
Analyzing Directed Acyclic Graph
Recombination

Carlos Cotta and José M. Troya

Dept. Lenguajes y Ciencias de la Computación,
ETSI Informática (Office 3.2.49), University of Málaga,

Campus de Teatinos, 29071 - Málaga - SPAIN

ccottap@lcc.uma.es

Abstract. This work studies the edge-based representation of directed
acyclic graphs, as well as the properties of recombination operators work-
ing on it. It is shown that this representation is not separable, and the
structure of the basic information units that must be processed in order
to maintain feasibility of the solutions is described. As an experimental
analysis indicates, a recombination operator using these units has sub-
quadratic complexity in the graph size. It is also shown that a standard
gene-transmission recombination operator is biased to produce solutions
of lower edge-density than the parents’ average. An unbiased allelic re-
combination operator provides better results on an ad-hoc test problem.

1 Introduction

Given a digraph G(V, E), where V = {v1, · · · , vn} is a set of vertices and E ⊆
V × V , a vertex vj is said to be a descendant of vi if, and only if, (vi, vj) ∈ E,
or (vk, vj) ∈ E and vk is a descendant of vi. A Directed Acyclic Graph (DAG)
is a digraph DAG(V,E), where E verifies that no vi, vj ∈ V exist such that vi is
a descendant of vj and vice versa.

DAGs are important data structures since they can be used to represent many
relevant entities such as field programmable gate arrays (FPGAs) [1], Bayesian
networks [11, 7], task graphs [2], scene graphs [15], dependence graphs [8, 6] etc.
The synthesis of such entities is generally complex, being often approached via
evolutionary algorithms (e.g., [5, 9, 12]). For this reason so it is worth analyzing
application issues of evolutionary heuristics to this task.

In this work, we focus on DAG recombination from the perspective of an
edge-based representation of DAGs. Both this representation and the innards of
information transmission during recombination are theoretically analyzed within
the framework of Forma Analysis [13]. For this purpose, some background in-
formation on Forma Analysis is given (Section 2) prior to the mentioned anal-
ysis (Section 3). Subsequently, several variants of recombination are empirically
studied in terms of time complexity, edge-transmission ratios and algorithmic
performance (Section 4). Finally, some conclusions and future work are outlined
(Section 5).



2 Background

Let Φ = {φ1, · · · , φn} be a set of n equivalence relations defined over a discrete
search space S. Let Ξφ be the set of equivalence classes induced by φ, and let
ΞΨ (Ψ ⊆ Φ) be the set of vectors of equivalence classes induced by equivalence
relations in Ψ . Let [x]φ be the equivalence class to which x belong under φ. If
it holds for Φ that for any two different solutions x, y ∈ S, there exists φ ∈ Φ
such that [x]φ 6= [y]φ, then Φ covers the search space S. If Φ is independent and
covers the search space S, then each solution x ∈ S can be represented as a string
〈[x]φ | φ ∈ Φ〉, i.e., x = 〈η1, η2, · · · , ηn〉 ⇔ {x} = ∩n

i=iηi. Being any ambiguity
clear from the context, the same notation is used for equivalence classes and
their labels. Each φ ∈ Φ is analogous to a gene, and each η ∈ Ξφ is analogous to
an allele for this gene.

The Dynastic Potential Γ ({x, y}) of x and y is defined as

Γ ({x, y}) =
⋂

φ∈Φ

([x]φ ∪ [y]φ) , (1)

i.e., the set of solutions that only carry information present in x or y. On the
other hand, the Similarity Set Σ({x, y}) is defined as

Σ({x, y}) =
⋂

φ∈Φ,[x]φ=[y]φ

[x]φ , (2)

i.e., the largest forma that contains x and y [14]. Notice that Γ ({x, y}) ⊆
Σ({x, y}). If for any alleles η, ζ such that η ∩ ζ 6= ∅, and x ∈ η, y ∈ ζ, it
holds that η ∩ ζ ∩Σ({x, y}) 6= ∅, then Φ is separable. The notation η . Ψ denotes
that Ψ is the intersection of several alleles, including η. Similarly, the notation
Θ . Ψ denotes that Ψ is the intersection of several alleles, including all θ . Θ.

3 DAG Recombination

Let V = {v1, · · · , vn} be the set of available vertices, and let SV be the search
space composed of all DAGs defined over V 1. Given z ∈ SV , let E(z) be the set
of edges in z. Now let us consider a family of equivalence relations φij defined
over SV as

φij(x, y) = TRUE⇔ [(vi, vj) ∈ E(x) ⇔ (vi, vj) ∈ E(y)] . (3)

Each equivalence relation φij induces two formae φ1
ij and φ0

ij , respectively com-
prising the solutions that include/exclude edge (vi, vj). Let Φ = {φij | 1 ≤ i, j ≤
n, i 6= j}. This set of equivalence relations can be used to induce a represen-
tation of solutions in SV . To show this, it is necessary to prove that (a) Φ is
independent, and (b) Φ covers SV . This is done below.
1 This search space has an enormous size. There is no closed form for |SV |, but it grows

super-exponentially with |V |. For instance, |SV | = 543 for |V | = 4, and |SV | ≈ 1018

for |V | = 10 (cf. [10])



Lemma 1. Let Φ′ ⊂ Φ, and let φij ∈ Φ − Φ′. There always exists an allele
η ∈ Ξφij such that for some x, y ∈ η, no allele set Ω ∈ ΞΦ′ can be found for
which {x, y} ⊆ ⋂

ξ∈Ω ξ.

Proof. The proof is done by induction on the cardinality of Φ′. Initially, let
Φ′ = {φkl}. Let η ≡ φ0

ij . Let x, y ∈ η be such that (k, l) ∈ E(x), and (k, l) /∈
E(y). These two solutions exists (for instance, consider E(x) = {(k, l)}, and
E(y) = ∅). Now, Ω can take two values: {φ0

kl}, or {φ1
kl}. Clearly, x does not

belong to φ0
kl in the first case, and the same holds for y with respect to φ1

kl in
the second case. Hence the base case is established. We now assume that the
lemma holds whenever |Φ′| = k. Subsequently, we consider the case |Φ′| = k +1.
Let Φ′ = Ψ ∪ {φkl}. Then, any Ω ∈ ΞΦ′ can be expressed as Θ ∪ {ζ}, where
Θ ∈ ΞΨ and ζ ∈ Ξφkl

. Assume that the lemma is false in this situation. Thus,
for all η ∈ Ξφij

and x, y ∈ η, there exists Ω ∈ ΞΦ′ such that {x, y} ⊆ ⋂
ξ∈Ω ξ.

However, {x, y} ⊆ ⋂
ξ∈Ω ξ implies that {x, y} ⊆ ⋂

ξ∈Θ ξ (recall Θ ⊂ Ω). But this
is false according to the induction hypothesis. Since we arrive at a contradiction,
the lemma must also hold in this case. ¤

Proposition 1. The set of equivalence relations Φ is independent and covers
the search space SV .

Proof. (Independence) It must be shown that given φij ∈ Φ, no Φ′ ⊆ (Φ− {φij})
exists such that φij ≡

⋂
ψ∈Φ′ ψ, i.e., φij cannot be expressed as the intersection

of other equivalence relations in Φ. The proof is done by absurdity. Let φij ≡⋂
ψ∈Φ′ ψ. This implies that for any η ∈ Ξφij , an allele set Ω ∈ ΞΦ′ exists for which

η ≡ ⋂
ξ∈Ω ξ. Clearly, this means that for all x ∈ η, it holds that x ∈ ⋂

ξ∈Ω ξ.
But this contradicts Lemma 1, so the initial assumption (φij ≡

⋂
ψ∈Φ′ ψ) must

be false.
(Coverage) It must be shown that for all x, y ∈ SV (x 6= y), there exists

φij ∈ Φ such that φij(x, y) = FALSE. This is easy to prove since –without loss
of generality– x 6= y implies that vi, vj ∈ V exist, such that (vi, vj) ∈ E(x) but
(vi, vj) /∈ E(y). Hence, x ∈ φ1

ij and y ∈ φ0
ij , i.e., φij(x, y) = FALSE. ¤

Proposition 1 shows that any DAG x ∈ SV can be univocally and compactly
represented as a string 〈φk | φ ∈ Φ, k ∈ {0, 1}〉. As shown below, this represen-
tation induced by Φ is not separable.

Proposition 2. The set of equivalence relations Φ is not separable.

Proof. The proof is done by example. Let vi, vj , vk ∈ V be three different ver-
tices. Clearly, it holds that

φ1
ij ∩ φ1

jk 6= ∅, φ1
ij ∩ φ1

ki 6= ∅, φ1
jk ∩ φ1

ki 6= ∅, and (4)

φ1
ij ∩ φ1

jk ∩ φ1
ki = ∅ . (5)

Now, let x ∈ φ1
ij ∩ φ1

ki, and let y ∈ φ1
jk ∩ φ1

ki. It follows that the similarity
set of x and y is a subset of φki. Then, being φ1

ij and φ1
jk two compatible

formae according to Eq.(4), two solutions x ∈ φ1
ij and y ∈ φ1

jk exist for which
Σ({x, y}) ∩ φ1

ij ∩ φ1
jk = ∅ (recall Eq.(5)). Hence, Φ is not separable. ¤



The non-separability of Φ implies that a recombination operator processing
the induced representation must manipulate macro-units of information in order
to preserve feasibility in the descendant being created. These macro-units are
termed transmission sets, and can be defined as follows:

Definition 1. The transmission set T (Ψ, η) of an allele η is the closure of the
following expressions:

η . T (Ψ, η) (6)

[∃!η′ ∈ Ξϕ′ : Ψ ∩ T (Ψ, η) ∩ η′ 6= ∅] ⇒ η′ . T (Ψ, η), (7)

where Ψ is the partially constructed descendant.

Transmission sets are a more general version of compatibility sets [3], in which
the descendant is not forced to belong to the dynastic potential of the solutions
x and y being recombined. Nevertheless, transmission sets can be shown to
preserve feasibility within Γ ({x, y}) as long as Ψ is initialized as the similarity
set Σ({x, y}). This is formally established in the following proposition:

Proposition 3. Let |Ξφ| = 2 for all φ ∈ Ψ . Then, Υ (Ψ, η, x, y) ≡ T (Ψ, η) for
any two solutions x and y, whenever Ψ . Σ({x, y}).
Proof. (Sketch) Essentially, a compatibility set Υ (Ψ, η, x, y) is the intersection of
all those alleles present in x or y that must be injected in the descendant z ∈ Ψ , so
as to ensure feasibility, simultaneously forcing z ∈ Γ ({x, y}). It can be seen that
when |Ξφ| = 2, either x, y ∈ η for some η ∈ φ (and hence η .Σ({x, y})), or x ∈ η
and y ∈ η′, Ξφ = {η, η′}. This means that any feasible solution z ∈ Σ({x, y})
also belongs to Γ ({x, y}), i.e., Σ({x, y}) ≡ Γ ({x, y}). Thus, a transmission set
will ensure feasibility within Γ ({x, y}) whenever Ψ . Σ({x, y}). ¤

This initial transmission of common alleles has been the approach considered
in this work. Within this context, transmission sets must be computed taking
into account that if an edge (i, j) is added to the descendant, any edge (j, k)
–where k is an ancestor of i in the partially-specified solution– is forbidden. On
the contrary, excluding an edge (i, j) from the descendant does not impose any
restriction on the addition/excusion of other edges. This can be formalized as
follows: let Ψ be a partially specified descendant; let Ω(Ψ) be a DAG such that
φ1

ij . Ψ ⇔ (i, j) ∈ E(Ω(Ψ)), i.e., Ω(Ψ) is a graph exclusively composed of the
edges already added to the descendant; let CD be the adjacency matrix of a
digraph D, and let C∞D be the transitive closure of CD; then

T (Ψ, φ0
ij) = φ0

ij , and (8)

T (Ψ, φ1
ij) = φ1

ij ∩
⋂

C⊕rs=1

φ0
sr (9)

where C⊕ = C∞Ω(Ψ) XOR C∞
Ω(Ψ∩φ1

ij)
. Now, two main approaches to recombina-

tion can be considered on the basis of these units. Both start from Σ({x, y});
subsequently, an unspecified gene is selected and an allele for that gene (and the



corresponding transmission set) is taken from either of the parents. The process
is repeated until all genes are specified (gene transmission – GT), or until a cer-
tain feasibility criterion is met, being unspecified genes assigned a default value
(allele transmission – AT). In the former situation, only positive alleles (i.e., φ1

ij-
like alleles) are explicitly transmitted, being the default value a negative allele
(i.e., φ0

ij-like). Both approaches are studied below.

4 Experimental Results

The first issue to be tackled is the computational cost of the operators. Calcu-
lating the connectivity matrix of a graph can be näıvely done in O(n3) using
Dijkstra’s algorithm. Since the number of compatibility sets to be calculated
is O(n2), this would amount to O(n5), but this is a very overestimated bound
(incompatible worst-cases are superimposed).

To obtain a more realistic bound, an empirical assessment has been done.
To be precise 200 random DAGs of fixed density and increasing size (5 up to
55 nodes) have been generated and recombined. The results are shown in Fig.
1 for GT and in in Fig. 2 for AT 2. As it can be seen, a cubic behavior in the
number of vertices is found. This cubic pattern is present in both GT and AT,
with independence of the graph density of the DAGs recombined. Obviously,
the larger the density of the DAGs being recombined, the larger the number of
transmission sets that must be computed using Eq. (9). This results in a larger
proportionality coefficient. In any case, the grow of this coefficient ceases and
stabilizes around δ = .5 (see Fig. 4-left); no significant increase of computational
cost is observed in GT beyond that point. Notice also that this cubic behavior
in the number of vertices implies a sub-quadratic behaviour (O(|x|3/2)) in the
DAG size since |x| ∈ O(n2).

Fig. 1. Time required to recombine two DAGs using GT for increasing graph sizes.
The results are shown for different graph densities: δ = .1 (left), δ = .5 (middle), and
δ = .9 (right). A fit to a cubic polynomial is shown.

2 All times have been measured using MatLabr in a Pentiumr III 600MHz.



Fig. 2. Time required to recombine two DAGs using AT for increasing graph sizes.
The results are shown for different graph densities: δ = .1 (left), δ = .5 (middle), and
δ = .9 (right). A fit to a cubic polynomial is shown.

Next, the transmission rates are studied. Due to the problem constraints, the
density of the descendant is skewed to be lower that the mean density of the
parents when using GT (according to Eq. (9) transmitting an edge of a parent
can rule out a number of edges from the other parent). The higher the parents’
mean density, the stronger this effect as shown in Fig. 3). The same is true for
fixed density and increasing number of vertices. Actually, the descendant density
seems to be related to the parents’ mean density through an exponential function
δdescendant = δα

parents for some α < 1. A fit to such a function reveals that -as
in the previous case- the magnitude of α stabilizes around δ = .4 or δ = .5 (see
Fig. 4-right). This skew in the generation of descendants can have a detrimental
influence in the performance of a GA using GT, were high density DAGs sought.
This fact is explored below.

Fig. 3. Progeny density as a function of parental density using GT. The results are
shown for different graph densities: δ = .1 (left), δ = .5 (middle), and δ = .9 (right).

Experiments have been done using a steady-state genetic algorithm (binary
tournament selection, popsize=100, pc = .9, pm = 1/n2) in a DAG matching



Fig. 4. (Left) Value of the cubic coefficient in the fitted-to-time polynomial. (Right)
Value of the exponential coefficient in the fitted-to-density curve.

problem. Three scenarios are considered, consisting of finding a target DAG of
a given density (δ ∈ {.1, .5, .9} in these experiments). The number of vertices is
n = 15, and the fitness function is the number of different entries in the adjacency
matrices of the actual DAG the target DAG. Besides GT and AT, two additional
approaches are considered for comparison purposes: UX plus penalty term, and
UX plus a repair function. The penalty term is computed in the fist case as the
n2 · v, where n is the total number of vertices, and v is the number of vertices
connected to an ancestor of itself. As to the repair function, it consists of deleting
edges from the graph until no loops remain. In both cases, the initial population
is entirely composed of feasible solutions. Finally, the AT operator is adjusted
to transmit a number of positive alleles following a distribution centered in the
parents’ mean number of edges (binomial, p = 1/2). This adjusted version of AT
produces non-skewed descendants as shown in Fig. 5.

The results averaged for 50 runs are shown in Fig. 6. As it can be seen,
AT performs similarly to GT when the density of the target DAG is low (the
skew of GT is very small in this case). However, AT is increasingly better when
the density of the target DAG is higher, being clearly superior for δ = .9. The
same holds with respect to the repairing and penalizing approaches. Again, the
difference is stronger when the density of the target DAG is higher, since the
chances of getting into the feasible region are lower using random recombination.
Notice also that these two latter approaches are straightforwardly defined on this
simple problem, but they can be difficult to apply in a more complex situation,
e.g., the fitness function might be undefined for infeasible solutions, the repair
function might introduce excessive disruption, etc.

Experiments have been also done with GAR (GT starting form a fully unspec-
ified descendant rather than from Σ({x, y})). The results are virtually identical



Fig. 5. Progeny density as a function of parental density using adjusted AT. The results
are shown for different graph densities: δ = .1 (left), δ = .5 (middle), and δ = .9 (right).

Fig. 6. Results (averaged for 50 runs) of a genetic algorithm using different recombi-
nation operators. From left to right: δ = .1, δ = .5, and δ = .9.

Fig. 7. (Left) Progeny density as a function of parental density using adjusted GAR
for δ = .5. (Middle) Best-fitness differential for GT vs. GAR (results averaged for 50
runs). (Right) Mean-fitness differential for GT vs. GAR (results averaged for 50 runs).



to GT (see Fig. 7-middle/right; the fitness differential closely oscillates around
zero). This is an expected result, since an off-line assessment shows that the
transmission rates of GAR are very similar to GT (Fig. 7-left).

5 Conclusions

This work has studied an edge-based representation of DAGs, and the proper-
ties of recombination operators working on it. Regarding this representation, its
non-separability has been established, and the structure of the basic units that
must be processed in order to maintain feasibility has been described. As to
the operators, it has been shown that recombination in the feasible space can
be done in sub-quadratic time in the DAG size. It has been also shown that a
gene-transmission operator (GT) is skewed to generate DAGs with lower density
than the parents average; this can be remedied by using an adjusted version of
an allele-transmission operator (AT) that is shown to perform better than both
GT and other approaches on a DAG matching problem.

Future work will be directed to confirm these results of other test problems.
An especially interesting case is restricting the search to a subset of SV (e.g., de-
signing causal networks using low-order statistics to build an undirected skeleton
of the network [4]).

Acknowledgement

This work is partially supported by the Spanish Comisión Interministerial de
Ciencia y Tecnoloǵıa (CICYT) under grant TIC99-0754-C03-03.

References

1. K. Chen, J. Cong, Y. Ding, A. Kahng, and P. Trajmar. DAG-Map: Graph-based
FPGA technology mapping for delay optimization. IEEE Design and Test of Com-
puters, pages 7–20, September 1992.

2. M. Cosnard and M. Loi. Automatic task graphs generation techniques. Parallel
Processing Letters, 5(4):527–538, 1995.

3. C. Cotta and J.M. Troya. On the influence of the representation granularity in
heuristic forma recombination. In J. Carroll, E. Damiani, H. Haddad, and D. Op-
penheim, editors, ACM Symposium on Applied Computing 2000, pages 433–439.
ACM Press, 2000.

4. L.M. de Campos and J.F. Huete. A new approach for learning belief networks using
independence criteria. International Journal of Approximate Reasoning, 24(1):11–
37, 2000.

5. H. Ehrenburg. Improved direct acyclic graph handling and the combine operator
in genetic programming. In J.R. Koza, D.E. Goldberg, D.B. Fogel, and R.L. Riolo,
editors, Genetic Programming 1996: Proceedings of the First Annual Conference,
pages 285– 291, Stanford University, CA, 1996. MIT Press.



6. S. Handley. On the use of a directed acyclic graph to represent a population of
computer programs. In Proceedings of the 1994 IEEE World Congress on Compu-
tational Intelligence, pages 154–159, Orlando, FL, 1994. IEEE Press.

7. D. Heckerman and M. Wellman. Bayesian networks. Communications of the ACM,
38:27–30, 1995.

8. D. Kuck, R. Kuhn, B. Leasure, D. Padua, and M. Wolfe. Dependence graphs and
compiler optimizations. In Proceedings of the Eighth Annual ACM Symposium on
Principles of Programming Languages, pages 207–218, 1981.

9. P. Larrañaga, C. Kuijpers, R. Murga, and Y. Yurramendi. Learning bayesian
network structures by searching for the best ordering with genetic algorithms.
IEEE Transactions on System, Man and Cybernetics, 26(4):487–493, 1996.

10. K. Murphy. An introduction to graphical models. Technical report, Intel Research,
May 2001.

11. J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, Palo
Alto, CA, 1988.

12. R. Poli. Parallel distributed genetic programming. In D. Corne, M. Dorigo, and
F. Glover, editors, New Ideas in Optimization, pages 403–432. McGraw-Hill, 1999.

13. N.J. Radcliffe. Equivalence class analysis of genetic algorithms. Complex Systems,
5:183–205, 1991.

14. N.J. Radcliffe. The algebra of genetic algorithms. Annals of Mathematics and
Artificial Intelligence, 10:339–384, 1994.

15. R. Turner, Song Li, and E. Gobbetti. Metis - an object-oriented toolkit for con-
structing virtual reality applications. Computer Graphics Forum, 18(2):121–130,
1999.


