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Abstract. This work explores different evolutionary approaches to Pro-
tein Structure Prediction (PSP), a highly constrained problem. These
are the utilization of a repair procedure, and the use of evolutionary op-
erators whose functioning is closed in feasible space. Both approaches
rely on hybridizing the evolutionary algorithm (EA) with a backtracking
algorithm. The so-obtained hybrid EAs are described, and empirically
compared to a penalty-based EA. The utilization of the repair procedure
reveals itself as a very appropriate technique for tackling this problem.

1 Introduction

Proteins are biomolecules of paramount importance for life as we know it: they
play an essential role in many biological functions, acting as carriers, catalysts,
regulators, etc. In essence, a protein is a sequence of aminoacids. When left in the
appropriate environmental conditions, this sequence exhibits the extraordinary
property of folding itself, quickly reaching a unique low-energy state. Such state
is termed native state, and it ultimately determines the biological function of
the protein. The extreme importance of being capable of ascertaining the native
conformation of a protein from its amino-acid sequence is thus clear (for example,
it is useful for designing new drugs for a target disease). This is known as the
Protein Structure Prediction (PSP) problem.

It turns out that solving PSP instances to optimality is a very hard prob-
lem, even when simplified models are considered [1]. For this reason, the use
of heuristic techniques such as Evolutionary Algorithms (EAs) is in order. EAs
have been applied to the PSP problem in a number of works, e.g., [4, 5, 8], with
moderate success. One of the difficulties that such an application has to deal
with is the existence of geometrical constraints in the final conformation of the
protein (i.e., self-avoidance in the chain, forbidden torsion-angles, etc.). This dif-
ficulty has been usually tackled using a penalty function that measures to which
extent these constraints are violated. Thus, infeasible solutions are allowed, but
they are assigned a lower fitness value due to the existence of a penalizing term
(e.g., see for example [4, 5]).

This work explores alternatives to the penalty approach mentioned above.
More precisely, we consider the utilization of a repair procedure (mapping infea-
sible solutions to feasible conformations), and the use of evolutionary operators



whose functioning is closed in feasible space. Both approaches rely on a back-
tracking algorithm, tailored to the PSP problem. The combination of this back-
tracking algorithm with the EA results in a hybrid algorithm. The so-obtained
hybrid EAs will be described, and empirically compared to a penalty-based EA.

The remainder of this paper is organized as follows. First, Section 2 pro-
vides the necessary background on the PSP models considered in this work.
Then, Section 3 describes the application of EAs to the PSP, focusing on the
backtracking algorithm located at the core of the hybrid, as well as on the evo-
lutionary operators based on this algorithm. Subsequently, experimental results
for the different EAs considered are reported in Section 4. Finally, Section 5
presents some conclusions are outlines future work.

2 A Gentle Introduction to Protein Structure Prediction

As mentioned in the previous section, a protein is a sequence of aminoacids.
Each of these aminoacids can be from one out of twenty different types, and
it is connected to its neighbors in the sequence by a peptide bond. While this
bond is relatively rigid, a certain amount of rotation can take place around
other atomic links. Such rotation is responsible for the folding of the protein.
A realistic simulation of the folding process should then take into account the
physical and chemical factors affecting such rotations. This is time consuming
and computationally expensive, and hence simplified models are needed.

Fig. 1. Examples of protein conformations in the cubic lattice (left) and in the cube-
octahedral lattice (right) under the HP model. Dark (resp. white) boxes represent
hydrophobic (resp. hydrophilic) aminoacids.

One of the most popular of such models is the Hydrophobic-Hydrophilic model
(HP model) of Dill [2]. In this model, each aminoacid is classified into two classes:
hydrophobic or non-polar (H), and hydrophilic or polar (P), according to their
interaction with water molecules. In addition, the sequence is assumed to be
embedded in a certain lattice. This lattice is used to discretize the space of con-
formations, and can exhibit different topologies. The simplest one is the square
lattice, shown in Fig. 1 (left) for three dimensions. Other typical examples are
tetrahedral [3] and cube-octahedral [9] lattices (shown in Fig. 1–right).



Any feasible conformation in the HP model is assigned a free energy level.
To be precise, each pair of hydrophobic aminoacids being topological neighbors
in the conformation contributes a contact free energy ε < 0, provided that these
two aminoacids are not adjacent in the sequence; any other topological contact
does not contribute anything to the total free energy. Notice that the native state
of a protein is a low-energy conformation (it is actually conjectured to be the
global minimum). Thus, the number of HH contacts is maximized in the native
state.

As shown in [1], finding this globally optimal conformation under the HP
model is NP -hard. This justifies the utilization of heuristic techniques such as
EAs for solving this problem. Next section will describe the EA deployment on
the PSP problem.

3 Evolutionary Approaches to the PSP Problem

The application of EAs to the PSP problem involves determining appropriate
representation and operators, as well as defining a suitable fitness function. We
will start by briefly discussing these aspects. This will pave the way for introduc-
ing hybrid operators that try to overcome the limitations of classical evolutionary
approaches.

3.1 Basic Setting

According to the description of the HP model provided in Section 2, a protein
conformation is an embedding of the corresponding sequence in a certain lattice.
Each individual in the EA must thus represent such an embedding. This is
typically done by using internal coordinates, i.e., the folding is expressed as a
sequence of moves specifying the location of each aminoacid with respect to the
previous one (the location of the first aminoacid in the sequence is fixed, and
hence n− 1 moves must be given in order to specify a folding for a sequence of
n aminoacids). Obviously this representation depends on the particular lattice
topology considered; for example, each location has 6 neighbors in a cubic lattice,
and 12 neighbors in a cube-octahedral lattice. This raises a second issue, i.e., the
precise representation of each move.

Two major schemes for representing internal moves can be found in the
literature. First of all, we can consider the absolute representation [10]. In this
representation, an absolute reference system is assumed, and moves are specified
with respect to it. As an example, consider the case of the cubic lattice; there
are 6 possible absolute moves from a given location: North, South, East, West,
Up and Down (see Fig. 2–left). Thus, a conformation is expressed as a sequence
s ∈ {N, S, E, W, U, D}n−1, where n is the length of the protein sequence. As
an alternative, relative moves [7] can be considered. In this case, the reference
system is not fixed, but it depends on the last move. This is illustrated in Fig. 2–
right; as it can be seen, five moves are allowed: Forward, Turn Up, Turn Down,
Turn Right, and Turn Left. Hence, conformations are expressed as sequences
s ∈ {F, TU, TD, TL, TR}n−1.



Fig. 2. (Left) Absolute moves in a cubic lattice. The black cube represents the current
location. (Right) Relative moves in a cubic lattice. The black cubes represent the
current location and the previous one.

It is clear that many sequences of moves do not correspond to feasible con-
formations, since the self-avoidance constraint will be violated. This is especially
relevant in EAs due to the fact that standard reproductive operators will likely
produce infeasible offspring even when the parents were feasible. As previously
anticipated, the classical approach for dealing with this situation is allowing such
infeasible solutions, but penalizing them at the evaluation stage. More precisely,
let D = {dij} be a matrix such that dij is the distance between pi and pj , re-
spectively the ith and the jth aminoacids in the protein1. Then, the objective
function (to be minimized) has the following structure:

f(D) =
n−2∑

i=1


O(D, i)

n∑

j=i+2

O(D, j)E(pi, pj)δ(dij , 1)


+C

n−1∑

i=1

n∑

j=i+1

δ(dij , 0) (1)

where δ(·, ·) is the Kronecker-delta function, O : Nn×n × N→ {0, 1} is

O(D, i) =
∏

j 6=i

[1− δ(dij , 0)] , (2)

i.e., O(D, i) = 0 if, and only if, the move sequence produces an overlap involving
the ith aminoacid, E : {H, P}2 → Z is a function capturing the free contact
energy between two certain aminoacids2, and C > 0 is a constant that weights
the penalty infringed to infeasible solutions.

By using the evaluation function shown above, the search space can be
explored as if no constraint existed, i.e., standard operators can be used for
recombination (e.g., single-point crossover) and mutation (e.g., random gene-
substitution). Additionally, ad hoc operators can be defined in orden to exploit

1 The distance is measured as the length of the shortest path in the lattice connecting
their locations after applying the folding sequence.

2 In this case, E(H, H) = −1, being zero otherwise.



some features of the problem. A typical example is specular mutation (see [6] for
example), an operation that flips a part of the folded sequence along a certain
symmetry axis, e.g., by changing N by S and vice versa.

3.2 The Backtracking Algorithm

As mentioned in Section 1, the PSP problem is probably intractable, and hence
the use of exact techniques such a Branch-and-Bound (BnB) or Backtracking is
inherently limited by a complexity barrier. Of course, this limitation refers to the
deployment of these exact techniques for finding the globally optimal solution.
However, the utilization of these techniques for finding feasible solutions is in
principle perfectly affordable.

This section describes a backtracking algorithm aimed at producing feasible
solutions for a certain PSP problem instance. This particular algorithm consti-
tutes a simple yet efficient approach for the purposed task. Its pseudocode is
shown in Figure 3. The algorithm receives three parameters. The first one is τ ,
a table containing the allowed moves for each aminoacid in the protein (for each
one but the first, to be precise); thus, τk is a list of allowed moves for the (k+1)-
th aminoacid and τk,r is the rth move. Although τ may contain in principle the
full set of moves, in general |τk| will not be the same for every k. This will be
illustrated in the following subsection.

The second parameter is s, a partial conformation involving |s| aminoacids.
As to the third parameter, it is a Boolean flag used to finalize the execution of
the algorithm as soon as a feasible conformation is found. Notice finally that ::
represents the sequence concatenation operator. Next subsection will be devoted
to describe the hybridization of the EA with this basic backtracking algorithm.

PSP-Backtracking (↓ τ :move[][], ↓↑ s:move[], ↑ solutionFound:bool)

if feasible(s) then
if |s| = n− 1 then

solutionFound ← TRUE

else
solutionFound ← FALSE

i ← 1
while ¬solutionFound ∧ (i ≤ |τ|s||) do

s′ ← s :: 〈τ|s|,i〉
PSP-Backtracking (τ , s′, solutionFound)
i ← i + 1

endwhile
if solutionFound then

s ← s′

endif
else

solutionFound ← FALSE

endif

Fig. 3. Pseudocode of a Backtracking algorithm for finding feasible conformations.



3.3 Backtracking-based Evolutionary Operators

Besides the penalty approach sketched in Subsection 3.1, the PSP problem can be
dealt using a repairing procedure, or feasible-space operators. Both approaches
can be implemented via the use of the backtracking algorithm presented above.

Let us start by considering the feasible-space approach. This involves the EA
having a population of feasible solutions at all times. First of all, this implies
that the initial population must be composed of such feasible solutions. To do
so, it suffices to use the backtracking algorithm using a table τ such that τk is a
different random permutation of all moves. This will produce a random feasible
conformation each time the backtracking algorithm is invoked.

As to recombination and mutation, they must respect feasibility of the so-
lutions they produce. Focusing firstly on recombination, let η = 〈η1, · · · , ηn−1〉
and ζ = 〈ζ1, · · · , ζn−1〉 be two feasible conformations; they can be recombined in
feasible space by using the backtracking algorithm with τk being 〈ηk〉 if ηk = ζk,
and a random permutation of 〈ηk, ζk〉 otherwise. This will provide a random
feasible combination of the parental information without introducing exogenous
information (each move in the descendant will be taken from one of the parents).
Finally, mutation is performed by selecting an aminoacid i in the individual η,
and assigning a random move ξ (6= ηi) to it. Subsequently, the backtracking al-
gorithm is invoked having τk (k 6= i) being a permutation of all moves such that
τk,1 = ηk, and τi = 〈ξ〉. This will produce a feasible solution with the mutated
move, and that will have the original values in the remaining moves except where
a change be required to avoid a superposition.

Notice finally that the repair-based approach can be implemented using the
mutation operator described above as the repairing mechanism (it will produce
a feasible solution no matter the feasibility/infeasibility of the solution to be
mutated).

4 Empirical Results

The experiments have been done with an elitist generational EA (popsize = 100,
pc = .9, pm = 0.01) using linear ranking selection (η = 2.0). A maximum number
of 105 evaluations has been enforced. In order to provide a fair comparison, the
internal backtracking steps performed by some operators have been accounted
and deducted from this computational limit.

The problem instances considered are taken from [10], and are labeled as
UMxx, where xx is the number of aminoacids in the sequence. Several lattice
models have been used, including cubic and cube-octahedral topologies. Due to
space limitations we focus here on the results obtained on the three-dimensional
cubic lattice. These are shown in Table 1 for the three EA approaches. The
reproductive operators used have been SPX (P-EA and R-EA), backtracking re-
combination (F-EA), random gene-substitution3 (P-EA), and backtracking mu-
tation (F-EA and R-EA). In all cases, initialization is done using only feasible
solutions.
3 Specular mutation has been tried as well, with worse results.



Table 1. Results of the different EA approaches (averaged for 50 runs).

Penalty-based Approach (P-EA)
Absolute Encoding Relative Encoding

sequence best mean ± σ median best mean ± σ median

UM20 11 10.32 ± 0.71 10.5 11 9.02 ± 0.95 9
UM24 13 10.84 ± 1.01 11 11 8.60 ± 1.00 8.5
UM25 9 8.00 ± 0.82 8.5 9 6.78 ± 1.04 7
UM36 18 14.70 ± 1.24 14 15 11.36 ± 1.60 12.5
UM48 26 22.10 ± 1.73 23 22 16.50 ± 2.33 19
UM50 25 20.46 ± 1.72 22 21 14.94 ± 1.87 15.5
UM60 43 36.64 ± 2.71 40 37 29.60 ± 3.14 28.5
UM64 41 36.28 ± 2.40 34.5 36 26.72 ± 3.06 24

Feasible-space Approach (F-EA)
Absolute Encoding Relative Encoding

sequence best mean ± σ median best mean ± σ median

UM20 11 10.32 ± 0.61 10 11 9.84 ± 0.86 10.5
UM24 13 10.90 ± 0.98 11 11 10.00 ± 0.87 9.5
UM25 9 7.98 ± 0.71 8 9 8.64 ± 0.69 8
UM36 18 14.38 ± 1.26 14.5 18 13.72 ± 1.41 15.5
UM48 25 20.80 ± 1.61 20 28 18.90 ± 2.08 22.5
UM50 23 20.20 ± 1.50 21.5 22 19.06 ± 1.46 19
UM60 39 34.18 ± 2.31 33.5 38 32.28 ± 3.09 36.5
UM64 39 33.01 ± 2.49 37.5 36 30.84 ± 2.55 30

Repair-based Approach (R-EA)
Absolute Encoding Relative Encoding

sequence best mean ± σ median best mean ± σ median

UM20 11 10.52 ± 0.54 10.5 11 10.26 ± 0.69 10.5
UM24 13 11.28 ± 0.90 11 13 10.36 ± 0.88 10.5
UM25 9 8.54 ± 0.64 8.5 9 8.18 ± 0.79 8.5
UM36 18 15.76 ± 1.05 16 16 14.16 ± 1.24 15.5
UM48 28 24.60 ± 1.57 26.5 26 21.28 ± 1.64 22
UM50 26 23.02 ± 1.48 23.5 24 20.06 ± 1.47 21.5
UM60 49 41.18 ± 2.75 39.5 43 36.92 ± 2.45 38
UM64 46 40.40 ± 2.50 40 40 35.10 ± 2.46 36.5

Notice first of all that the results for EAs using the absolute encoding are
better than those of the EAs using relative encondings. The differences are in
some cases small, and not very significant, but are appreciable in the larger in-
stances. Notice also that the results of the F-EA are in general worse than those
of the P-EA, thus providing some support to the claims made in [5] regarding
the limitations of the first approach for traversing the search space. Neverthe-
less, notice that the R-EA provide the best results; jumping from an infeasible
conformation to a nearby feasible one thus seems to be an appropriate strategy
for exploring the search space in this problem.

5 Conclusions

The application of EAs to the PSP problem has been commonly approached via
penalty functions (P-EA). The motivation is twofold: on one hand, it results in



simpler algorithms; on the other hand, it has been claimed that handling infea-
sible solutions is necessary in order to efficiently traverse the search space. This
work has been aimed at studying the performance of two alternative approaches:
a feasible-space EA (F-EA) and a repair-based EA (R-EA). Both EAs rely on
the use of a embedded backtracking algorithm.

Several conclusions can be drawn from the experiments realized. First of all,
the need for handling infeasible solutions has been supported but only to some
extent. Although the F-EA provides comparatively worse results than the P-
EA, the fact that the population is initialized with feasible solutions plays a
major role in the good performance of the latter. Furthermore, the R-EA pro-
vides good results, suggesting the usefulness of exploring feasible conformations
in the neighboring regions of those infeasible solutions generated by the EA.
Additionally, and from an algorithmic point of view, the resulting algorithms
are not much more complex to implement than the P-EA.

Future work will be directed to generalize these results to other folding mod-
els, as well as to investigate the possibilities for adding local improvement oper-
ators that turned the EA into a full-featured memetic algorithm.
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