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Abstract- This paper analyzes the detection of
stagnation states in iterated local search algo-
rithms. This is done considering elements such
as the population size, the length of the encoding
and the number of observed non-improving iter-
ations. This analysis isolates the features of the
target problem within one parameter for which
three different estimations are given: two static
a priori estimations and a dynamic approach. In
the latter case, a stochastic reverse hillclimbing
algorithm is used to extract information from the
fitness landscape. The applicability of these es-
timations is studied and exemplified on different
problems.

1 Introduction

The reverse hillclimbing (RHC) algorithm (designed by
Jones and Rawlins [JR93]) is a very adequate tool for
studying fitness landscapes. This algorithm can be used
for determining the basin of attraction of a desired point
of the search space. However, one of drawbacks of this
algorithm is the fact that, in some situations, the size of
this basin of attraction may be very large (even of the
same magnitude than the whole search space). This is
especifically true in smooth landscapes. In fact, and as
pointed out by the authors, the more rugged the fitness
landscape, the more efficient the algorithm is.

This work presents a modification of the reverse hill-
climbing algorithm with application to iterated local
search. To be precise, the algorithm is used to extract
some measures of the fitness landscape. These measures
are subsequently utilized to determine when to terminate
the execution of the algorithm. This is done by calcu-
lating the probability of stagnation provided that the
algorithm has not yielded better solutions for a certain
number of evaluations. Since local search algorithms are
not appropriate for very rugged landscapes, the use of
this stochastic version of the RHC algorithm is justified.

The remainder of the article is organized as follows:
first, a mathematical analysis is done in section 2 to de-
termine the probability of stagnation of a local search
algorithm as a function of the parameters of the algo-
rithm. This analysis isolates the features of the objective
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problem into one measure for which different estimations
are given in section 3. First, two static estimations are
discussed in subsection 3.1. Then, a dynamic estima-
tion is presented in subsection 3.2, based on the use of a
stochastic reverse hillclimbing algorithm. These estima-
tions are evaluated with respect to some common ter-
mination criteria in section 4. Finally, some conclusions
are outlined in section 5.

2 A Probabilistic Analysis of Stagnation

The following analysis is valid for discrete (u + A)-LS
algorithms. These algorithms maintain a population of
w individuals, create new A individuals in each iteration
and select the best u individuals from both the current
and the newly created populations for the next gener-
ation. Due to its elitist behavior, it can be easily seen
that the population will remain unchanged if the algo-
rithm has stagnated. Hence, the analysis is based on
this observation, i.e., we will calculate the probability
of stagnation conditioned to the population remaining
unchanged for a certain number of iterations.

Initially, suppose that 4 = 1 and A = 1. Assume
that no new individual has been accepted in the popula-
tion after r iterations. The probability of this situation
(denoted by E,) is

Mimax
P(E,)= Y P(M,)-P(E./M;) = (1)
N Mmax*i "
= PM;) - | ——— (2)
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where M., is the total number of ways in which an
individual can be mutated and P(M;) is the probability
that ¢ mutations produce an individual better than, at
least, another individual in the population. The last
term represents the conditioned probability of none of
these mutations being performed after r iterations. The
measure P(M;) is very important since it carries all the
information about the problem being solved. Section 3
is entirely devoted to discuss several estimations of this
parameter.

Now, since P(E, /M) = 1, using Bayes’ Theorem to



P(My/E,) yields
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calculate the stagnation probability

P(MO/ET) =

In a more general situation, g > 1. In this situa-
tion, P(M) is used to denote the probability of a total
number of i mutations being capable of improving in-
dividuals in the population. This value can be used to
modify equation (2) yielding

pMimaz
P(E.)= Y PM}) PE/M])= (4)
=0
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where P(E;/M!") is the probability of none of the i pos-
sible mutations being applied in a single step. This value
can be defined as

m(i)
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In the above expressions, Pse(j) is the probability of
selecting the jth individual in the population, m(i) =
min(i, Mynaz ), and P(Mj ;/M}') represents the proba-
bility of k£ mutations producing an acceptable individual
when applied to this jth individual given a total number
of i acceptable mutations. The former depends upon the
selection mechanism used (fitness proportionate [Gol89],
tournament [BT95], etc.). As to the latter, it can be
calculated as

n
EI/MM = Z Psel
j=1

P(M; ;0 M) ®
(M?)

Then, P(M}/E,) can be calculated as shown in equa-
tion (3) using the value obtained with equation (5). Fi-
nally, notice that no improvement being achieved after
r iterations with A > 1 is equivalent to consider N = 1
and r’ = r-\. Thus, for given values of p and M, 4., the
value of r can be calculated so as to ensure with desired
confidence that the algorithm has stagnated.

PM /M) =

3 Three Estimations of P(M;)

As stated in the previous section, P(M;) is a central
parameter in the analysis. Three different estimations
are given in this section. The first and the second ones
are static, i.e., they do not consider the past history of
the algorithm. The third one is more sophisticated and
includes knowledge about both the evolution of the algo-
rithm and the features of the induced fitness landscape.

3.1 Static Estimations

The first and easiest estimation that can be given for
P(M;) is to consider a uniform distribution across all
problems and populations. This constitutes a totally
general estimation in the line of the assumptions of the
“No Free Lunch” Theorem [WMO95]. Hence, it can be
used when no knowledge about the problem being solved
is available. In this situation, P(M!') is given by
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where C’f is the number of ways in which a subset of i
elements can be extracted from a set of j elements. With
the above estimation, equation (8) can be rewritten as

Momaz (M_l)'Mm,am
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P(M ;/ M) = (11)
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An example of the application of this estimation is
given below.

Example 1.

Consider the Schwefel function [WGM94]. This is a non-
linear multidimensional bounded minimization problem
whose functional form is as follows:

F(&)=n Z ssin(y/|zi), 2 € [-512,511] (12)

where V = —min{—=sin(y/|z|) : z € [-512,511]}. The
graphic aspect of this function can be seen in Fig. 1
(top-left).

Now, consider a (1+10)-LS algorithm using an in-
teger representation and a mutation operator that in-
creases or decreases by a fixed ammount a randomly
selected vector position (wrapping is performed if nec-
essary). Then, if the target problem is an n-dimensional
Schwefel function, the number of mutations per indi-
vidual is Myq = 2n. With these values for p and
Minaz, equations (10) and (11) can be used to calcu-
late P(M{/E,) according to equation (3). The resulting
stagnation probabilities are shown in Fig. 1 for differ-
ent dimensionalities. An experimental example is also
shown.

This assumption is quite simple and may be the only
available option in many circumstances. However, it
can be improved. Consider that P(E,) is defined as
a weighted sum of different hypothesis (number of ac-
ceptable mutations) about the state of the algorithm.
The weight of each hypothesis is the value of P(M!).
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Figure 1: From top to bottom, graphic aspect of the
basic Schwefel function, stagnation probabilities for dif-
ferent dimensionalities, evolution of fitness in a run of
the algorithm, and evolution of the stagnation probabil-
ity in the same run.
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Figure 2: Graphic aspect of the Massively Multimodal
Deceptive Problem (left) and evolution of different hy-
pothesis (0 to 10 acceptable mutations) as a function of

the number of non-improving iterations in a 25-MMDP
(right).

If enough problem knowledge is available, these weights
can be better estimated. To be precise, P(M;) could be
calculated as P(S;), where S; represents the subset of
the search space for which i acceptable mutations exist.
Then, P(M!) would be

pMmy = Y [ PMy) (13)

Jibetia=i k=1

It must be noted that, while determining such sub-
sets is generally difficult, their relative weight (and hence
their probability) can be easily calculated either analyti-
cally or empirically. An analytical example is shown be-
low (empirical examples are deferred to subsection 3.2).

Example 2.

Consider the Massively Multimodal Deceptive Problem
[Gol95]. This problem is defined by the concatenation of
k 6-bit segments. The fitness of a string is determined
by the sum of each segment fitness, which is calculated
as shown in Fig. 2 (top). Using equations (10) and (11)
yields the scenario depicted in Fig. 2 (bottom): as the
number of non-improving iterations increases, different
hypothesis are discarded and, finally, only stagnation re-
mains plausible as a hypothesis.
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Figure 3: Evolution of some feasible hypothesis (0 to
10 acceptable mutations) as a function of the number of
non-improving iterations in a 25-MMDP (left) and the-
oretical evolution of unitation probabilities in a segment
of the same problem (right).

Notice that all hypothesis (i.e., number of improv-
ing mutations ranging from 0 to p - Myua,) are taken
into account in the first estimation. However, this is not
always realistic. As an example, consider a (1410)-LS
algorithm using single bit-flip mutation. It can be seen
that a new individual will be accepted only if it has a bet-
ter objective value. This requires at least one segment
to have 1,2,4 or 5 ones, i.e., a non-optimal configuration
that can be improved.

There exist six acceptable mutations for segments
with one or five 1s, and four mutations for segments
with two or four 1s. Let « (resp. ) be the number of
segments with one or five (resp. two or four) ones in a
given string. Then the number of acceptable mutations
is 6 + 40, (o + B8 < k). Since there are 12 possible a-
configurations (C?+C¢) and 30 possible 3-configurations
(C8 + CF), the probability of that situation is

Ck.Chm* 122307 . 22k—o—F
26k

Then, P(M;) can  be  calculated as
Z6o¢+4ﬁ:iP(SQ)ﬂ)’ Notice that P(M;) will be
greater than zero only if ¢ can be decomposed as
6a + 43. Subsequently, some hypothesis will not be
tested (e.g., M) since they are not feasible. This is

P($°) = (14)

shown in Fig. 3 (top).

Some comments must be done about this second es-
timation. Firstly, notice that, in spite of an analytical
study as above be not always possible, empirical tools
exist that allow extracting the necessary information as
shown in next subsection. Secondly, if © > 1 some non
strictly-improving mutations could produce an accept-
able individual. Since hypothesis stating a high number
of acceptable mutations are quickly discarded, this is
not a critical issue in practice. Nevertheless, stagnation
probabilities will be henceforth referred to single individ-
uals to keep the analysis consistent with this fact. For
the sake of simplicity, the population is considered stag-
nated when all individuals have stagnated (i.e., they are
at a local optimum). This will be complemented with a
dynamic study of the evolution of each individual.

This study is related to a third consideration. Equa-
tion (14) statically estimates the probability of each
configuration. However, these probabilities evolve with
time. This is illustrated in Fig. 3 (bottom) which shows
the theoretical evolution of these probabilities using a
Markov-chain analysis. Clearly, a more accurate analy-
sis must take this evolution into account. This is done
in next subsection.

3.2 Dynamic Estimation

As stated above, the dynamic evolution of the algorithm
must be considered to obtain a more accurate measure of
the stagnation probability. This implies that P(M;/Z,,)
(where Z,, represents that a certain individual has been
improved n times) will be used instead of P(M;). Fol-
lowing the reasoning mentioned in the previous section
leads to

P(M;/T,) = ) P(a/T,) (15)

a€S;

Now, P(a/Z,) can be calculated as

P(a/I,)= Y P(8)-P(B> ) (16)

BeB(a)

where B(a) is the basin of attraction of o, and P(3 = )
is the probability of arriving at « after n improving steps.

These probabilities can be empirically found by
means of Reverse Hillclimbing [JR93, Jon95]. However,
notice that an exhaustive exploration is out of question
since the basin of attraction of a given point may
be larger than the number of atoms in the universe.
Hence, a stochastic version of the algorithm is used.
This stochastic algorithm (SRHC) does not perform a
comprehensive exploration of the basin of attraction,
but it carries out a parameterized sampling of this basis,
subsequently extrapolating the results. This algorithm
is used to obtain an approximation of the distribution of
improving mutations as a function of the distance to the



target point (a bidimensional matrix mf), as well as the
size of the basin of attraction of this point at different
distances (a vector tm). The algorithm is based on the
Explore function whose pseudocode is shown below.

function [mf’, tm’] = Explore (p, op, mf, tm,
d, mv, w)

a point of the search space

a search operator

bidimensional matrix, where mf(x,y) is the
probability that y improving mutations
exist at distance x of p.

unidimensional vector, where tm(x) is the
size of the basin of attraction at
distance x.

g8 o ‘o
g ..

[oN)

current distance.

H H H HF H H HEH H HH
ot
=]

mv: number of neighbors to be explored.

w: weight of the current branch

mf’ = mf; tm’ = tm # initialization

f = Evaluate (p) # p is evaluated.

1 = GetNeighbors (p, op)

tm’ (d) += w # p is at distance d.

**

nm = 0 improving mutations
nv = 0 # neighbors to explore
for i=1..size(1l) do,

f’ = Evaluate (1(i))

if (£? < f) # maximization
vec(nv++) = 1(i) # neighbor stored
else
nm++ # improving mutation
end
end
mf’(d,nm) += w # update mf
if (av > mv) # too many branches

vec = RandomSort (vec)
nh = floor(mv+rand(.5))

w = wxnv/nh # adjust weight
else

nh = nv
end

for i=1..nh do,
[mf’, tm’]= Explore (vec(i), op, mf’, tm’,
d+1, mv, w)
end

In the SRHC algorithm, the GetNeighbors function
returns the elements p(4) such that op(p(¢)) = p. Subse-
quenty, the algorithm reduces to Explore (p, op, mf,
tm, 0, mv, 1.0), where mf and tm are initially sparse
zero matrices, and mv is the average number of neighbors
to explore. After executing this algorithm, and assum-
ing statistical isotropy [Wei90]), tm allows determining
the relative sizes of the subsets of the basin of attraction

)

18 4§§§?
o
£ B
o
%10 ~
g,
<, =
s, =
:

i 3 4 5 6

distribution of improving mutations

0 1 2 3 4 5 ]
distance to local optimum

Figure 4: Comparison of the probability distributions for
P(M;/D,,) as calculated by exhaustive reverse hillclimb-
ing (top) and stochastic reverse hillclimbing (bottom) on
a 3-MMDP (mv = 1.05).

of p located at distance i (P(D;)). To be precise, these
relative sizes are
tm(i)
Dmax .
E:j:o tm(j)

On the other hand (and under the same assumption),
it is possible to calculate the probability distribution
P(M;/D;) from mf as follows:

P(D;) = (17)

mf (4, j)

P(M;/Dj) = —7——"—— (18)

T Sl (k)

Now, equation (15) can be rewritten as

Dmaz—n
P(Mi/T,)= ) P(Dj/T.) - P(Mi/Dj) = (19)
7=0
Dimaz—"n

_ 220" " P(Dj4n) - P(M;/Dj) (20)

Dmaz—n
Zj:O P(Dj+n)

The above equation is based on the fact that the proba-
bility of falling in D; given n improving steps is given by
the probability of starting at Djin, i.e., P(Dj4n) (ap-
propriately normalized). As it can be seen in Fig. 4 and
5, the stochastic exploration provides a good approxima-
tion of the real probability distribution.
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Figure 5: Comparison of the probability distributions for
P(M;/D,,) as calculated by exhaustive reverse hillclimb-
ing (top) and stochastic reverse hillclimbing (bottom) on
a 10-city TSP (mv = 1.2).

This dynamic estimation is not only more accurate,
but it has an additional advantage: all information about
the target function is empirically obtained and hence no
analytical knowledge is needed. This implies that it can
be used even for problems whose fitness function is not
available in closed form.

As an example of the application of this estimation,
consider a (1410)-LS algorithm applied to the Traveling
Salesman Problem. This algorithm uses the neighbor-
exchange operator, i.e., it selects two neighboring posi-
tions and swaps their contents. First, the probability dis-
tribution P(M;/D,,) is calculated. The result is shown
in Fig. 6 (top) for a 76-city problem. According to
this distribution, equation (19) is used to determine the
family of functions P(My/FE,,T,), yielding the curves
depicted in Fig. 6 (bottom).

4 Experimental Results

Some experiments have been done in order to asess the
quality of these estimations with respect to some other
common termination criteria. These criteria are based
on extrapolating the behavior of the first run (which is
stopped after a high enough number of iterations) to
subsequents experiments. To be precise, two parame-
ters are extracted from this first run: the number of
iterations which were performed before finding the best
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Figure 6: Probability distribution of P(M;/D,,) calcu-
lated by stochastic reverse hillclimbing (top) and stag-
nation probabilities for different values of Z,, (bottom).
Both graphics correspond to the pr76 instance of the
Traveling Salesman Problem (taken from the TSPLIB).

solution and the maximum number of successive itera-
tions without change prior to find the best solution. The
terms iter and plateau will be used to denote the cri-
teria that use each of these two parameters respectively.
These criteria are compared with the first static esti-
mation (C#1) and the dynamic estimation (C#2). More
precisely, runs are terminated when the probability of
stagnation reaches a threshold value (p € {.75,.90,.99}
in our experiments).

The experiments have been done utilizing a (14-10)-
LS algorithm, using the neighbor-exchange operator and
applied to the pr76 problem. FEach termination crite-
rion has been tested ten times and two complementary
parameters have been analyzed: the quality of the final
solution (compared with a very long run) and the total
number of iterations. The results are shown in Fig. 7
and 8.

As it can be seen, C#1 and C#2 offer the best results.
Notice that C#1 is successful at not stopping the algo-
rithm before stagnation, but it requires a high number
of iterations. On the contrary, both plateau and iter
stop the algorithm after a low number of iterations, but
the quality of the results is worse. The dynamic criterion
C#2 offers the best tradeoff between these two measures.
The algorithm is almost optimally stopped after a much
lower number of iterations than C#1.



5 Conclusions and Future Work

This work has studied the detection of stagnation states
in iterated local search algorithms. Different estimations
have been presented for that purpose. The first one is
very easily calculated and can be directly applied to any
problem, thus constituting a very good starting point as
a termination criterion. However, we hypothesize that,
as the number of possible mutations increases, this esti-
mation tends to be more pesimistic. This is grounded in
the higher weight assigned to configurations with many
acceptable mutations. Notice that, as the algorithm
evolves, the search is focused in configurations with a
low number of such acceptable mutations. For that rea-
son, a dynamical criterion is proposed in order to take
this effect into account. This dynamical criterion consid-
ers both the features of the fitness landscape induced by
the algorithm and the evolution of the algorithm. For
the former aspect, the structure of the search space is
studied using a stochastic version of the reverse hillclimb-
ing algorithm. This information is used to estimate the
probability distribution of different configurations as a
function of the history of the algorithm.

The experimental results are satisfactory. The dy-
namical estimation provides a good tradeoff between the
number of iterations and the quality of the results. More-
over, this tradeoff is tuneable by adjusting the threshold
probability p used to determine the termination of the
algorithm.

Future work could be directed to improve this dynam-
ical estimation using more problem information, e.g.,
studying the fitness correlation with respect to the num-
ber of succesful mutations. This information could be
further exploited considering more aspects of the evo-
lution of the algorithm, e.g., the distribution of non-
improving mutations.
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Figure 7: Number of runs in which stagnation is succesfully detected.
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Figure 8: Average number of iterations before termination.



