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Abstract. The problem of inferring genetic networks under the Tem-
poral Boolean Network model is considered here. This is a very hard
problem for which an heuristic approach is proposed. This approach is
based on the use of evolutionary algorithms (EAs) to refine the results
of a specialized algorithm (ID3). Experimental results provide support
for the usefulness of this approach, showing a consistent enhancement of
the ID3 solutions.

1 Introduction

Genetic Networks are tools for modeling gene interactions that can be used to
explain a certain observed biological behavior. In a genetic network, the func-
tionality of a gene is described by the global effect it has on the cell, as a result of
its interaction with other genes. Such interactions must be inferred from experi-
mental data in order to construct an adequate genetic network for modeling the
biological process under scrutiny. The way this inference is done depends on the
particular genetic-network model used. For example, one can consider Bayesian
Networks [9], Boolean Networks [18], Petri Nets [12], and Weight Matrices [19]
among others. In this work we will focus on Temporal Boolean Networks (TBNs)
[17], a generalization of the Boolean Network model that takes into account the
time-series nature of the data, and tries to incorporate into the model the possi-
ble existence of delayed regulatory interactions among genes. The basic notions
about this model of genetic networks will be presented in Section 2.

Several exact algorithms have been proposed for the inference of TBNs from
experimental data. It turns out that the inference problem is very hard, and
some of these algorithms can become impractical up from a certain problem
size. For this reason, the use of heuristic approaches is in order. In this sense, we
will study the utilization of evolutionary algorithms (EAs) [4] for this purpose.
The details of the application of EAs to this problem will be provided in Section
3.

It is important to notice that we consider the utilization of EAs not substitut-
ing but complementing other existing algorithms. In effect, EAs can successfully
use information provided by the latter in order to build improved solutions. Sec-
tion 4 will provide empirical evidence of this fact. This work will close with some
discussion and prospects for future research in Section 5.



2 Background

In this section we will introduce the essentials of the TBN model considered in
this work. Firstly, some basic definitions and notation will be presented in Sub-
section 2.1. Subsequently, we will provide some highlights on existing algorithms
for the inference of TBNs in Subsection 2.2

2.1 Temporal Boolean Networks

As mentioned in the previous section, TBNs are a generalization of Boolean
Networks. It would be then appropriate to start defining the latter.

A Boolean Network is a tuple BN (G, F'), where G(V, E) is a directed graph,
and F' = {f, | v € V} is a set of Boolean functions, such that f, is attached to
vertex v. Let K (v) be the in-degree of vertex v in graph G. Then, the signature
of the Boolean function attached to v is f, : BX¢(") — B where B = {0,1}.
Each vertex v represents a different gene, and can be labeled with a binary
value —0(OFF) or 1(ON)- that indicates its expression level. The existence of
an edge (v’,v) in G indicates that the value of gene v' exerts some influence on
the value of gene v, i.e., v’ is a regulatory factor of v. The precise way in which
this regulation works, and how it is combined with other regulatory factors that
bind to v is captured by means of the corresponding Boolean function f,,.

Having defined these concepts, the dynamics of the genetic network is mod-
eled as follows: first of all, time is divided in discrete time steps. In each step,
the values of all genes are synchronously updated using the attached Boolean
functions. More precisely, the value of gene v at time ¢+ 1 is computed by having
function f, being fed with the values at time ¢ of all genes v’,v", - -, v(Kc®) for
which incoming edges to v exist. The output of f, for this particular input is
the expression level of v at time ¢ + 1.

Let ¢ : V — B be a labeling of vertices in V, and let ¥ be the set of all
such labelings. Now, we define an example as a pair (I,0) € ¥2. A Boolean
network BN is said to be consistent with this example if it holds for each v € V
that f, (I(v'), -, I(vEc())) = O(v). In the context of time-series data, we will
have a sequence A = (A1, -+, \p,) € U™, and we will be interested in checking
the consistency of the network with examples (A;, A\j+1), 1 < i < m. Plainly, this
represents the capability of the network for reproducing the observed data. In
case the network were not consistent with the whole time series, it would make
sense to measure the degree of agreement with it. This is done using the accuracy
measure. First, let the error €4 (v) for gene v be defined as the fraction of states
of v that were incorrectly predicted by the network across the time series A. Now
the accuracy of the network for a time series A is

1
accuracypn(A) =1 — G Z e (). (1)
veV

It can be easily seen that the accuracy of a network is 1.0 if, and only if, it is
fully consistent with the time series A. In case more than one time series were



available, i.e., A, -, A4, a combined accuracy measure can be computed by
averaging the accuracy values for all time series 4;, 1 <i < gq.

Temporal Boolean networks are a extension of BNs that tries to overcome
some of the limitations of the basic model, i.e., the synchronous updating of gene
values. Unlike the case of plain Boolean networks, in TBNs the state of a gene at
a certain time step is not only relevant for the next time step; on the contrary,
its regulatory influence can span across several time steps.

In order to formally define a TBN we only need to specify a labeling of
edges in the graph. Thus, a TBN is a tuple TBN(G, F'), where F' has the same
interpretation as above, and G is a graph G(V, E, ¢) with ¢ being defined as a
function ¢ : E — N. Were a certain edge (v’,v) be labeled with [, the state of
v" at time ¢t would be relevant for computing the new state of v at time ¢+ ({41).
It is then easy to see that a plain Boolean network is a particular case of TBN
in which all edges are labeled with 0. We will denote by T the maximum size of
the time window in which the state of a gene can have regulatory effects, i.e.,
T =1+ maxecp ¢(e) (hence T =1 for a plain Boolean network).

2.2 Inference of TBNs

A number of algorithms have been proposed for the inference of TBNs from
data. Actually most of them correspond to the simpler Boolean network model,
but they can be readily extended to deal with TBNs.

One of the first algorithms that were proposed is REVEAL (REVerse En-
gineering ALgorithm) [11]. This algorithm combines Information-Theory tools
and exhaustive search in order to find a network consistent with the data. More
precisely, the algorithm tries to identify an adequate set of inputs for each gene
g by considering all possible k-tuples of genes for increasing values of k£ (1 up
to n, the total number of genes). A k-tuple I' is considered a valid input if the
mutual information between gene g and genes in I is equal to the entropy of
g, i.e., I' is enough to explain all state variations for g. If the underlying model
behind the data is known to have in-degree bounded by K, then the complexity
of this algorithm can be shown to be O(mn (%)) = O(mn+1), where m is the
size of the data set.

Another algorithm was proposed by Akutsu et al. [1]. This algorithm was
termed BOOL-1 in a later work [2], and consists of examining all possible K-
tuples of inputs, testing all Boolean functions of each K-tuple until a consis-
tent set of inputs is found. As it is the case for REVEAL, this algorithm has
O(mn®+1) worst-case complexity.

Since the number of network topologies is O(n®*1), these algorithms can be
essentially viewed as brute-force approaches. As a matter of fact, it has been
shown by Cotta and Moscato [6] that this bound cannot be improved unless
a very unlikely condition regarding the structure of parameterized complexity
classes held [8].

This hardness has motivated the utilization of heuristic approaches. A popu-
lar one is ID3 [13], a well known algorithm in Machine Learning. This algorithm
is based on the incremental construction of the input set for each variable using a



greedy search guided by the information gain criterion. The approach presented
in next section is based on the synergistic utilization of evolutionary algorithms
and existing heuristics such as ID3.

3 An EA-based Approach for Inferring TBNs

In this section we will show how to deploy EAs on the inference problem we
are considering. Firstly, the representation and evaluation function utilized are
described in Subsection 3.1. Then, the procedures used for initialization and
reproduction are discussed in Subsection 3.2.

3.1 Representation and Evaluation

Choosing a representation in which the relevant properties of solutions for the
problem considered are explicitly shown [14] is crucial for the success of the EA.
In the problem of inferring TBNs from data, the relevant properties of solutions
are the edges among genes, and their labels. The chosen representation is then
based on these units. More precisely, we have considered solutions as a list of
triplets (v/,v,1), v,v" € V,1 € {0,---,T — 1}, each one corresponding to an edge
present in the TBN. It turns out that such lists can be efficiently stored and
manipulated in terms of an (n X n)-matrix M of natural numbers in the range
[0,T]; having M;; > 0 implies that an edge exists from v; to v;, and its label
is M;; — 1 (conversely, the edge list can be viewed as a sparse encoding of this
matrix). This matrix is not allowed to have more than K non-zero entries per
column, i.e., K is the maximum in-degree of any node. Repairing by pruning the
input set of a node is performed whenever its size is greater than allowed, e.g.,
after applying mutation.

EA individuals thus specify the wiring of the TBN. When submitted to eval-
uation, the Boolean functions attached to each vertex must be firstly learned.
This is done by scanning the data set A and assigning the most common output
to each input combination found in A. This is similar to the maximum likelihood
estimation of parameters done in, e.g., Bayesian networks, and can be done in
linear time in the number of patterns in A. Once these functions have been de-
termined, the TBN is effectively evaluated using accuracy —recall Equation (1)
as the fitness function to be maximized.

3.2 Initialization and Operators

In order to have the EA started, it is necessary to create the initial population
of solutions. This is typically addressed by randomly generating the desired
number of solutions. When the alphabet used for representing solutions has low
cardinality (as it is here the case), this random initialization provides a more
or less uniform sample of the solution space. The EA can subsequently start
exploring the wide area covered by the initial population, in search of the most
promising regions.



This random initialization can be complemented with the inclusion of heuris-
tic solutions in the initial population. The EA can thus benefit from the existence
of other algorithms, using the solutions they provide both for refinement and as
information source. This is termed seeding, and it is known to be very beneficial
in terms of convergence speed, and quality of the solutions achieved [16]. In order
to avoid injected solutions taking over the whole population in a few iterations,
a non-fitness-proportionate selection mechanism (focusing on qualitative fitness
comparisons instead of on quantitative comparisons) must be used. This has
been the approach we have considered: injecting solutions provided by the 1D3
algorithm in the initial population, and using binary tournament [5].

Once the population has been created, the EA conducts its search using
two reproductive operators, recombination and mutation. One of the advantages
of the representation chosen is the fact that it is orthogonal [15], that is, any
(n x n)-matrix M of natural numbers in the range [0,T] represents a valid
TBN (there are no constraints, e.g., regarding the presence of cycles as it is the
case in bayesian networks). This means that classical operators can be used.
In this case, we have considered the utilization of uniform crossover (UX) for
recombination. This operator ensures a high interchange of gene-values during
recombination. As to mutation, it is performed using a simple mechanism: a
random edge (v',v,1) is selected and removed from the solution if it is present,
or added to it otherwise (any (v',v,1") that existed would then be removed).
The objective here is obtaining an unbiased source of fresh information that
keep diversity in the population.

4 Experimentation

The experiments have been conducted in order to test the ability of the proposed
approach in recovering specific TBNs using a sample of their output. To do so,
we have randomly generated networks of different sizes, in-degrees, and temporal
delays. More precisely we have considered networks of n = 16 and n = 32 genes,
in-degrees of K =5 and K = 7 edges, and temporal delays from 0 up to 3 time
steps (i.e., 1 < T < 4). For each parameter combination we have generated 5
different networks, following the procedure described in [17]. Once all networks
have been generated, their output is sampled by randomly setting their states
for T' time steps, and then iterating their behavior for 100 time steps. This is
repeated 5 times, so a total of 5 time series of 100 patterns each is obtained for
each network.

The evolutionary algorithm used is a (50,1)-EA, i.e., an EA with a popu-
lation size of 50 individuals, generating a single descendant in each step, and
inserting this new individual in the population by substituting the worst one.
Recombination is done with probability pgr = 0.9, and mutation of genes with
probability pps = 1/n%. Binary tournament is used for selecting individuals for
reproduction as mentioned in Subsection 3.2. Finally, the EA is run for a total
number of evaluations maxevals = 10,000 for n = 16, and maxevals = 20,000
for n = 32.
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Fig. 1. Accuracy of the TBNs generated by the EA (solid line). The results of ID3 are
included as a reference (dotted line). (Left) n = 16 (right) n = 32

Table 1. Percentage of success of the EA and the ID3 algorithm in finding the target
TBN for different network sizes, in-degree bounds, and time-window sizes.

K =5 K=17
algorithm size T =1 T=2 T=3 T=4 T=1 T=2 T=3 T=4
EA n=16 9% 69% 8% T1% 81% 43% 0% 1%
n=32 9% 60% 26% 51% 9% 0% 0% 0%
ID3 n=16 20% 20% 40% 40% 20% 0% 0% 0%
n=232 60% 40% 20% 40% 0% 0% 0% 0%

Using these parameters, the EA is run 20 times on each of these 5 time-
series data sets. Besides considering the accuracy of the solutions obtained, their
similarity to the target network is also measured. This can be done using the
sensitivity and specificity metrics [10]. These are respectively defined as the frac-
tion of matched edges (edges in both the generated solution and in the original
TBN) with respect to the total number of edges in the generated solution or in
the original TBN. Notice that both metrics will yield the same result when the
original network and the solution provided by the EA indicate the same number
of dependencies for each gene.

First of all, the accuracy results of the EA are shown in Fig. 1. Notice that
in all cases the EA manages to improve the accuracy of the ID3 solution. This
improvement is generally larger for low values of T'. In this case, the EA is able to
find the target network most of the times. This can be corroborated by taking
a look at Fig. 2, where sensitivity values are shown, and Table 1, where the
number of successful runs (i.e., runs in which the target network is found) is
shown. As it can be seen, the performance line is located very close to 1.0 in this
case (specificity values are equivalent in all cases to those for sensitivity, due to
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Fig. 2. Sensitivity of the TBNs generated by the EA (solid line). The results of ID3

are included as a reference (dotted line). Specificity values are equivalent in this case.
(Left) n = 16 (right) n = 32

the fact that the networks generated by the EA have exactly K inputs per gene,
as target networks do).

The performance curve of the EA drops at a slightly higher rate in the case
K = 7. However, this is also the case for ID3, and reflects the higher difficulty of
this set of instances. Actually, this in-degree value can be considered as rather
high since genes are believed to be influenced on average by no more than eight
to ten other genes [3]. Obviously, the search space is also larger for increasing
K, so longer evolution times may be required in this case.

5 Conclusions

An evolutionary approach for the inference of genetic networks has been pre-
sented in this work. This approach can exploit pre-existing heuristics by incor-
porating the solutions they provide to the initial population. This seeding boosts
convergence towards probably optimal solutions.

The empirical results obtained from its evaluation are encouraging. It has
been shown that the results of a specialized algorithm (ID3) can be consistently
improved. In this sense, we would like to emphasize the generalizability of the
approach: ID3 has been considered as the heuristic for seeding the initial popu-
lation, but it can be easily changed for any other heuristic; hence, if an improved
algorithm is devised, it can be readily used to seed the initial population.

Future work will be directed to test the applicability of this approach in
more complex scenarios, e.g., assuming the existence of white noise in the data.
Work is in progress here. Another interesting line for future developments is the
utilization of ideas taken from a related field as it is the inference of bayesian
networks [7].
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