
MALLBA: A library of skeletons for
combinatorial optimisation?

E. Alba3 F. Almeida2 M. Blesa1 J. Cabeza2 C. Cotta3 M. Dı́az3
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Abstract. The mallba project tackles the resolution of combinato-
rial optimization problems using algorithmic skeletons implemented in
C++ . mallba offers three families of generic resolution methods: exact,
heuristic and hybrid. Moreover, for each resolution method, mallba pro-
vides three different implementations: sequential, parallel for local area
networks, and parallel for wide area networks (currently under develop-
ment). This paper shows the architecture of the mallba library, presents
some of its skeletons and offers several computational results to show the
viability of the approach.

1 Introduction

Combinatorial optimization problems arise in various fields such as control the-
ory, operational research, biology and computer science. Exact methods like
divide and conquer, branch and bound and dynamic programming have been
traditionally used to solve these problems, however, the computational require-
ments of these methods may be prohibitive. As an alternative, heuristic methods
usually provide good solutions in reasonable running times. Local search, spectral
techniques and evolutionary algorithms are well known heuristic methods.

A key feature of all the previously mentioned methods is their genericity:
they can be easily adapted to solve different problems because they can be
described as search skeletons, which are general optimization procedures. In this
case, the quality of the obtained solutions depends both on the running time
and on the amount of problem-dependent knowledge inserted into the algorithm
(hybridization) [4, 17].

Parallel computing systems offer a way to provide the large computing power
necessary for handling the increasing complexity of combinatorial optimization
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problems. Parallelism also plays an important role in developing hybrid algo-
rithms. Clusters of existing commodity workstations are a low-cost hardware
alternative to run parallel programs although, in this case, issues as heterogene-
ity and work load appear.

Application frameworks are a way to reduce the development difficulties by
focusing on the reuse of parallel code. Several frameworks offering parallel im-
plementations for generic optimization techniques such as simulated annealing,
branch and bound, or genetic algorithms have been proposed (see, e.g. [13, 14, 16,
6]). In these frameworks, the user just describes the elements defining her prob-
lem and then instantiates the procedures that parameterize the selected generic
method. In the parallel case, these frameworks contribute to reduce the gap be-
tween users and parallel architectures, because they hide the implementation
details and allow executing parallel programs by just writing sequential code.

Some existing frameworks, such as Local++ [1], its successor EasyLocal++
[5], Abacus [10] and Bob++ [3], provide sequential and parallel generic imple-
mentations for several exact, heuristic and hybrid methods, but lack features to
integrate them.

The mallba project is an effort to develop, in an integrated way, a library of
skeletons for combinatorial optimization (including exact, heuristic and hybrid
methods) that can deal with parallelism in a user-friendly and, at the same time,
efficient manner. Its three target environments are sequential computers, LANs
of workstations and WANs. The main features of mallba are:

– Integration of all the skeletons under the same design principles.
– Facility to switch from sequential to parallel optimization engines. By pro-

viding sequential implementations users obtain parallel implementations.
– Cooperation between engines makes possible to provide more powerful hy-

brid engines.
– Ready to use on commodity machines: Clusters of PCs under Linux are

currently supported.
– Flexible and extensible software architecture. New skeletons can easily be

added, alternative communication layers can be used, etc.

In mallba, each resolution method is encapsulated into a skeleton. At present,
the following skeletons for exact techniques are available: Divide and Conquer
(DC), Branch and Bound (BnB) and Dynamic Programming (DP). Also the fol-
lowing skeletons for heuristic techniques are available: Hill Climbing, Metropolis,
Simulated Annealing (SA), Tabu Search (TS) and Genetic Algorithms (GA).
Moreover hybrid techniques have been implemented combining the previous
skeletons, e.g., GA+TS, GA+SA, BnB+SA.

The paper is organized as follows. Section 2 describes the design of the
mallba library. Section 3 presents some of the mallba skeletons, discusses
their implementation for a LAN of workstations, and offers several computa-
tional results of the approach. Finally, Section 4 considers some issues related to
the WAN implementation currently under development.



2 The MALLBA Architecture

mallba skeletons are based on the separation of two concepts: the concrete
problem to be solved and the general resolution method to be used. They can be
seen as generic templates that just need to be instantiated with the features of a
problem in order to solve it. All features related to the selected generic resolution
method and its interaction with the concrete problem are implemented by the
skeleton. While the particular features related to the problem must be given by
the user, the knowledge to parallelize the execution of the resolution method is
implemented in the skeleton, so that users do not need to deal with parallelism
issues.

The design of the mallba library focuses on easy to use skeletons and general
and efficient implementations. To achieve both objectives, the C++ programming
language was selected due to its high level, modularity, flexibility and efficiency
features. We have reduced to a minimum the use of inheritance and virtual
methods in order to provide better efficiency and ease of use. To instantiate
most problems, a basic knowledge of C++ is enough, and only sequential code
without side effects is needed.

Skeletons are implemented by a set of required and provided C++ classes that
represent an abstraction of the entities participating in the resolution method.
The provided classes implement internal aspects of the skeleton in a problem-
independent way. The required classes specify information and behavior related
to the problem. This conceptual separation allows us to define required classes
with a fixed interface but without any implementation, so that provided classes
can use required classes in a generic way. Fig. 1 depicts this architecture.

Fig. 1. Architecture of a mallba skeleton

More specifically, each skeleton includes the Problem and Solution required
classes, that encapsulate the problem-dependent entities needed by the reso-
lution method. The Problem class abstracts the features of the problem that
are relevant to the selected optimization method. The Solution class abstracts



the features of the feasible solutions that are relevant to the selected resolu-
tion method. Depending on the skeleton, other classes may be required. On the
other hand, each skeleton offers two provided classes: Solver and Setup. The
former abstracts the selected resolution method. The later contains the setup
parameters needed to perform the execution (e.g. number of iterations, number
of independent runs, parameters guiding the search, etc.). The Solver class pro-
vides methods to run the resolution scheme and methods to consult its progress
or change its state. The only information the solver needs is an instance of the
problem to solve and the setup parameters. In order to enable an skeleton to have
different solver engines, the Solver class defines a unique interface and provides
several subclasses that provide different sequential and parallel implementations
(Solver_Seq, Solver_Par, ...).

Different granularities for the execution of a skeleton are supported: (1) the
phase level, consisting in obtaining the next solution of the search space from
the current solution, (2) the independent run level, consisting in executing the
whole algorithm once and, (3) the global level, consisting in executing several
independent runs. This granularity, together with the possibility of consulting
the current state of the exploration performed by the solver, allows us to build
hybrid skeletons from existing skeletons. Also, this granularity enables us to
implement different parallel versions for each skeleton.

3 Parallel Implementations

The skeletons on the mallba library are currently implemented for two target
environments: sequential and LAN. The user will be able to use different par-
allelization engines just by easily extending the sequential instantiations. These
different implementations can be obtained by creating separate subclasses of the
Solver abstract class (see Fig. 1). In the following, we detail aspects related to
some of the parallel engines implemented for an assorted set of skeletons in the
library. Several well known problems have already been instantiated using the
mallba skeletons as case-studies to check the adaptability of the library. Each of
the parallel implementations treated on the following paragraphs reports results
for one of these instantiated problems.

3.1 Dynamic Programming. The mallba library follows Ibaraki’s discrete
Dynamic Programming approach for Multistage Problems to represent DP prob-
lems [9] and the general parallelization scheme described in [8]. Besides the
Problem and Solution classes common to all the skeletons, the DP Skeleton
requires from the user the Stage, State and Decision classes. The user is also re-
quired to implement the first stage in Evalua_First, the last stage in Evalua_Last

and the general stage in Evalua of the Multistage problem (Fig. 2).
Under this scheme, the DP problem is solved in parallel using a virtually

infinite pipeline with as many processors as stages, by allocating the computation
of the optimal values on each stage to each one of the virtual processors. Once the
user instantiates the required part of the skeleton, then the same instantiation



Fig. 2. Required classes for Dynamic Programming skeleton.

runs in sequential and parallel. The run method of the Solver_Seq class performs
a sequential simulation of the stages and the same method on the Solver_Lan

class enrolls the virtual pipeline into a simulation loop following a cyclic mapping
over a ring of processors.

Our current implementation allows the user to introduce as a setup parameter
the size of the buffer that will be used in communications in the parallel engine.
Table 1 shows the speedup obtained from an instantiation of the Dynamic Pro-
gramming skeleton for the Resource Allocation Problem [9]. The parallel engine
shows a good scalability until four processors. Between four and eight processors
the performance decreases due to the slower machines introduced, but it remains
increasing when introducing more processors.

Table 1. Results for the Resource Allocation Problem using the Dynamic Programming skeleton,
over a network of 13 PCs (4 AMD K6 700 MHz and 9 AMD K6 500 MHz).

Sequential time (s) Speed-up
Stages-States on fastest machine 2 procs. 700 MHz 4 procs. 700 MHz 4 procs. 700 MHz 4 procs. 700 MHz

4 procs. 500 MHz 9 procs. 500 MHz
1000-2000 457.79 1.97 3.92 4.12 6.01
1000-2500 714.87 1.98 3.94 4.30 6.02
1000-4000 1828.22 1.99 3.96 4.31 6.41
1000-5000 2854.04 1.99 3.97 4.24 6.42
1000-7000 5594.74 1.99 3.97 4.22 6.41
1000-10000 11422.60 1.98 3.97 4.18 6.38

3.2 Divide and Conquer and Branch and Bound. The required classes
of Divide and Conquer skeleton are Problem, SubProblem, Auxiliar and Solution.
In particular, the SubProblem includes the easy, solve and divide methods. The
Solution class should define the combine method. For the Branch and Bound
skeleton, the Auxiliar class is not required. SubProblem is the only class for which
the user must implement some methods: solved, upper_bound, lower_bound and
branch.

Both skeletons have been parallelized using a farm (master-slave) strategy.
While a queue of tasks suffices for the BnB, the DC requires of a hierarchy of
queues. For the DC, every time new subproblems are generated (divide), a new
sub-queue is started, that keeps a child-parent relationship with the queue of the



subproblem being divided. This structure gives support to the required synchro-
nizations, since the corresponding combination phase has to occur after all the
children have been solved. To keep a trade between load balancing (i.e. guar-
anteeing that enough subproblems are generated) and the overhead produced
by queue maintenance and work stealing is a difficult issue, since it depends
on the nature of the problem and the underlying architecture. Factors to take
into account are the relation between the number of available processors and the
number of generated subproblems, the depth of the generated subproblems and
the communication and computation capabilities of the hosting computer. The
user can choose among the several strategies provided by the skeletons.

3.3 Tabu Search. Tabu Search is a meta-heuristic in which the search is guided
in order to overcome the local optima [7]. While exploring the solution space,
TS tries to avoid cycling by forbidding moves which lead to previously visited
solutions. Fundamental ideas to design parallel strategies for meta-heuristics are
already well-known (see [2] for a taxonomy of parallel strategies for TS). Here we
present several parallel implementations for TS included in the mallba library:

– Independent Runs (IR): Consists in simultaneous and independent execu-
tions of the sequential TS program,

– Independent Runs with Search Strategies: A “coordinator” processor gener-
ates and sends different search ”strategies” to the rest of processors and then
each of them executes the TS program according to the given strategy,

– Master-Slave (MS): The master processor runs the TS method and uses
slaves to choose the ”best” move in the neighborhood of the current solution,

– Master-Slave with Neighborhood Partition. The neighborhood of the current
solution is partitioned and explored in parallel by the slaves. To this aim, a
feasible solution is viewed as a collection of items. The master processor par-
titions the current solution into parts (each part implicitly defines a portion
of its neighborhood) and each slave explores the portion of the neighborhood
corresponding to the received part.

We give in Table 2 some computational results obtained from the IR with
Strategies and the MS with Neighborhood Partition for the 0-1 Multidimensional
Knapsack problem. These results are obtained for instances from the standard
OR-Library. In the IR with Strategies the communication time is almost irrele-
vant (at the beginning a “coordinator” processor sends the instance and strate-
gies to the processors and, at the end, receives the best solution found by them)
while in the MS with Neighborhood Partition there is a considerable commu-
nication time (slave processors report their best solution after each iteration).
This explains that, for some instances, the solution found by IR with Strategies
is better then the one found by the MS with Neighborhood Partition.

We have also tested our implementations with instances from other known
benchmarks and compared our results with those obtained from the ad hoc
parallel tabu search implementation of Niar et al. [15]; see Table 3. Notice that
in both cases the results obtained by our generic implementations are very close
to those obtained by other specific implementations for the problem.



Table 2. Results from IR with Strategies and MS with Neighborhood Partition over a network of 9
AMD K6-2 450 MHz. Maximum execution time fixed to 900s. An instance name like OR5x250-00 is
an instance of 5 constraints and 250 variables. Averages calculated over 100 executions.

best avg. deviation % from the best known
instance cost known IR with Startegies MS with Neighb. Part.

2 proc. 4 proc. 8 proc. 2 proc. 4 proc. 8 proc.
OR5x250-00 59312 0.028 0.015 0.020 0.051 0.024 0.020
OR5x250-29 154662 0.005 0.006 0.003 0.012 0.007 0.006
OR10x250-00 59187 0.045 0.047 0.045 0.079 0.064 0.064
OR10x250-29 149704 0.012 0.010 0.004 0.012 0.012 0.009
OR30x250-00 56693 0.023 0.022 0.017 0.041 0.028 0.030
OR30x250-29 149572 0.009 0.010 0.003 0.016 0.009 0.007

Table 3. Results from Niar et al., IR with Strategies and MS with Neighborhood Partition over
a network of 9 AMD K6-2 450 MHz. Maximum execution time for our implementations fixed to
900s/#procs.

instance Number of Number of best cost Niar & Freville IR with Strategies MS with Neighb. Part.
constraints variables known Impl. 4 proc. 8 proc. 4 proc. 8 proc.

Pet7 5 50 16537 16537 16388 16430 16338 16471
Weish10 5 50 6339 6339 6339 6338 6338 6339
Weish30 5 90 11191 11191 11148 11155 11175 11187
Sento1 30 60 7772 7772 7772 7772 7772 7772
Sento2 30 60 8722 8722 8722 8714 8721 8722
Weing7 2 105 1095445 — 1095260 1095260 1095140 1095380
Weing8 2 105 624319 624319 624319 618980 617072 624116
FHP2 4 34 3186 3186 3186 3168 3168 3143
FHP5 10 20 2139 2139 2139 2139 2139 2122

3.1 Parallel Genetic Annealing

We consider here the term hybridization as the combination of different opti-
mization skeletons to yield a more controllable or efficient algorithm. In order to
have skeletons that can be merged either by skeleton designers or by end users,
some kind of state information must be offered by any skeleton. The state of the
skeleton is both a way of inspecting its actual behavior and a way of controlling
its future behavior by a higher-level hybrid strategy. Thus, we have incorpo-
rated in the Solver class of every skeleton state variables manipulated (read or
written) through a state in order to be potentially merged.

By controlling the state of skeletons we have developed standard versions
of many algorithms, such as parallel genetic algorithms and parallel simulated
annealing. GA’s are well known meta-heuristics using a set of tentative solutions
whose mean fitness is iteratively improved towards better regions of the search
space. GA’s apply stochastic operators that merge and internally changes these
tentative solutions to more promising regions of the problem space. SA is also
a well-known heuristic searching in every step the neighborhood of the present
solution, and perturbing it to get better solutions following a Boltzmann-like
annealing scheme.

The software architecture of mallba has allowed us a fast prototyping of
the following parallel hybrid skeletons:

– A parallel GA with collaboration among sub-algorithms.
– A parallel SA without collaboration among elementary SA’s (SA1).



– A parallel SA with collaboration among elementary SA’s (SA2).
– A hybrid skeleton GASA1 where parallel GA’s are applying SA as a local

search operator inside their sequential main loop.
– Two hybrid skeletons where parallel GA’s are run under different popula-

tion of solutions and then parallel SA’s are applied. each one selecting (by
tournament -GASA2- or randomly -GASA3-) some strings drawn from the
final GA’s population to improve them.

In all cases, it must be stressed that the construction of these hybrid algo-
rithms has been extremely easy by using the mallba architecture.

We have applied the hybrid skeletons to Maximum Cut and Frequency As-
signment. For the former, two instances have been considered: a high edge-
density 20-vertex instance (cut20-0.9) and a 100-vertex instance (cut100). We
refer to [12] for the details of these problem instances. As to the Frequency As-
signment, two instances from the CELAR database have been considered: CELAR01
(916 radio-links demanding frequencies, for a total number of 5548 interference
constraints), and CELAR02 (200 radio-links, for 1235 interference constraints).
Again, we refer to [11] for a description of the problem. A total number of 50
runs has been performed for each algorithm and problem instance.

Table 4. Results for Maximum Cut. The experiments are done using 6 PCs (Pentium III, 700 MHz,
128 Mb under Linux) connected through a Fast Ethernet network. The “iterations” and “time”
columns refer to the mean values of successful runs (those in which an optimal solution is found).

Cut20-0.9 Cut100
Algorithm iterations time(s) successful runs iterations time (s) successful runs
SA1 1742 0.11 92% 4048 3.96 78%
SA2 856 0.08 100% 2660 2.66 20%
GA 36 0.36 86% 399 78.66 6%
GASA1 5 0.50 100% 54 104.54 36%
GASA2 56 0.59 100% 178 43.84 4%
GASA3 71 0.73 94% 171 33.65 8%

The results for the Maximum Cut are shown in Table 4. In the hybrid par-
allel models, SA is used at each reproduction event with probability 0.1 for 100
iterations. In the parallel-cooperation modes (all but SA1), the algorithms are
arranged in ring topology, asynchronously migrating individuals each 200 iter-
ations. Regarding the 100-vertex graph, the best result is provided by SA1, a
parallel SA without cooperation in about 4 s (78% success in finding the op-
timum). The cooperative parallel version (SA2) is faster yet less effective (just
20% success); the reason for this result strives in that there exists a large number
of local optima that SA2 repeatedly visits, while SA1 (without collaboration)
focuses the search faster to an optimum in every parallel sub-algorithm, thus
avoiding this ”oscillation” effect and visiting a larger number of different search
regions. The hybrid model GASA1 achieves an intermediate 36%-success value,
but it is much more computationally expensive.

The results for Frequency Assigment problem are shown in Table 5. In this
case, the parameters of the algorithms are the same as in the previous problem



Table 5. Results for the Frequency Assignment Problem. The “time” column indicates the mean
time for finding the best solution.

CELAR01 (opt.=16) CELAR02 (opt.=14)
Algorithm best solution found time ( s) best solution found time ( s)
SA1 18 23.00 14 1.39
SA2 20 16.48 14 1.32
GA 18 313.05 14 16.79
GASA1 18 100.74 14 2.94

(with the exception of using 0.01 as the probability of applying SA in the hybrid
models). The CELAR02 instance has been always solved in roughly 2 s. The CELAR01

instance is a harder instance, demanding more computational effort. SA2 is the
faster algorithm, although it does not manage to find the optimum. The most
efficient and effective algorithm is SA1, finding a 18-frequency solution in 23 s
on average, versus 100 s for GASA1 or 313 s for GA.

Overall, SA1 worked out the best results since it is slightly slower than SA1
but it found the optimum in the two problem instances while SA1 failed in
CELAR01. Hybrid GASA1 outperformed pure GA improving convergence time
and percentage of hits in both set of problem instances.

4 Concluding Remarks and Future Work

We have presented the goals and achievements of mallba: we have discussed the
architecture of the library, have shown selected skeletons, and have given some
computational results obtained over a cluster of heterogeneous PCs using Linux.
Our results indicate that: skeletons can be instantiated for a large number of
problems, sequential instantiations provided by users are ready to use in parallel,
parallel implementations are scalable, general heuristic skeletons can provide
solutions whose quality is comparable to ad hoc implementations for concrete
problems and the architecture supports easy construction of powerful hybrid
algorithms.

At present, the library offers two implementations for each skeleton: one for
sequential machines and another for a LAN environment. We plan to simplify
the parallel executions so that by simply checking the underlying system where
the execution will take place, the library will be expected to automatically and
adaptively configure the parallel execution.

Our future work will be devoted to provide a third implementation for WAN
environments to our skeletons. However, the experience of running applications
in WAN environments is still limited. The complexity of this new environment
represents a challenge for the developers of parallel applications. The efficiency
of Internet applications will be strongly dependent of dynamical network param-
eters (latency, bandwidth, network overhead) and the implementations tools. To
do so, we have started to study the behavior of RedIRIS, the Spanish research
network that connects our PC clusters in Barcelona, La Laguna and Málaga.
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