
Scatter Search and Memetic Approaches to the
Error Correcting Code Problem

Carlos Cotta

Dept. Lenguajes y Ciencias de la Computación, University of Málaga,
ETSI Informática, Campus de Teatinos, 29071 - Málaga, Spain

ccottap@lcc.uma.es

Abstract. We consider the problem of designing error correcting codes
(ECC), a hard combinatorial optimization problem of relevance in the
field of telecommunications. This problem is tackled here with two related
techniques, scatter search and memetic algorithms. The instantiation of
these techniques for ECC design will be discussed. Specifically, the design
of the local improvement strategy and the combination method will be
treated. The empirical evaluation will show that these techniques can
dramatically outperform previous approaches to this problem. Among
other aspects, the influence of the update method, or the use of path
relinking is also analyzed on increasingly large problem instances.

1 Introduction

Telecommunications undoubtedly constitute one of the most prominent pillars
upon which our present society rests. Its crucial importance is well captured in
the numerous open research lines that are currently challenging the scientific
community. Many of the tasks found in this area can be formulated as combi-
natorial optimization problems, e.g., assigning frequencies in radio link commu-
nications [1, 2], designing telecommunication networks [3, 4], or developing error
correcting codes for transmitting messages [5, 6] among others. In this work, we
will focus precisely on the latter problem.

Roughly speaking, the development of an error correcting code (ECC) con-
sists of designing a communication scheme for maximizing the reliability of in-
formation transmission through a noisy channel. This task admits several for-
mulations. Here, we have considered the case of binary linear-block codes [7].
The design of such codes turns out to be very difficult. There exists no known
algorithm for efficiently finding optimal solutions. The utilization of metaheuris-
tic approaches is thus in order. In this sense, this problem has been treated in
the literature with simulated annealing [8], genetic algorithms (GAs) [9, 6], and
hybrids thereof [5], with moderate success. The use of scatter search (SS) [10]
and memetic algorithms (MAs) [11] will be considered here.

Unlike other metaheuristics, SS and MAs are concerned explicitly with incor-
porating problem knowledge in the representations and/or operators. Although
this generally hinders the theoretical analysis of these techniques, it is undis-
putable from a pragmatic point of view that the resulting algorithms are usually
highly effective in solving a plethora of problems. This work will discuss the de-
ployment of these algorithms to the ECC problem. It will be shown that a drastic

improvement with respect to sophisticated versions of other metaheuristics can
be achieved.

2 The Error Correcting Code Problem

As discussed in the previous section, an ECC is aimed at maximizing the relia-
bility of message transmissions through a noisy channel. This objective requires
introducing some redundancy in the messages (i.e., using more bits than strictly
necessary,) to increase the chances of recovering a message if some bits flip while
traversing the channel. Of course, this redundancy has to be limited since the
increased length of messages results in slower communication.

Let us assume that messages are expressed in sequences of characters from
some alphabet Σ. In the context of the binary linear block codes, we would
map each of these characters ci ∈ Σ to a sequence of n bits (or code word)
wi in order to transmit it. Upon reception of a n-bit sequence w, the character
encoded could be recovered by looking for the closest –in a Hamming distance
sense– valid code word. It is easy to see that if all code words are separated by
at least d bits, any modification of at most (d − 1)/2 bits in a valid code word
can be easily reverted. Hence large d is sought.

It is possible to increase the value of d by considering larger values of n, but
as stated above an upper bound of n has to be considered. Thus, we would be
interested in maximizing d for a certain alphabet Σ, and a certain value of n.
This way, an ECC problem instance is fully specified by a pair (n,M), where n
is the number of bits in each code word, and M is the number of code words.
Let B = {0, 1}; the solution space for an ECC problem instance would comprise
all sets C = {w1, · · · , wM}, wi ∈ Bn, i.e., all combinations of M different n-
bit sequences. The size of the search space is thus

(
2n

M

)
. Although no known

algorithm is available for producing an optimal ECC (i.e., a set of M n-bit code
words with maximal d) in general, the problem has been theoretically studied,
and bounds on the attainable values of d for different combinations of n and M
have been derived [12].

It is interesting to notice the relation between the ECC problem as defined
above, and another –apparently unrelated– problem in the realm of physics:
finding the lowest energy configuration on M particles in a n-dimensional space.
By assimilating particles to code words, the ECC problem can be viewed as
distributing M code words in the corners of a binary n-dimensional space. This
connection was used by Dontas and de Jong [6] to define a fitness function (to
be maximized) for a genetic algorithm optimizing this problem, i.e.,

Fitness(C) =
1∑M

i=1

∑M
j=1,i 6=j

1
d2

ij

, (1)

where dij is the Hamming distance between code words wi and wj . This function
is more adequate as a guiding function than a näıve function computing the
minimum distance between different code words in a solution. Although the
latter would capture the absolute quality of a solution, it would induce large

plateaus in the fitness landscape. This would not be the case for the former
function, which is capable of grasping the effects of small changes in a solution.

3 Scatter Search and Memetic Algorithms for the ECC
Problem

SS is a metaheuristic based on populational search whose origin can be traced
back to the 1970s in the context of combining decision rules and problem con-
straints. Unlike other populational approaches such as genetic algorithms, SS re-
lies more on deterministic strategies rather than on randomization. This distinc-
tive methodological difference notwithstanding, SS shares some crucial elements
with MAs such as the use of combination procedures and local-improvement
strategies. More precisely, the following components are present in the algorith-
mic template of SS:

– A diversification generation method for generating a collection of raw solu-
tions, possibly using some initial solution as “seed”.

– An improvement method for enhancing the quality of raw solutions.
– A reference set update method for building the reference set (i.e., the popu-

lation) from the initial set of solutions generated, and for maintaining it by
incorporating some solutions produced in subsequent steps.

– A subset generation method for selecting solutions from the reference set,
and arranging them in small groups (pairs, triplets, or larger groups) for
undergoing combination.

– A solution combination method for creating new raw solutions by combining
the information contained in a certain group of solutions.

– A restart reference set method for refreshing the reference set once it has been
found to be stagnated. This can be done by using the diversification gen-
eration method plus the improvement method mentioned above, but other
strategies might be considered as well.

The design of a particular SS algorithm is completed once the items above are
detailed. Next subsections will be devoted to this purpose. Notice at this point
that the very same components cited before can be found in a MA (see e.g. [13];)
the main difference between SS and MAs lies in the use of randomization in the
latter (in particular, this implies the presence of a mutation operator, absent in
SS.) This issue will be discussed in the next subsections as well.

3.1 Diversification Generation Method

The diversification generation method serves two purposes in the SS algorithm
considered: it is used for generating the initial population from which the refer-
ence set will be initially extracted, and it is utilized for refreshing the reference
set whenever a restart is needed.

The generation of new solutions is performed by using a randomized proce-
dure that tries to generate diverse solutions, and whose code words are expected

to be distant. To do so, a procedure loosely inspired in näıve Bayesian methods
is utilized. More precisely, a count of the number of 1s appearing in each position
of a code word is maintained, and used to bias the generation of bits for the next
code word. The exact pseudocode of the algorithm is as follows:

1. sol ← ∅
2. for i ∈ [1 : n] do ci ← 0
3. for j ∈ [1 : M] do

(a) repeat
– for i ∈ [1 : n] do w[i] ←

(
URand01() > ci

j

)

until w /∈ sol
(b) for i ∈ [1 : n] do ci ← ci + w[i]
(c) sol ← sol ∪ {w}
By using this procedure, the higher the frequency of 1s (resp. 0s) in a certain

bit of the code words generated so far in a solution, the higher the chances that
the next code word will have a 0 (resp. 1) in this bit.

3.2 Improvement Method

The improvement method is responsible for enhancing raw solutions produced by
the diversification generation method, or by the solution combination method.
In general, this is achieved by applying small changes to a solution, keeping them
if they produce a quality increase, or discarding them otherwise.

These small changes amount in this case to the modification of single bits in a
code word. This procedure benefits from the separability of the fitness function:
the new solution is accepted if

∑n
j=1,i 6=j d′−2

ij <
∑n

j=1,i6=j d−2
ij , where dij are

the distances of the original code word wi being modified to the remaining code
words, and d′ij are the distances of the modified code word w′i. The whole process
would be as follows:

1. repeat
(a) change←false
(b) for j ∈ [1 : M] do

i. Find the two closest code words, such that at least one of them has
not been modified yet. Let w be the unmodified codeword (or the
code word with the lowest index if both are unmodified.)

ii. for i ∈ [1 : n] do
A. w[i] ← (1− w[i])
B. if the change is acceptable then retain it, and set change←true

else undo it
until ¬change

The underlying idea of this procedure is trying always to separate the closest
code words, aiming at maximizing the minimal distance d. Notice that changes
resulting in lower values of the fitness function, are reverted as indicated in step
1(b)iiB.

3.3 Subset Generation Method

This method generates the groups of solutions that will undergo combination.
A binary combination method has been considered in this work, and hence this
subset generation method forms couples of solutions. Following the SS philos-
ophy, this is done exhaustively, producing all possible pairs. It must be noted
that since the combination method utilized is deterministic, it does not make
sense to combine again pairs of solutions that were already coupled before. The
algorithm keeps track of this fact to avoid repeating computations.

In the case of the MA, the selection mechanism plays the role of this subset
generation method. As it is typically done, a fitness-based randomized selection
method has been chosen. More precisely, binary tournament is used to select the
solutions that will enter the reproductive stage.

3.4 Solution Combination Method

This method is fed with the subsets generated by the previous method, and
produces new trial solutions by combining the information contained in each of
these subsets. Two different alternatives have been considered for this method,
a greedy combination procedure, and path relinking.

The greedy combination procedure (GR) incrementally constructs a new so-
lution by greedily selecting code words from the parents, i.e., at each step the
code word w that maximizes D(w) =

∑k
j=1 d−2

(w)j is taken, where k is the current
number of code words in the solution. More precisely, let sol1 and sol2 be the
solutions being combined; the pseudocode of the process is:

1. newsol ← sol1 ∩ sol2
2. candidates ← (sol1 ∪ sol2) \ (sol1 ∩ sol2)
3. while |newsol| < M do

(a) Pick w ∈ candidates such that w minimizes D(w)
(b) newsol ← newsol ∪ {w}
(c) candidates ← candidates \ {w}
As it can be seen, this combination procedure is designed to respect common

code words, present in both parents. This helps focusing the search, by promoting
exploitation. In the case of the MA, a randomized version of this combination
method has been devised. To do so, step 3a is modified so as to pick the ith best
candidate with probability proportional to 2−i.

The alternative to GR is path relinking (PR) [14]. This method works by
generating a path from an initiating solution to a destination solution. At each
step of the path, a new solution is generated by substituting a code word absent
from the destination solution by a code word present in the latter. The code
word to be substituted is here selected in a greedy fashion. The best solution
in the path (excluding the endpoints, already present in the reference set) is
returned as the output of the combination procedure:

1. current ← sol1; bestfit ← 0; bestsol ← sol1
2. candidates ← sol2 \ sol1

3. while |candidates| > 1 do
(a) Pick w ∈ sol1 \ sol2 such that w maximizes D(w) −D(w′), where w′ is

the code word with the lowest index in candidates
(b) current ← newsol ∪ {w′} \ {w}
(c) candidates ← candidates \ {w′}
(d) if Fitness(current) > bestfit then

i. bestsol ← current
ii. bestfit ← Fitness(current)

The above procedure can be augmented by applying the improvement method
to bestsol whenever it is updated. This strategy is termed PR-LS.

3.5 Reference Set Update Method

The reference set update method must produce the reference set for the next
step by using the current reference set and the newly produced offspring (or by
using the initial population generated by diversification at the beginning of the
run or after a restart.) Several strategies are possible here. Quality is an obvious
criterion to determine whether a solution can gain membership to the reference
set: if a new solution is better than the worst existing solution, the latter is
replaced by the former. Notice the similarity with the plus replacement strategy
commonly used in other evolutionary algorithms. This plus strategy has been
precisely considered in the MAs used in this work.

A variant of this update method has been also considered: rather than gen-
erating all descendants and then deciding which of them will be included in the
reference set, descendants can be generated one-at-a-time, and inserted in the
reference set if they qualify for it. This is called a dynamic updating as opposed
to the static updating described before. As it can be seen, the dynamic up-
dating resembles a steady-state replacement strategy, while the static updating
would be similar to a generational model. We will thus assimilate steady-state
MAs –i.e., (µMA + 1)– to dynamic updating, and elitist generational MAs –i.e.,
(µMA + µMA)– to static updating, where µMA is the MA population size.

3.6 Restart Reference Set Method

The restart method must refresh the reference set by introducing new solutions
whenever all pairs of solutions have been coupled without yielding improved
solutions. This is done in our SS algorithm as follows: let µSS be the size of the
reference set; the best solution in the reference set is preserved, λSS = µSS(µSS−
1)/2 solutions are generated using the diversification generation method and the
improvement method, and the best µSS−1 out of these λSS solutions are picked
and inserted in the reference set.

Restarting is also possible in MAs, although given the randomized nature of
the operators in this case, some ad-hoc criterion must be used to determine the
existence of a diversity crisis (e.g., some statistical analysis of the population.)
A simpler alternative has been utilized in this work: rather than using a full
restarting method, a larger population and a mutation operator to permanently
inject diversity have been considered. Concretely, the MA population comprises
µMA = λSS solutions. As to the mutation operator, standard bit-flipping is used.

4 Computational Results

The experiments have been realized using a reference set of µSS = 10 solutions.
Hence, the MA has a population of µMA = 45 solutions. Other parameters of
the MA are the probability of recombination pX = 0.9, and the probability of
mutation pm = 1/`, where ` = n ·M is the total number of bits in solutions.

The first test has been done on a 12-bit/24-word ECC problem instance.
This is the same problem instance considered in other works in the literature,
and thus allows comparing the relative performance of SS and MA. Table 1
shows the results. An important observation with respect to these results is that
the number of evaluations reported includes the partial calculations performed
during local improvement or combination. This has been done by considering
the computation of the distance between two code words as the basic unit;
whenever such a calculation is done, an internal counter is incremented. By
dividing the value of this counter by M(M − 1)/2 we obtain the equivalent
number of additional full evaluations performed. This way, fair comparisons are
possible.

Table 1. Results (averaged for 50 runs) of the different variants of SS (greedy recom-
bination –GR–, path relinking –PR–, and path relinking with local search –PR-LS–)
and MA on a 12-bit/24-word ECC problem instance.

number of evaluations
% opt. min mean ± std. max median

GR 100% 3889 11313.62 ± 3388.94 19930 11791.5
SS-static PR 100% 3889 10850.38 ± 2807.92 18535 11191

PR-LS 100% 3889 11731.54 ± 4110.32 21616 11722
GR 100% 3889 8092.02 ± 1420.95 11928 7828

SS-dynamic PR 100% 3889 11460.18 ± 6760.63 42042 9235
PR-LS 100% 3889 9586.58 ± 4476.21 38358 8646

MA gen. elitist 100% 3889 15636.08 ± 6779.71 35129 15157.5
steady-state 100% 3889 13416.16 ± 4395.62 23847 13275.5

As Table 1 indicates, all versions of SS and MA are capable of solving to
optimality (d = 6) the problem in 100% of the runs, and in a small number of
evaluations. To put these results in perspective, consider other results reported in
the literature. In [5], a massively parallel genetic simulated annealing algorithm
(parGSA) requires 16,384 processing elements just to achieve a performance
similar to that of the MA (for 256 processing elements, the number of evalua-
tions required by parGSA tops 30,000.) In [9], different sequential and parallel
GAs are tested; despite using a knowledge-augmented representation (individ-
uals only comprise 12 code words; the remaining 12 are obtained by inverting
these,) steady-state and generational GAs only achieve 40% and 10% success re-
spectively. A cellular GA achieves 100% success but requires 52,757 evaluations
on average, far more than MAs or SS. Distributed versions of the steady-state
and cellular GAs are capable of 100% success with 8 subpopulations, requiring
36,803 and 89,598 evaluations on average respectively. Again this is substantially
higher than the results of SS and MAs.

Table 2. Statistical significance of the difference in number of evaluations to find
the optimal solution for the 12-bit/24-word ECC problem instance. For each pair of
algorithms, there are four symbols corresponding to the comparison of static vs static,
dynamic vs dynamic, static vs dynamic, and dynamic vs static. (‘+’ = significant; ‘−’
= not significant). The last column compares the static and dynamic versions of the
same algorithm.

SS/GR SS/PR SS/PR-LS MA stat. vs dyn.
SS/GR • −,+,−,+ −,+,+,+ +,+,+,+ +
SS/PR −,+,+,− • −,−,+,− +,+,+,+ −

SS/PR-LS −,+,+,+ −,−,−,+ • +,+,−,+ +
MA +,+,+,+ +,+,+,+ +,+,+,− • −

Table 2 presents the statistical significance of the differences in number of
evaluations. The Wilcoxon ranksum test (also known as Mann-Whitney U test)
[15] has been used for this purpose. This test does not assume normality of the
samples (as for example t-test does.) Such an assumption would be unrealistic
for this data. As Table 1 shows, the dynamic versions provides better results
than static ones in general. This difference is significant for SS/GR and SS/PR-
LS. The different versions of SS also appear to be better than MAs, and this
difference is in general significant. The best results are provided by the dynamic
SS/GR, and this superiority is always significant.

Further experiments have been conducted in order to test the scalability of
the algorithms. To be precise, 16-bit/32-word and 20-bit/40-word ECC problem
instances have been considered. In this case, the algorithms have been allowed
a maximum number of evaluations of 1.25 · 106 and 2.5 · 106 respectively. The
results are shown in Tables 3 and 5.

Table 3. Results (averaged for 50 runs) of the different variants of SS and MA on a
16-bit/32-word ECC problem instance.

number of evaluations
% opt. min mean ± std. max median

GR 100% 28131 62826.32 ± 45930.51 338659 51628.5
SS-static PR 98% 34155 149521.48 ± 145023.36 780843 100716

PR-LS 100% 31212 79429.12 ± 153135.40 1145040 54990
GR 100% 12625 60590.86 ± 48997.89 243698 48444

SS-dynamic PR 96% 17197 216989.29 ± 259101.23 1173888 105140.5
PR-LS 100% 13958 97871.24 ± 126648.54 768707 42623

MA gen. elitist 98% 53571 89982.12 ± 17836.87 145423 91563
steady-state 100% 35346 59640.88 ± 15557.11 101743 60499

In the 16-bit/32-word ECC problem instance, the results are very satisfac-
tory: 100% success (d = 8) is achieved almost always. The SS/PR algorithm
and the static MA are all above 95% success. Precisely the SS/PR algorithm
appears to be slightly worse than the remaining SS algorithms. The superiority
of the latter ones over SS/PR is always significant, as shown in Table 4. On the
other hand, there is no significant difference among SS/GR and SS/PR-LS, both
static and dynamic. As to the MA, the dynamic version provides significantly
better results than the static MA, and similar to those of SS/GR or SS/PR-LS.

Table 4. Statistical significance of the difference in number of evaluations to find the
optimal solution for the 16-bit/32-word ECC problem instance.

SS/GR SS/PR SS/PR-LS MA stat. vs dyn.
SS/GR • +,+,+,+ −,−,−,− +,−,−,+ −
SS/PR +,+,+,+ • +,+,+,+ −,+,+,− −

SS/PR-LS −,−,−,− +,+,+,+ • +,−,−,+ −
MA +,−,+,− −,+,−,+ +,−,+,− • +

The algorithms start to exhibit the effects of the increased dimensionality on
the 20-bit/40-word ECC problem instance. The success (d = 10) ratio clearly
drops in this case. As for the previous instance, the SS/PR provides the worst
results with a mere 4% success. The SS/GR algorithm yields the best results,
with a success ratio about two or three times higher than the remaining algo-
rithms. The MA provides a more or less similar success ratio than that of the
SS/PR-LS. Since the success ratio of the different algorithms is very disparate, a
full statistical comparison of the average number of evaluations would not make
much sense here. At any rate, notice that, despite the MA has not a high success
ratio, it provides the best results in number of evaluations, and this result is
statistically significant against SS/GR and SS/PR-LS (except for the dynamic
version of the latter.) This indicates that it can find relatively fast the optimal
solution, but in most runs it stagnates in some locally optimal region of the
search space. This suggests the need for using here a restarting method, since
mutation alone cannot provide enough diversity in long runs of the MA on this
problem instance.

Table 5. Results (averaged for 50 runs) of the different variants of SS and MA on a
20-bit/40-word ECC problem instance.

number of evaluations
% opt. min mean ± std. max median

GR 58% 129248 1018434.31 ± 675830.06 2378854 1025514
SS-static PR 4% 257118 517757.00 ± 260639.00 778396 517757

PR-LS 26% 143377 1092756.46 ± 588769.83 1957000 1080258
GR 54% 176121 1029429.78 ± 690248.82 2416476 973267

SS-dynamic PR 4% 129268 1143246.00 ± 1013978.00 2157224 1143246
PR-LS 16% 133300 860126.00 ± 702699.19 2351918 770137.5

MA gen. elitist 16% 181503 248624.25 ± 33230.08 284643 266163
steady-state 18% 114339 134901.56 ± 22204.43 190900 130779

5 Conclusions

The results presented in the previous section clearly indicate that SS and MAs
are cutting-edge techniques for solving the ECC problem, capable of outperform-
ing sophisticated versions of other metaheuristics on this domain. In general, SS
appears to be somewhat better than MAs, specifically when using GR. This
latter method has shown to provide better results than PR or PR-LS. As to
the update method, the dynamic version usually provides better results both in
MAs and SS, although the difference is not always significant.

Future work will focus on improving some aspects of the algorithms. In the
case of SS, the update method can consider additional criteria besides quality,
such as diversity for instance. This implies structuring the reference set in several
tiers (see [10] for details,) and can be useful for tackling larger instances. In
the case of the MA, the addition of a full restart method is likely to produce
remarkable improvements in those larger instances as well.

Acknowledgements This work is partially supported by Spanish MCyT, and
FEDER under contract TIC2002-04498-C05-02.

References

1. Dorne, R., Hao, J.: An evolutionary approach for frequency assignment in cel-
lular radio networks. In: 1995 IEEE International Conference on Evolutionary
Computation, Perth, Australia, IEEE Press (1995) 539–544

2. Kapsalis, A., Rayward-Smith, V., Smith, G.: Using genetic algorithms to solve the
radio link frequency assigment problem. In Pearson, D., Steele, N., Albretch, R.,
eds.: Artificial Neural Nets and Genetic Algorithms, Wien New York, Springer-
Verlag (1995) 37–40

3. Chu, C., Premkumar, G., Chou, H.: Digital data networks design using genetic
algorithms. European Journal of Operational Research 127 (2000) 140–158

4. Vijayanand, C., Kumar, M.S., Venugopal, K.R., Kumar, P.S.: Converter placement
in all-optical networks using genetic algorithms. Computer Communications 23
(2000) 1223–1234

5. Chen, H., Flann, N., Watson, D.: Parallel genetic simulated annealing: A massively
parallel SIMD algorithm. IEEE Transactions on Parallel and Distributed Systems
9 (1998) 126–136

6. Dontas, K., Jong, K.D.: Discovery of maximal distance codes using genetic algo-
rithms. In: Proceedings of the Second International IEEE Conference on Tools for
Artificial Intelligence, Herndon, VA, IEEE Press (1990) 905–811

7. Lin, S., Jr., D.C.: Error Control Coding : Fundamentals and Applications. Prentice
Hall, Englewood Cliffs, NJ (1983)

8. Gamal, A., Hemachandra, L., Shaperling, I., Wei, V.: Using simulated annealing to
design good codes. IEEE Transactions on Information Theory 33 (1987) 116–123

9. Alba, E., Cotta, C., Chicano, F., Nebro, A.: Parallel evolutionary algorithms in
telecommunications: Two case studies. In: Proceedings of the CACIC’02, Buenos
Aires, Argentina (2002)

10. Laguna, M., Mart́ı, R.: Scatter Search. Methodology and Implementations in C.
Kluwer Academic Publishers, Boston MA (2003)

11. Moscato, P.: Memetic algorithms: A short introduction. In Corne, D., Dorigo,
M., Glover, F., eds.: New Ideas in Optimization. McGraw-Hill, London UK (1999)
219–234

12. Agrell, E., Vardy, A., Zeger, K.: A table of upper bounds for binary codes. IEEE
Transactions on Information Theory 47 (2001) 3004–3006

13. Moscato, P., Cotta, C.: A gentle introduction to memetic algorithms. In Glover, F.,
Kochenberger, G., eds.: Handbook of Metaheuristics. Kluwer Academic Publishers,
Boston MA (2003) 105–144

14. Glover, F., Laguna, M., Mart́ı, R.: Fundamentals of scatter search and path re-
linking. Control and Cybernetics 39 (2000) 653–684

15. Lehmann, E.: Nonparametric Statistical Methods Based on Ranks. McGraw-Hill,
New York NY (1975)

