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Abstract. This work deals with the application of Memetic Algorithms
to the Microarray Gene Ordering problem, a NP-hard problem with
strong implications in Medicine and Biology. It consists in ordering a
set of genes, grouping together the ones with similar behavior. We pro-
pose a MA, and evaluate the influence of several features, such as the
intensity of local searches and the utilization of multiple populations,
in the performance of the MA. We also analyze the impact of different
objective functions on the general aspect of the solutions. The instances
used for experimentation are extracted from the literature and represent
real biological systems.

1 Introduction

Due to the huge amount of data generated by the Human Genome Project,
as well as what is being compiled from other genomic initiatives, the task of
interpreting the functional relationships between genes appears as one of the
greatest challenges to be addressed by scientists [13]. The traditional approach
of Molecular Biology was based on the “one gene in one experiment” scenario.
This approach severely limits understanding “the whole picture”, making the
ramified paths of gene function interactions hard to track. For this reason, new
technologies have been developed in the last years. In this sense, the so-called
DNA microarray technique [5, 7] has attracted tremendous interests since it al-
lows monitoring the activity of a whole genome in a single experiment.

In order to analyze the enormous amount of data that is becoming available,
reduction techniques are clearly necessary. As a matter of fact, it is believed
that genes are influenced on average by no more than eight to ten other genes
[3]. To achieve such a reduction, and allow molecular biologists concentrate on a
sensible subset of genes, clustering techniques such as k-means, or agglomerative
methods can be used (see [8, 9] for example). However, there is still much room
for improvement in the solutions they provide.



Memetic algorihms [16] (MAs) have been recently proposed as a tool for
aiding in this process [15]. In this work we consider the application of MAs
to a related variant of this clustering problem: the Gene Ordering problem. It
consists of finding a high-quality rearrangement of gene-expression data, such
that related (from the point of view of their expression level) genes be placed in
nearby locations within a gene sequence. This problem is motivated by the usual
bidimensional representation of microarray data, and hence it combines aspects
of clustering and visualization. Here, we concentrate our efforts in analyzing the
influence of several features of the MA –such as the intensity of local searches
and the configuration of the population– in the performance of the algorithm.
The impact of different objective functions on the quality of the solutions is also
thoroughly tested. This is a critical issue, especially because the ordering quality
is a relative attribute, strongly connected to the visual aspect.

The remainder of the article is organized in three sections: first, the definition
of the problem, and the application of MAs to this domain are detailed in Section
2; next, the results of an extensive computational experimentation involving the
parameters of the algorithm are reported in Section 3; finally, a brief summary
of the main contributions of this work, and some prospects for future work are
provided in Section 4.

2 Memetic Algorithms

In this section we will discuss the implementation of the Memetic Algorithm. The
MA is a population-based algorithm that uses analogies to natural, biological
and genetic concepts, very similarly to Genetic Algorithms (GAs) [4]. As in
the latter, it consists of making a population of solutions evolve by mutation
and recombination processes. Additionally, a distinctive feature of MAs is the
use of local search operators in order to optimize individual solutions. The best
fitted solutions of the population will survive and perpetuate their information,
while the worse fitted will be replaced by the offspring. After a large number of
generations, it is expected that the final population would be composed of highly
adapted individuals, or in an optimization application, high-quality solutions of
the problem at hand. Next, we briefly explain some specific MA aspects.

2.1 The Fitness Function

Before getting into the details of the fitness function, some comments must be
made about the nature of the data defining the problem. For our purposes,
the output of a microarray experimentation can be characterized by a matrix
G = {gij}, 1 ≤ i ≤ n, 1 ≤ j ≤ m, where n is the number of genes under scrutiny,
and m is the number of experiments per gene (corresponding to measurements
under different conditions or at different time points). Roughly speaking, entry
gij (typically a real number) provides an indication on the activity of gene i
under condition j.



Now, as mentioned in Section 1, a good solution in the Gene Ordering prob-
lem (i.e., a good permutation of the genes) will have similar genes grouped to-
gether, in clusters. A notion of distance must thus be defined in order to measure
similarity among genes. We have considered a simple measure, the Euclidean dis-
tance (other options are possible; see e.g [18]). We can thus construct a matrix
of inter-gene distances. This matrix will be used for measuring the goodness of
a particular gene ordering.

The most simple way of doing this is calculating the total distance between
adjacent genes, similarly to what is done in the Traveling Salesman Problem. A
drawback of such an objective function is that, since it only uses information of
adjacent genes, it has a very narrow vision of the solution. For a better grouping
of the genes, the use of ’moving windows’ is a better choice. The total distance
thus becomes a two-term sum, instead of a single-term one. The first term sums
up the distances between the window’s central gene and all others within the
window’s length. The second one sums up those partial distances as the window
moves along the entire sequence. Moreover, in order to give more weight to
the genes that are closer a multiplying term was added to the function. Let
π = 〈π1, π2, · · · , πn〉 be the order of the n genes in a given solution. Then, the
fitness function is:

fitness(π) =
n∑

l=1

max(l+sw,n)∑

i=min(l−sw,1)

w(i, l)D[πl, πi] (1)

where 2sw + 1 is the window size (the number of genes involved in each partial
distance calculation), and w(i, l) is a scalar weighting the influence of the gene
located at position l on the gene located at position i. We have considered weights
proportional to sw − |l − i| + 1 (i.e., linear in the distance between the genes),
and normalized so as to have the sum of all weights involved in each application
of the inner sum in Eq. (1) be 1. The use of this function gives higher ratings to
solutions where genes are grouped in larger sets, with few discontinuities between
them. As a matter of fact, the function makes in some sense the assumption that
every gene could be the center of a cluster, subsequently measuring the similarity
of nearby genes. The global optimization of this function is thus expected to
produce robust solutions. Section 3 will provide results regarding the use of this
function, and the effect of varying the window size.

2.2 Representation and Operators

The representation chosen for the Gene Ordering problem takes some ideas from
hierarchical clustering. To be precise, solutions are represented as a binary tree
whose leaves are the genes. By doing so, solutions are endowed with extra infor-
mation regarding the level of relationship among genes, information that would
be missing in other representations that only concentrated on the actual leaf or-
der (e.g., permutations). This way, reproductive operators such as recombination
and mutation can be less disruptive.



We have used a pre-order traversal of the tree to store it into individuals.
More precisely, the chromosome is a string of integers in the [−1, n− 1] interval,
where n is the number of genes to be ordered. Each of the genes (leaves of the
tree) is identified with a number in [0, n−1], and internal nodes of the tree with
the value −1 (all of them are indistinguishable). It is easy to see that the length
of the chromosome will thus be 2n− 1 genes.

Having defined this representation, adequate operators must be defined to
manipulate it. Considering firstly the recombination operator, we have used an
approach similar to that used in the context of phylogeny inference [6]. To be pre-
cise, we perform recombination by selecting a subtree T from one of the parents,
removing any leaf present in T from the second parent (to avoid duplications),
and inserting T at a random point of the modified parent. As to mutation, it is
based on gene-sequence flip. A subtree is selected uniformly at random, and its
structure is flipped. This way, the entire sequence belonging to it is flipped too.
This mutation preserves the gene grouping inside the subtree, introducing some
disruption in its boundaries.

2.3 Population Structure

The use of hierarchically structured populations boosts the performance of the
GA/MA (see [10]). There are two aspects that should be noticed. First, the place-
ment of the individuals in the population structure according to their fitness.
And second, a well-tailored selection mechanism that selects pairs of parents for
recombination according to their position in the population. In our approach,
the population is organized following a complete ternary tree structure. In con-
trast with a non-structured population, the complete ternary tree can also be
understood as a set of overlapping 4-individual sub-populations (that we will
refer to as clusters).

Each cluster consists of one leader and three supporter individuals. The leader
individual always contains the best solution of all individuals in the cluster.
This relation defines the population hierarchy. The number of individuals in the
population is equal to the number of nodes in the complete ternary tree, i.e.
we need 13 individuals to make a ternary tree with 3 levels, 40 individuals to
have 4 levels, and so on. The general equation is (3n − 1)/2, where n is the
number of levels. Previous tests comparing the tree-structured population with
non-structured approaches are present in [10]. They show that the ternary-tree
approach leads to considerably better results, and with the use of much less
individuals.

2.4 Reproduction

The selection of parents for reproduction is an important part of the algorithm,
since the quality of the offspring will depend basically on this choice. Based on
the assumption that a ternary tree is composed of several clusters, we adopted
the restriction that recombination can only be made between a leader and one
of its supporters within the same cluster. The recombination procedure thus



selects any leader uniformly at random and then it chooses –also uniformly at
random– one of the three supporters. Indirectly, this recombination is fitness-
biased, since individuals situated at the upper nodes are better than the ones at
the lower nodes. Therefore, it is unlikely that high-quality individuals recombine
with low-quality one, although it might happen a few times.

The number of new individuals created every generation is equal to the num-
ber of individuals present in the population. This recombination rate, apparently
high, is due to the offspring acceptance policy. The acceptance rule makes sev-
eral new individuals be discarded. In our implementation, a new individual is
inserted into the population only if it is better than one of its parents. This is a
very restrictive rule and causes a quick loss of diversity among the population.
Nevertheless, the impact on the MA of this scheme was noticeable, making the
algorithm reach much better solutions using less CPU time. After each gener-
ation the population is restructured to maintain the hierarchy relation among
the individuals. The adjustment is done comparing the supporters of each clus-
ter with their leader. If any supporter is found to be better than its respective
leader, they swap their places.

It must be emphasized that this scheme must be used together with a check
procedure for premature population convergence, in order not to waste CPU
time. The check procedure implemented verifies the number of generations with-
out improvement of the incumbent solution. If more than 200 generations have
passed and no improvement was obtained, we conclude that the population has
converged and apply local search on all individuals. Moreover, the local search
is also carried out every time a new incumbent solution is found through re-
combination/mutation. Such an event signalizes a new starting point, where
the application of a local search could improve that incumbent solution even
more. In this second case, it is also very likely that the rest of the population is
well-fitted too, since it also usually requires several generations to find, just by
recombination and mutation, a better solution than the incumbent, especially if
the incumbent has already gone through at least one local search process.

2.5 Local Search

Generally, local searches utilize neighborhood definitions to determine which
movements will be tested. A somewhat common neighborhood for sequences is
the all-pairs [10]. In our case, it should be equivalent to test all possible position
swaps for every gene, keeping the movements that improve the fitness. This local
search turns out to be very computationally expensive since the evaluation of the
fitness is costly. We thus tried the lightest swap local search type, the pairwise
interchange, which only tests pairs of adjacent genes for swap. This neighborhood
resulted in a reasonable computational cost, with an acceptable improvement in
terms of solution quality.

The other local search implemented acts at the clustering tree structure level,
by inverting the branches of every subtree present in the solution, much like it is
done during mutation. Such an inversion is a good choice to make radical changes
in the chromosome without loosing information about the gene grouping. As a



matter of fact, this local search is very successful in joining together separated
groups that contain similar genes. Both local searches are applied sequentially:
the branch-inversion local search is applied on the initial solution, and the re-
sulting individual goes through the gene-swap local search. Notice that each
local search can be iterated a number of times until no change is detected in
the individual (i.e., it is at a local optimum). However, notice that the fitness
improvement achieved by performing repeated passes might not be worth the
associated computational cost. For this reason, the number of passes each local
search performs on an individual is an important parameter of the MA that has
been studied in Section 3.

Another important matter is to decide which individuals should go through
local search. In the Gene Ordering problem, for instance, the application of local
search on every new individual is simply too costly and the algorithm wastes a
lot of time optimizing individuals that are not worth it. In our implementation,
the application of the local search takes place only after convergence of the
population. This reduces the number of local searches and guarantees that most
individuals are promising, since the population must have evolved for many
generations before converging. Again, the influence of the number of individuals
that are subject to local optimization will be empirically studied in Section 3.

2.6 Island Model

The use of the so-called island model [17] is known to be advantageous for several
reasons: firstly, the use of semi-isolated populations helps preserving diversity,
and increases the chances of escaping from local optima; secondly, it leads to
a natural parallelization scheme, in which different populations are assigned to
different processors. For these reasons, we have studied the influence of using
multiple populations in the MA performance for this application. To be precise,
we consider the effect of having an increasing number of populations cooperating
with each other.

For the study of multi-population MAs, we had to define how individuals
migrate from one population to another. The migration policy adopted states
that populations are arranged in a ring structure. Moreover, migration occurs in
all populations and the best individual of each one migrates to the population
right next to it, replacing a randomly chosen individual (except the best one).
This way, every population receives only one new individual, after all populations
have converged and the local search phase has ended.

3 Computational Results

First of all, Table 1 describe the instances used in this work. They were extracted
from real gene sequences available in the literature. Although the high number
of configurations analyzed has precluded including larger instances in the test-
suite, the different sizes of these instances allowed testing the algorithm in diverse
optimizations scenarios.



Table 1. Instances considered in this work.

instance genes experiments description

HERPES 106 21 Kaposi’s sarcoma-associated herpesvirus
gene expression [12]

LYMPHOMA 380 19 Selectively expressed genes in diffuse
large B-cell lymphoma [2]

FIBROBLAST 517 18 Response of human fibroblasts to serum [11]

The times allotted to these instances were 30s, 300s, and 500s respectively.
These times are roughly proportional to n2, where n is the number of genes, due
to the growth trend of the local search cost. In each case, the initial population
of the MA has been fed with the solutions provided by three classical clustering
algorithms: complete-linkage, average-linkage, and single-linkage clustering (see
[9] for example). The experiments have been done using the NP-Opt Framework
[14], running on a PC (Pentium IV - 1.7 Ghz, 256 MB RAM) under Windows
XP and Java build 1.4.1 01-b01.

The first study addresses the different window sizes (sw), which were fixed
at 1, 1%, 5%, 10% and 20% of the instance size. These tests tried to adjust the
window size in order to find solutions with a good general aspect. Figure 1 shows
some results for the FIBROBLAST data set. The results for the remaining data
sets reflect the same behavior.

Fig. 1. Median results (over ten runs of the MA) for different sizes of the window
(FIBROBLAST instance). From left to right, window size = 1, 1%, 5%, 10%, and
20%. Light (respectively dark) dots represent data points in which a particular gene is
expressed (respectively non-expressed).



The tests indicated that the TSP-like fitness function, with a window size of
1, provide poor results. The problem is that, as said before, this function has a
narrow view of the instance, what makes similar genes be grouped apart. This
behavior can also be seen in the 1% window size. The best results came when
the window is at least 5% of the instance. Up from this value, groups begin
to be well-formed, with soft transitions between them. The larger window sizes
provide good results, but we observed a light increase in the overall noise for
very large window sizes, partly because the higher computational cost of the
fitness function precludes a finer optimization within the allotted time. Given
these results, we decided to use a window fixed at 5% of the instance size in the
remaining experiments, as a good tradeoff between quality and computational
cost.

The next tests were oriented to set the best policy for applying the local
search methods. Given that the population is structured as a tree, we firstly
considered to which levels local search was going to be applied. Secondly, we
had to decide the number of passes np for each local searcher. Subsequently, the
tests included applying local search according to the following configurations:

– Only on the root (i.e., just on the best individual), np =1, 4, and 13.
– On the two first levels (i.e., on the best four individuals), np =1, and 3.
– On all three levels (i.e., on the entire population), np = 1.

The local search was thus tested on a total of six configurations, being ap-
plied only when the population converges. The number of passes indicates the
number of times that the gene-swap and the tree-swap local searches would be
sequentially applied on the individual, at maximum. Logically, if a pass does not
improve the present individual, the local search ends promptly. Since we used
the same CPU time for all configurations, the maximum number of local search
passes was fixed. Following this, every time a population converges, 13 passes
were carried out, at maximum. The results are shown in Table 2.

Table 2. Results (averaged for ten runs) of the MA for different intensities of local
search.

1 level 2 levels 3 levels
Instance np = 1 np = 4 np = 13 np = 1 np = 3 np = 1

HERPES 600.102 603.930 604.335 600.011 599.893 598.769
LYMPHOMA 2609.274 2607.666 2609.619 2610.593 2620.339 2622.640
FIBROBLAST 1376.804 1386.560 1390.353 1382.191 1398.143 1407.402

The configuration offering the best overall tradeoff was to apply the local
search only on the best individual, making a single pass. This configuration is
the one with less local search effort, leaving more CPU time for the recombination
and mutation phases. This indicates that genetic operators are very important
for the problem and contribute in a strong manner to find good solutions.



1 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

11

# of populations

al
go

rit
hm

ic
 s

pe
ed

−
up

FIBROBLAST 

LYMPHOMA 

HERPES 

Fig. 2. Algorithmic speedup of the MA for different number of populations.

The last parameter to be tested was the number of populations. The tests
were carried out for 2, 4, 6, 8 and 10 populations. These tests were performed
in a sequential environment, and their focus was on the study of the algorithmic
speedup of the MA. By algorithmic speedup we refer to an upper bound of the
actual computational speedup that could be achieved were the MA deployed on
a physically distributed environment. This bound is computed as follows: firstly,
a desired fitness level is selected. subsequently, all configurations of the MA are
run until a solution at least as good as desired is found. The corresponding
times (in sequential model, i.e., by sequentially running each population for one
step until a synchronization point is reached) are measured. By normalizing
these times dividing by the number of populations we obtain the ideal time the
MA would require to produce such a solution in a distributed environment, i.e.,
assuming negligible communication times. As mentioned before, this provides
an upper bound of the achievable speedup with respect to the single-population
MA, since in practice communications will have non-zero cost4. The results are
shown in Fig. 2

As it can be seen, excellent algorithmic speedups can be obtained for up to
four populations. Beyond this point, the performance starts to degrade for the
larger instances, specially for FIBROBLAST. Nevertheless, very good speedups
are possible for HERPES, and at least moderately good for LYMPHOMA. This
suggests that migration plays an important role in the search process. In fact,
migration helps in the way it reduces the effect of premature convergence. More-
4 We do not consider here other factors that may affect this speedup in a positive

way. For example, the distribution of populations can result in a better use of local
caches, thus making distributed populations run faster that sequential ones.



over, given the ‘genetic-drift’ effect, larger portions of the search space can be
scanned in a clever way. Notice also that for some configurations there is super-
linear speedup. This is a known effect due to the different behavior of a multi-
population evolutionary algorithm (EA) with respect to a single-population EA
[1]. As a matter of fact, such as behavior is precisely one of the reasons supporting
the use of these non-panmictic MAs.

4 Conclusions

This work presented a memetic algorithm for finding the best gene ordering in
microarray data. The main features of this MA are the use of a fitness function
capturing global properties of the gene arrangement, the utilization of a tree rep-
resentation of solutions, the definition of ad-hoc operators for manipulating this
representation and the use of multiple populations in a island model migration
scheme. Two different local search procedures have also been used.

Several configurations for the MA parameters were tested. The window size,
used by the fitness function to measure the distance between a specific gene and
its neighbors; the local search policy, which defined how local search should be
applied on the population; and finally the number of populations utilized by the
MA.

Besides showing how the MA can improve over classical agglomerative clus-
tering algorithms, the results indicate that the window size should be propor-
tional to the instance size. Moreover, the local search should be applied in a light
way, giving time for the algorithm to complete several generations. This result
reinforces the quality of the genetic operators, which apparently play important
roles in the evolutionary process. Finally, the use of multiple populations results
in better overall performance over the single population approach.

Future work will be directed to test the MA in a physically distributed en-
vironment, in order to confirm the results presented. This is important with
respect to the deployment of the algorithms on larger problem instances too.
We are actively working in this topic. Preliminary results support the scalability
of the approach. We are also interested in using some smart weighting scheme
within the fitness function, so as to giving lower relevance to outliers. Statistical
tools should be used to this end. In this line, the possibility of utilizing some sort
of annealing scheme to change the window size dynamically could be considered
as well.
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