order to implement this operator, a preprocessing routine is
first applied to each problem to sort variables according to the decreasing order
of their pseudo-utility ratios uj ’s (the greater the ratio, the higher the chance
that the corresponding variable will be set to one in the solution, see [11] for
details). Then, an algorithm consisting in two phases (see Fig. 1) is applied to
every solution. In the first phase, variables are examined in increasing order of
uj and set to zero if feasibility is violated. In the second phase, variables are
examined in reverse order and set to one as long as feasibility is not violated.
The aim of the first phase is to obtain a feasible solution, whereas the second
phase seeks to improve its fitness.

1: initialize Ri =
∑n

j=1
rijxj , ∀i ∈ {1, · · · , n};

2: for j = n down to 1 do /* DROP phase */
3: if (xj = 1) and (∃i ∈ {1, · · · , n} : Ri > bi) then
4: set xj ← 0;
5: set Ri ← Ri − rij , ∀i ∈ {1, · · · , n}
6: end if
7: end for
8: for j = 1 up to n do /* ADD phase */
9: if (xj = 0) and (∀i ∈ {1, · · · , n} : Ri + rij ≤ bi) then

10: set xj ← 1;
11: set Ri ← Ri + rij , ∀i ∈ {1, · · · , n}
12: end if
13: end for

Fig. 1. Repair operator for the MKP.



By restricting the EA to search only the feasible region of the solution space,
the simple fitness function f(x) =

∑n
j=1 pjxj can be considered.

2.3 Branch and Bound Algorithms

Two B&B algorithms have been evaluated. The first one is a simple implemen-
tation that expands the search tree by introducing or excluding an arbitrary
item in the knapsack until a complete solution is generated. When an item j is
included, the lower bound for the problem is increased with the corresponding
profit pj (and the remaining available space is decreased by rij in each knapsack
i), whereas the upper bound is decreased by pj when the item is excluded. Of
course, infeasible solutions are pruned during the process. The problem queue is
examined in a depth-first way in order to avoid memory exhaustion when solv-
ing large problems. Although this method is very naive, it can be very efficiently
implemented and may be the only one available for other problems for which no
sophisticated heuristics have been developed.

The second implementation performs a standard linear programming (LP)-
based tree search. The algorithm solves the linear relaxation of the current prob-
lem (that is, allowing fractional values for decision variables), and considers the
problem solved if all variables have integral values in the relaxed solution. Oth-
erwise, it expands two new problems by introducing or excluding an item with
an associated fractional value (the one whose value in the LP-relaxed solution
is closest to 0.5). This method is more accurate, but is not very fast when large
problems are considered, as their relaxation may take some time to be solved.

3 Hybrid Models

In this section we present a hybrid model that integrates an EA with B&B.
Our aim is to combine the advantages of both approaches and, at the same
time, avoid (or at least minimize) their drawbacks working alone. Firstly, in
the following subsection, we briefly discuss some related works existing in the
literature regarding the hybridization of B&B techniques and EAs.

3.1 Related Work

Cotta et al. [14] used a problem-specific B&B approach for the traveling salesman
problem based on 1-trees and the Lagrangean relaxation [15], and made use of
an EA to provide bounds in order to guide the B&B search. More specifically,
they analyzed two different approaches for the integration. In the first model,
the genetic algorithm plays the role of master and the B&B is incorporated as a
tool of it. The primary idea was to build a hybrid genetic operator based in the
B&B philosophy. The second model proposed consisted of executing in parallel
the B&B algorithm with a certain number of EAs which generate a number of
solutions of different structure. The diversity provided by the independent EAs
contributed to make that edges suitable to be part of the optimal solution were



likely included in some individuals, and non-suitable edges were unlikely taken
into account. Despite these approaches showed encouraging results, the work in
[14] described only preliminary results.

Another relevant research was developed by Nagard et al. [16], combining
a B&B tree search and an EA which was used to provide bounds for solving
flowshop scheduling problems. Later, a hybrid algorithm, combining genetic algo-
rithms and integer programming B&B approaches to solve MAX-SAT problems
was described by French et al. [17]. This hybrid algorithm gathers information
during the run of a linear programming based B&B algorithm, and uses it to
build an EA population. The EA is eventually activated, and the best solution
found is used to inject new nodes in the B&B search tree. The hybrid algorithm
is run until the search tree is exhausted, and hence it is an exact approach.
However, in some cases it can expand more nodes than the B&B alone.

More recently, Cotta and Troya [18] presented a framework for the hybridiza-
tion based on using B&B as an operator embedded in the EA. This hybrid op-
erator is used for recombination: it intelligently explores the possible children of
solutions being recombined, providing the best possible outcome. The resulting
hybrid metaheuristic provides better results than pure EAs in problems where
a full B&B exploration is unpractical on its own.

3.2 Our Hybrid Algorithm

One way to do the integration of evolutionary techniques and B&B models is
via a direct collaboration that consists of letting both techniques work alone in
parallel (i.e., let both processes perform independently), that is, at the same
level. Both processes will share the solution. There are two ways of obtaining a
benefit of this parallel execution:

– The B&B can use the lower bound provided by the EA to purge the problem
queue, deleting those problems whose upper bound is smaller than the one
obtained by the EA.

– The B&B can inject information about more promising regions of the search
space into the EA population in order to guide the EA search.

In our hybrid approach (see Fig. 2), a single solution is shared among the EA
and B&B algorithms that are executed in an interleaved way. Whenever one of
the algorithms finds a better approximation, it updates the solution and yields
control to the other algorithm.

The hybrid algorithm starts by running the EA in order to obtain a first
approximation to the solution. In this initial phase, the population is randomly
initialized and the EA executed until the solution is not improved for a certain
number of iterations. This approximation can be later used by the B&B algo-
rithm to purge the problem queue. No information from the B&B algorithm is
incorporated in this initial phase of the EA, in order to avoid the injection of
high-valued building blocks that could affect diversity, polarizing further evolu-
tion.



Promising regions

Lower bounds

B&B 
Algorithm 

EA

Fig. 2. The hybrid algorithm.

Afterwards, the B&B algorithm is executed. Whenever a new solution is
found, it is incorporated into the EA population (replacing the worst individual),
the B&B phase is paused and the EA is run to stabilization. Periodically, pending
nodes in the B&B queue are incorporated into the EA population. Since these
are partial solutions and the EA population consists of full solutions, they are
completed and corrected using the repair operator. The intention of this transfer
is to direct the EA to these regions of the search space. Recall that the nodes in
the queue represent the subset of the search space still unexplored. Hence, the
EA is used for finding probably good solutions in this region. Upon finding an
improved lower bound (or upon stabilization of the EA, in case no improvement
is found), control is returned to the B&B, hopefully with an improved lower
bound. This process is repeated until the search tree is exhausted, or a time
limit is reached. The hybrid is then an anytime algorithm that provides both
a quasi-optimal solution, and an indication of the maximum distance to the
optimum.

4 Experimental Results

We have tested our algorithms with problems available at the OR-library [19]
maintained by Beasley. We took two instances per problem set. Each problem
set is characterized by a number, m, of constraints (or knapsacks), a number, n,
of items and a tightness ratio, 0 ≤ α ≤ 1. The closer to 0 the tightness ratio the
more constrained the instance.

We solved these problems on a Pentium IV PC (1700MHz and 256MB of
main memory) using the EA, the B&B and the hybrid algorithms (all of them
coded in C). A single execution for each instance was performed for the B&B
method whereas ten runs were carried out for the EA and hybrid algorithms.
The algorithms were run for 600 seconds in all cases. For the EA and the hy-
brid algorithm, the size of the population was fixed at 100 individuals that were
initialized with random feasible solutions. The probability of mutation was set



to 2 bits per string, recombination probability was set to 0.9, the binary tour-
nament selection method was used, and a standard uniform crossover operator
was chosen.

The results are shown in Table 1. The first three columns indicate the sizes
(m and n) and the tightness ratio (α) for a particular instance. The next column
reports results for the B&B algorithm, whereas the last two columns report the
best and average solutions over 10 runs for the EA and the hybrid algorithm.
As it can be seen, the hybrid algorithm always outperforms the original algo-
rithms. Notice also that the difference in the mean values is notably larger than
the corresponding standard deviations, thus reinforcing the significance of the
results.

Table 1. Results (averaged for ten runs) of the B&B algorithm, the EA, and the
hybrid thereof for problem instances of different number of items (n), knapsacks (m),
and tightness ratio (α).

GA B&B-GA
α m n B&B best mean ± std.dev best mean ± std.dev

100 24373 24381 24381.0 ± 0.0 24381 24381.0 ± 0.0
5 250 59243 59243 59211.7 ± 18.0 59312 59305.1 ± 20.7

500 120082 120095 120054.0 ± 25.1 120148 120122.0 ± 14.0
100 23064 23064 23050.2 ± 19.2 23064 23059.1 ± 3.2

0.25 10 250 59071 59133 59068.7 ± 29.1 59164 59146.3 ± 11.6
500 117632 117711 117627.3 ± 64.7 117741 117702.4 ± 20.5
100 21516 21946 21856.1 ± 112.5 21946 21946.0 ± 0.0

30 250 56277 56796 56606.9 ± 126.6 56796 56796.0 ± 0.0
500 115154 115763 115619.9 ± 79.7 115820 115779.6 ± 18.6

100 59960 59960 59960.0 ± 0.0 59965 59965.0 ± 0.0
5 250 154654 154668 154626.2 ± 31.7 154668 154668.0 ± 0.0

500 299904 299885 299842.7 ± 26.9 299904 299902.3 ± 5.1
100 60633 60633 60629.7 ± 4.9 60633 60633.0 ± 0.0

0.75 10 250 149641 149686 149622.7 ± 39.6 149704 149685.3 ± 15.1
500 306949 306976 306893.7 ± 56.0 307027 307002.7 ± 8.4
100 60574 60593 60560.9 ± 32.1 60603 60603.0 ± 0.0

30 250 149514 149514 149462.8 ± 44.4 149595 149528.6 ± 24.4
500 300309 300351 300218.8 ± 94.5 300387 300359.0 ± 21.9

Figs. 3 and 4 show the on-line evolution of the lower bound for the three
algorithms. Notice how the hybrid algorithm yields consistently better results
all over the run. This confirms the goodness of the hybrid model as an anytime
algorithm.

We are currently testing the second implementation of the hybrid algorithm
that solves LP-relaxation of the problems. The preliminary results indicate that
the lower bounds obtained by this algorithm are not better than the ones re-
ported in this paper, although more accurate upper bounds can be achieved.



0 10 20 30 40 50 60 70 80 90 100
6.03

6.035

6.04

6.045

6.05

6.055

6.06

6.065

6.07
x 10

4

time (s)

lo
w

er
 b

ou
nd

hybrid B&B−EA 

EA

B&B 

Fig. 3. Evolution of the lower bound in the three algorithms during the first 100 seconds
of execution for an problem instance with α = .75, m = 30, n = 100. Curves are
averaged for the ten runs in the case of the EA and the hybrid algorithm.

0 20 40 60 80 100 120 140 160 180 200
1.493

1.4935

1.494

1.4945

1.495

1.4955

1.496
x 10

5

time (s)

lo
w

er
 b

ou
nd

EA 

B&B 

hybrid B&B − EA 

Fig. 4. Evolution of the lower bound in the three algorithms during the first 100 seconds
of execution for an problem instance with α = .75, m = 30, n = 250. Curves are
averaged for the ten runs in the case of the EA and the hybrid algorithm.



5 Conclusions and Future Work

We have presented a hybridization of an EA with a B&B algorithm. The EA pro-
vides lower bounds that the B&B can use to purge the problem queue, whereas
the B&B guides the EA to look into promising regions of the search space.

The resulting hybrid algorithm has been tested on large instances of the MKP
problem with encouraging results: the hybrid EA produces better results than
the constituent algorithms at the same computational cost. This indicates the
synergy of this combination, thus supporting the idea that this is a profitable
approach for tackling difficult combinatorial problems. In this sense, further work
will be directed to confirm these findings on different combinatorial problems, as
well as to study alternative models for the hybridization of the B&B with EAs.

Acknowledgements.

This work is partially supported by Spanish MCyT and FEDER under contracts
TIC2002-04498-C05-02 and TIN2004-7943-C04-01.

References

1. Lawler, E., Wood, D.: Branch and bounds methods: A survey. Operations Research
4 (1966) 669–719

2. Bäck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University
Press, New York NY (1996)

3. Bäck, T., Fogel, D., Michalewicz, Z.: Handbook of Evolutionary Computation.
Oxford University Press, New York NY (1997)

4. Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York
NY (1991)

5. Wolpert, D., Macready, W.: No free lunch theorems for optimization. IEEE Trans-
actions on Evolutionary Computation 1 (1997) 67–82

6. Culberson, J.: On the futility of blind search: An algorithmic view of “no free
lunch”. Evolutionary Computation 6 (1998) 109–128

7. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman and Co., San Francisco CA (1979)

8. Salkin, H., Mathur, K.: Foundations of Integer Programming. North Holland
(1989)

9. Khuri, S., Bäck, T., Heitkötter, J.: The zero/one multiple knapsack problem and
genetic algorithms. In Deaton, E., Oppenheim, D., Urban, J., Berghel, H., eds.:
Proceedings of the 1994 ACM Symposium on Applied Computation, ACM Press
(1994) 188–193

10. Cotta, C., Troya, J.: A hybrid genetic algorithm for the 0-1 multiple knapsack
problem. In Smith, G., Steele, N., Albrecht, R., eds.: Artificial Neural Nets and
Genetic Algorithms 3, Wien New York, Springer-Verlag (1998) 251–255

11. Chu, P., Beasley, J.: A genetic algorithm for the multidimensional knapsack prob-
lem. Journal of Heuristics 4 (1998) 63–86

12. Gottlieb, J.: Permutation-based evolutionary algorithms for multidimensional
knapsack problems. In Carroll, J., Damiani, E., Haddad, H., Oppenheim, D.,
eds.: ACM Symposium on Applied Computing 2000, ACM Press (2000) 408–414



13. Raidl, G., Gottlieb, J.: Empirical analysis of locality, heritability and heuristic
bias in evolutionary algorithms: A case study for the multidimensional knapsack
problem. Technical Report TR 186–1–04–05, Institute of Computer Graphics and
Algorithms, Vienna University of Technology (2004)

14. Cotta, C., Aldana, J., Nebro, A., Troya, J.: Hybridizing genetic algorithms with
branch and bound techniques for the resolution of the TSP. In Pearson, D., Steele,
N., Albrecht, R., eds.: Artificial Neural Nets and Genetic Algorithms 2, Wien New
York, Springer-verlag (1995) 277–280

15. Volgenant, A., Jonker, R.: A branch and bound algorithm for the symmetric
traveling salesman problem based on the 1-tree relaxation. European Journal of
Operational Research 9 (1982) 8388

16. Nagard, A., Heragu, S., Haddock, J.: A combined branch and bound and genetic
algorithm based for a flowshop scheduling algorithm. Annals of Operation Research
63 (1996) 397–414

17. French, A., Robinson, A., Wilson, J.: Using a hybrid genetic-algorithm/branch
and bound approach to solve feasibility and optimization integer programming
problems. Journal of Heuristics 7 (2001) 551–564

18. Cotta, C., Troya, J.: Embedding branch and bound within evolutionary algorithms.
Applied Intelligence 18 (2003) 137–153

19. Beasley, J.: Or-library: distributing test problems by electronic mail. Journal of
the Operational Research Society 41 (1990) 1069–1072


