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Abstract- Allelic representations are based on
characterizing points of the search space as
variable-size feature sets. Recombination pro-
cesses are studied here from the point of view
of this kind of representations. We focus on the
structure of the information units manipulated
during the process, and in the algorithmic as-
pects of this manipulation. In this sense, we
provide a generic algorithmic template whose
sufficiency is established. Moreover, the syn-
tactic properties of the information units ma-
nipulated are analyzed and exemplified. This is
done within the framework of Forma Analysis.

1 Introduction

Any of the well-known reproductive operators that can
be found in an evolutionary algorithm can be gener-
ally characterized as a process in which information is
extracted from one or more solutions (the parents) in
order to construct one or more solutions (the descen-
dants). The construction of these descendants can be
accomplished by exclusively using this information or,
on the contrary, some exogenous information can be
used. The latter would be the case of, e.g., mutation
operators; these are specifically intended to introduce
such new information in the evolutionary pool. The
scenario is different in the case of recombination oper-
ators; while such exogenous information can be used
in recombination, it is very common to direct the pro-
cess towards combining information present in the par-
ents, without introducing the so-called implicit muta-
tion. Actually, this methodological principle has been
linked to good performance in some contexts, e.g., in
the travelling salesman problem [7, 11], or in bayesian
network inference [1] among others.

The term transmitting [10] has been coined to de-
note this way of recombining in which using exogenous
information is avoided. In some sense, transmission
captures the classical role of recombination: exploit-
ing available information, combining valuable portions
of solutions that were independently discovered. It is
thus worth taking a deeper look at the innards of re-
combination from a transmitting perspective.

Traditionally, the syntactic-algorithmic properties
of a recombination operator (i.e., the shape and struc-
ture of the information pieces it manipulates, and the
computational pattern used for this) have been stud-
ied from a genetic perspective. This means that genes
are taken as the central part of the analysis (e.g., see

[4].) A different view is assumed in this work: alleles
will be the basic constituents around which we articu-
late the analysis. This alternative view implies several
differences in the modus operandi of the process, and
results in a different —and sometimes simpler— algorith-
mic template.

2 Preliminaries

Forma Analysis [8] has been used as the formal frame-
work for carrying out the study. For this reason, a brief
overview of the main notions required in the subsequent
analysis is provided in this section. The definition of
these notions is conveniently adapted to the purposes
of this work.

First of all, let S be a discrete search space, and
let E = {41, --,1¥n} be a set of n independent equiv-
alence relations defined over S. Let Cy be the set of
equivalence classes induced by v, and let =, be the
equivalence relation that induces equivalence class 7.
Also, let [z], be the equivalence class to which a cer-
tain x € S belongs under ¥. Now, let it hold for =
that

Ve,y e S € 2 [z]y # [Y]y- (1)

This way, = is said to cover S, since any two solu-
tions can be distinguished by at least one equivalence
relation in Z. This implies in turn that any = € S can
be univocally referred to (i.e., represented) by enumer-
ating the equivalence classes to which it belongs under
any ¢ € Z, ie., v = {[z]y,, -, [x]p,}. Any of these
equivalence relations in E is termed a basic forma [8].
Basic formae will be usually chosen so as to capture
relevant features of solutions with respect to the prob-
lem under consideration. Notice thus that equivalence
relations model genes, and equivalence classes model
alleles for the corresponding gene.

Let us now define the notion of dynastic potential
as follows:

Definition 1. Let P C S be a set of solutions (the
parents). Their dynastic potential I'(P) is:

)£ N Ul (2)
PYEZ xEP

i.e., the set of all solutions that can be built just using
information comprised in any parent z € P. [ ]



Related to the above concept, the similarity set of
two solutions is defined as:

Definition 2. Let P C S be a set of solutions. Their
similarity set X(P) is:

S(P) £ N

$EE,x€P,PClx]y

i.e., the intersection of common alleles for all parents. W

Given two alleles £ and £, they are said to be com-
patible if €N E # (. Let n and ¢ be two such com-
patible alleles. If for any z € n, y € (, it holds that
nN¢NE{x,y}) # 0, then = is said to be separa-
ble. If the intersection of any arbitrary set of alleles
{m,--,nn} —where n; € Cy,— is non-empty, = is said
to be orthogonal. This latter property is stronger than
separability [10].

Let the notation {>W denote that given ¥ = N7_,0;
—~where each §; is induced by a different ¢ € =, there
exist some 6; such that £ = 0;, {£,0;} C Cy.

Now, let a recombination operator X be defined as a
function X : S¥ x S — [0, 1], where X ({z1,---, 71}, 2)
is the probability that X generate z as a descendant
when the parents zi,---,z; are recombined. The
notion of dynastic span can then be defined as:

Definition 3. Let P C S be a set of solutions. Their
dynastic span I'} (P) with respect to a recombination
operator X is

Px(P) = {z | X(P,z) > 0}, (4)

i.e., the set of all potential solutions that could be
generated when recombining P using operator X. H

A recombination operator is said to be transmitting
if, and only if, '}, (P) C T'(P), for any P C S, that is, it
only generates solutions comprising features exhibited
by at least one of the parents.

For the sake of simplicity, we will consider here the
case of k = 2, ie., two-parent recombination, and
will use the notation X (z,y, z) to denote X ({z,y}, 2).
Similarly, we will use I'(z,y) and ¥(z,y) to denote

I'({z,y}) and E({z,y}).

3 Analysis of Allelic Recombination

We will now present the syntactic and algorithmic as-
pects that have been studied. As a first step, the clas-
sical situation of genetic recombination will be consid-
ered; subsequently, this situation will be generalized to
the allelic context.

3.1 The Basis of Genetic Transmission

As mentioned in Section 1, transmitting recombination
can be cast as an iterative process in which informa-
tion pieces are incrementally extracted from the par-

ents, and used to construct the offspring. Let us firstly
consider the shape of these information pieces.

Let the chosen representation be expressed by means
of a set of genes (equivalence relations) =Z. Obviously,
this gene set must cover the search space S. Now, let
z,y € S be the solutions to be recombined. It is clear
that, according to =, the minimal amount of informa-
tion that can be transmitted from any parent to the
descendant correspond to the alleles for specific genes.
In other words, let {[z],,[y],} be the alleles that are
present in the parents for gene ¢; Any of these alleles
could be transmitted to the descendant z, i.e., it could
be chosen —at least in principle- whether z € [z], or
z € [y],. The use of the conditional tense in the last
sentences is important, for these minimal information
pieces cannot be freely combined in general. The rea-
son is twofold:

1. Unless the representation were orthogonal, some
combinations of alleles will be incompatible. For
example, assume two genes ¢ and ¢’ for which
C, = {n,n'}, and Cp = {(,{'}. Assume also
that allele n’ is incompatible with allele ¢’ (i.e.,
7' N¢ = 0). If it were the case that z € nN ¢’
and y € 7’ N ¢, and in a previous step allele 7’
had been transmitted to the descendant, then the
transmission of allele ¢’ would be forbidden (or
equivalently, the transmission of allele ¢ would
be enforced). In practice, this means that n’ N ¢
is in this case a non-divisible information piece.

2. Even if a set of alleles induced by different genes
is compatible, their intersection may be incom-
patible with an allele outside this set. In par-
ticular, it may be incompatible with any of the
alleles that for a certain gene were in the par-
ents. This can be alternatively formulated as the
fact that they are compatible in general, but in-
compatible within the dynastic potential of the
solutions being recombined, i.e., n N ¢ # @ but
T(z,y)NnN¢=0.

These considerations lead to the notion of ge-
netic  compatibility sets, the smallest (possibly
non-elementary) pieces of information that can be
freely manipulated without jeopardizing the feasibility
of the descendant within the dynastic potential [3].
More formally, they can be defined as follows:

Definition 4. The genetic compatibility set of allele
7 induced by gene ¢ is the transitive closure of:

neK(W,n,x,y) (5)

C(z,y) N NK(P,n,z,y) Nw(n,z,y) =0 =
=n'>K(¥,n,xy), (6)

where w(n', 2, y) is [ylz , if z € 7' or [z]z , otherwise,

and W is the partially constructed descendant. [ ]



Thus, the genetic compatibility set of an allele is the
intersection of all alleles in x for which the correspond-
ing alleles in y would make the descendant be infeasible
within the dynastic potential of the parents.

The application of this definition to a specific
representation will provide the syntactic details of the
these freely-manipulable minimal information units.
It is then possible to define an algorithmic pattern for
genetic transmission based on these units: unspecified
genes are successively selected in the descendant, and
the genetic compatibility set associated with the allele
that for that gene is present in any of the parents is
injected in the descendant. More formally:

Definition 5. The gene transmission operator GT is
a procedure for transmitting genes defined as:

1. & =3(x,y)
2. while |¥| > 1 do

(a) Select an unspecified gene ¢ in U, i.e., a gene
for which ¥ N [z]y # 0 and ¥ N [y], # 0.

(b) Select € € {[x]y, [y]y}-
() U=UNK(T,Ex,y).

3. return z (the unique solution in V).

The sufficiency of this algorithmic pattern for span-
ning the dynastic potential of the parents has been
already established in [2]. Next subsection will pro-
vide analogous notions and algorithmic templates in
the context of allelic representations.

3.2 The Allelic Viewpoint on Transmission

The allelic perspective provide an alternative frame-
work within which recombination can be carried out.
Before defining what allelic recombination means, it is
necessary to revisit the concept of allelic representa-
tion. This topic will be dealt firstly.

As before, let Z = {¢1,---,9¥,} be the set of genes
considered. For each gene 1; € Z, an allele ¢Y € Ce,
is identified. We will refer to this allele as the negative
allele for gene ;. Intuitively, this notion is somewhat
analogous to a default value for the corresponding gene.
Subsequently, Let us define the global allele set A= as

Az 2 U [Cy, \ {¥}] (7)

We can now describe a solution z € S by enumerat-
ing the subset of alleles in A= it exhibits:

Az(x) £ {neAz |z en}. (8)

Of course, this subset can be expressed by means
of its incidence vector on Az, that is, a binary n-

dimensional vector ¥ = (v1,---,v,), v; = 1 if, and

only if, the i*" allele in Az (under an arbitrary enu-
meration) is exhibited by z. Such a vector induces
a genetic representation, although it is not equivalent
to the original representation from which alleles are ex-
tracted (as a matter of fact, it would be a non-separable
representation, even if the original representation was
orthogonal.)

In a similar way a solution is represented by a set
of alleles, a set of alleles 2 C A= defines a solution

S(Q2) = {z} where
S(Q) = Si(Q)NS(Q) 9)
S £ (10)
neN
@) £ () ¥ (11)
Cy, NQ=0

e., the intersection of the specified alleles with the
negative alleles for unspecified genes. Obviously, it is
possible that S(©2) = 0 (in other words, it represents
no solution.) This can be due to two reasons:

1. §1(2) = 0. The solution tried to incorporate
incompatible alleles, and hence (2 is said to be
incompatible.

2. 82(02) =0, or S$1(2)NS2(2) = 0. Q is in this case
underspecified, i.e., more non-negative alleles are
required to represent a single solution.

A clear difference between the genetic and the allelic
context can be observed at this point. In the former,
any allele set €2 for which |S1(€2)| > 1 would be consid-
ered as a partially specified solution. On the contrary,
such a set would be a well-defined solution in the allelic
context as long as S(Q2) = {z}.

Having conveniently defined the allelic representa-
tion, it is now possible to consider a recombination
operator manipulating this information analogously to
GT. To do so, it is first necessary to define the notion
of allelic compatibility set:

Definition 6. The allelic compatibility set of allele n
is

KA(Q’nvxvy) £ {C| CDK(Sl(Q)a%%Z/)} ;

where () is the current allele set. [ |

(12)

Now, a generic template for allelic recombination
can be defined as follows:

Definition 7. The allele transmission operator AT
is a procedure for transmitting alleles defined as:

1. Q=0.
2. B= .AE(LE) UAE(y).
3. while B # () do



(a) if S(©) = {2}
e go to 4 with probability p.

(b) Select n € B.

(c) Compute KA(Q,7,z,v).

(d) for each ' > KA(Q,n,z,y) do:
i. B=B\{n,@w(' =y}

ii. if ' € Az (i.e., ' is non-negative)
e 0=QU{n}.

4. return z (the unique solution in S(f2)).

This algorithmic template suffices to generate any
solution in the dynastic potential of z and y as shown
below.

Lemma 1. z € I'(z,y) = A=z(z) C A=(z) U A=(y).
Proof: The proof is simple. Since z belongs to I'(z,y),
for any allele £  z it must hold that x € £ or y € &
In particular, this will be true for alleles £ € A=(2),
and thus £ € Ag(z) or € € A=(y). O

Proposition 1. z € T'(z,y) = AT (z,y,z) > 0.

Proof: According to Lemma 1, every allele exhibited
by z is initially in B, since z belongs to I'(x, y). It thus
suffices to have 0 < p < 1 in step 3a, and have for
the allele selection in step 3b that the probability of
selecting any allele 7 € B be ¢(B,n) > 0 1. AT would
generate z with probability bounded by

p(1 = p)H=IQ(B, 2) < AT(2,y,2) < Q(B,2) (13)

where
[A=(2)]
QB,2) = I > aB:¢ (14)
i=1 €€R;
and
Ri = Az(z), B1 = Az(z) U A=(y) (15)
Rit1 =R\ {&}, Bit1=B;\{¢} (16)

where ¢ is the allele selected in each step. The lower
limit in Equation (13) models the situation in which
|S(Q)| = 1 for every Q C Rq, and Bja_(y+1 # 0. As
to the upper limit, it refers to the situation in which
S(Q) = 0 for every Q C Ry, and Bja_(z)+1 = 0. Both
limits are greater than zero, so the proof is completed.
O

Proposition 1 shows that any solution of the
dynastic potential can be generated by operator AT.
The converse is not true though: AT can generate
solutions not belonging to the dynastic potential of
the parents, as shown in the following proposition.

1E.g., having ¢(B,7n) = |B|~! would be enough.

Proposition 2. AT (z,y,z) > 0% z € T'(z,y).

Proof: The proof is done by providing a counter-
example to the statement AT (z,y,z) > 0 = z €
['(z,y). Let = be an orthogonal representation. This
means that for any set of alleles Q C Ag, each £ € Q
induced by a different gene, it holds that |S(Q)| = 1 (it
cannot be |S(€2)| = 0 since in that case there would be
an incompatible set of alleles, and hence the represen-
tation would not be orthogonal.)

Let 2 and y be such that {z,y} € £, with £ € Az,
i.e., * and y exhibit a common non-negative allele.
The condition in step 3a of Definition 7 is always
true; hence, the operator can exit without having
transmitted €. Since in that case z ¢ £, and since it
can be easily seen that I'(z,y) C &, it follows that
z ¢ I'(x,y). Thus, the fact that AT (z,y,z) > 0 does
not imply that z € T'(z,y). O

Notice that the result of proposition 2 is not nega-
tive; on the contrary, it points out the higher flexibility
of AT. In fact, it is possible to enforce strict member-
ship to the dynastic potential of the parents by simply
changing the exit condition in step 3a ensuring that

V> S2(Q) : {z,ytnn#£0.

Going back to the pseudocode in Definition 7, the
most appreciable difference between AT and GT is the
fact that the latter never transmits negative alleles,
at least explicitly. On the contrary, such alleles are
implicitly assumed upon completion of the operator
execution. The relevance of this fact will be clear when
some examples are tackled in Section 4. Previously, it
is important to establish two results:

(17)

Lemma 2. Orthogonality of non-negative alleles im-
plies that K4(Q,n,2,y) € A=(z) U A=(y) for any n
and 2.

Proof: Essentially, this lemma states that the orthog-
onality of non-negative alleles is a sufficient condi-
tion for ensuring the absence of negative alleles in
KA(Q,n,z,y). In this situation, any allele set T C
A=(z) U A=(y) is compatible (notice that all alleles in
T are non-negative,) as long as at most one allele per
gene is included in this set.

According to the pseudocode shown in Definition 7,
every time an allele n is included in €2, both n and
w(n, x,y) are extracted from B, the set of alleles avail-
able for recombination (see step 3(d)i in Definition 7.)
This way, any allele ¢ € B extracted in subsequent steps
will be compatible with €2, since it will correspond to a
different gene. Notice finally that the fact that a neg-
ative allele 99 were in the allelic compatibility set of 7
would mean two things:

QNCy, =0

Ve € [A=(2) UAs()] NCy, €0 () =0
CeN

(18)
(19)



Equation (18) indicates that ; is an unspecified
gene in €, and Equation (19) indicates that all
alleles available for this gene are incompatible with
Q (if any of them were not, there would not be the
need for including the negative allele for that gene.)
However, this incompatibility is impossible, since
non-negative alleles are orthogonal according to the
statement of the lemma. Hence, it is impossible to
have ¢ € K4(Q,n,z,y). O

Theorem 1. The orthogonality of non-negative alleles
implies that the procedure described in Definition 7 can
be cast as follows:

1. Q=0; B=A=z(z)UA=z(y).
2. while B # () do

(a) if S(Q) ={z}

e go to 3 with probability p.
(b) Select n € B.
(¢) 2= QU ).

3. return z (the unique solution in S(f2)).

Proof: As shown in Lemma 2, K4(Q,n, z,y) C Az(z)U
A=(y) as long as non-negative alleles are orthogonal.
Given ¢ € KA(Q,n,z,y), (¢ # n) it is clear that
w((, z,y) is a negative allele, since in case it were not,
and provided that

S1 QU [KA(Qn,2,9) \ {¢}]) N@((z,y) =0, (20)

it would follow that non-negative alleles would not be
orthogonal, since only non-negative alleles are involved
in this expression, thus contradicting the proposition
premise. Furthermore, if these non-negative alleles are
not included in  in that precise step, it will be still
possible to include them later. Moreover, S() will
not be reduced to a singleton until these are included,
fact that will necessarily happen a fortiori. O

This is an important result for it shows that it is
not necessary computing compatibility sets when non-
negative alleles are orthogonal: any allele that belonged
to any such compatibility set would be finally included
at any rate. This does simplify the mechanics of recom-
bination. It must be also taken into account that mere
separability of non-negative alleles does not suffice to
guarantee the result of Lemma 2: plain orthogonality
is required.

4 Examples

The notions presented Section 3 will be exemplified
here. We consider three different problems, all of them
based on search spaces comprised in the power set of
some element set. In such search spaces the difference
between the allelic and the genetic representation be-
comes more evident.

4.1 Allelic and Genetic Representation of Sets

We will firstly provide some general ideas on repre-
senting sets [9]. Let & = {e1,---,€e,} be a set of n
elements, and let 2 be the power set of £. Now, let
f:Ex2% — {0,1} be a function that computes the
incidence of an element ¢ € £ in a set s C &, i.e.,
fle,;s) =1 & € € s. An equivalence relation 1, can
then be defined for each € € £, such that

Pe(s1,52) = [f(e,51) = fle,52)] -

This way, each 1. divides the search space in two
classes ¥ and !, respectively comprising the sub-
sets of &£ including or excluding element e. It is then
clear that the set of genes = = {¢. |e € &} cov-
ers the search space, and can be used for represent-
ing solutions. Thus, any s € 2° can be described
as {yit, ;27~-~,1/Jf{1}, where the superscript vector
(1,12, ,1n) is precisely the incidence vector of s on
E.

As in [9], let each allele 1 be associated to two sets
£T(n) and £~ (n) defined as

(21)

et 2 {v|vient, &) 2{v|vien}.

According to this definition, £ (n) is the set of all el-
ements whose membership to any set s € 7 is enforced,
and £~ (n) comprise those elements whose membership
to any s € 7 is forbidden.

The fact that each v, induces exactly two alleles 1)?
and ! provides a natural way of defining the allelic
representation: alleles ©)? could be considered negative.
It then follows that for any compatible non-negative
allele set 2,

(22)

S(Q) = {z} = 2 =£7(51(2) (23)

The converse would not hold in general, since z could
be an infeasible set.

4.2 VERTEX COVER

As a first example, let us consider a well-known com-
binatorial problem, VERTEX COVER. This problem is
defined on the basis of an undirected graph G(V, E).
The search space comprises in this case all subsets of
vertices V' C V for which it holds that

(v,w) € E= {v,w}nV' #£0,

i.e., every edge in E has at least one of its endpoints
in V', Determining whether there exist a vertex cover
of an arbitrary size for an arbitrary graph G can be
shown to be N P-complete, and finding the smallest
vertex cover is N P-hard [6].

To compute the genetic compatibility sets for this
problem one has to consider Equation (5) in the first
place:

(24)

Ko K(W,9F s1,80) ke {0,1}

w

(25)



Subsequently, let us consider how Equation (6) ap-
plies to this problem. A partially specified solution W is
valid (i.e., can be extended to be a feasible solution) as
long as no v, w € £ (V) exist such that (v, w) € E. We
also know that for any unspecified gene ¢, ¥ N* # ()
for k € {0,1} (otherwise, either 40 or ¢! would belong
to the genetic compatibility set of other gene specified
in ¥, so ¢, would not be actually unspecified.) It thus
follows that for all w € ¢~ (V) and (v,w) € E, ¥ > ¥
(i.e., v € &T(D)).

After having stated this, assume that a 1! allele is
being transmitted. Including vertex w in the final so-
lution cannot make ¥ be invalid (actually it makes all
edges (v,w) € E be covered,) so no further gene value
need be transmitted as a part of the genetic compati-
bility set, i.e., Equation (25) suffices for this case. We
now consider the situation in which a 99, allele is trans-
mitted. In this case, it is known that for all (v,w) € E,
either ¢} > W or 1), is unspecified. In the latter case,
transmitting also ® would make ¥ be invalid, so 1}
must be transmitted. Thus,

K(\Ilvwgnslst) = ZZJSJ N m d}i (26)

(v,w)EE, vt (T)

In the context of the allelic representation the sit-
uation is different: one never has to decide whether
transmit ¥9 or ¢}, but which of the ¢} alleles in the
set of available alleles B has to be transmitted. Since
non-negative alleles are orthogonal in this case (for any
subset of non-negative alleles 2, £1(51(£2)) is a vertex
cover or can be extended with more vertices to be a
vertex cover,) AT simply has to transmit one-allele-at-
a-time (the allele selected from B in step 2b) according
to Theorem 1.

4.3 CLIQUE

The CLIQUE problem is also defined on the basis of an
undirected graph G(V, E). The search space is in this
case composed of all subsets of vertices V' C V for
which it holds that

vuweV' = (v,w) €E, (27)

i.e., V' is a fully-connected subset. As it was the case
for VERTEX COVER, determining whether a clique of
arbitrary size exists for G is N P-complete, and finding
the largest clique in a graph is N P-hard [6].

We consider the same representation presented for
VERTEX COVER. Again, we have in the first place
that ¢ > K(W, 9k s1,s5), for k € {0,1}. Now, the
requirement for validity of ¥ is having £7(¥) being
fully connected. Since this set is not modified when an
allele 90 is transmitted, the previous equation suffices
for this case. The situation is different when an allele
) is transmitted. In this situation, it is clear that

(v,w) ¢ E= (YNyL, Nyl =0) . (28)

Thus,

K<\II?'(/J'}U751;S2) :wllum ﬂ ¢8 (29)

(v,w)EE, v¢& (V)

Moving to the allelic context, notice that v} alleles
are not orthogonal (if (v,w) ¢ E, then ¢} Nyl = 0),
so Theorem 1 cannot be applied. However, 10 alleles
are indeed orthogonal (for any subset of 10-like alleles
Q, V\ £ (51(Q)) is a clique, or can be converted in
a clique by extracting more vertices.) Hence, consid-
ering 1! alleles as negative alleles, each solution s is
represented as a set of ¥ alleles, with v € V' \ 5. By
transmitting these alleles one-at-a-time, it is ensured
that any solution within the dynastic potential can be
generated.

4.4 DAG structure learning

A directed acyclic graph (DAG) is a digraph
DAG(V, E), where E verifies that no v,v’ € V exist
such that there are directed paths from v to v" and vice
versa. DAGs are important data structures since they
can be used to represent many relevant entities such as
field programmable gate arrays (FPGAs), or Bayesian
networks among others.

We can represent DAGs as a set of edges, i.e., & =
E (rather than £ = V as in the previous examples).
Then, = = {¢;; | i,j € V'}, each ¢;; dividing the space
of DAGs in two classes: those DAGs including edge
(i,4), and those without it. As it was the case for
VERTEX COVER and CLIQUE, it is easy to see that this
representation is not orthogonal (e.g., ¥;; Np;; = 0). Tt
is then necessary to consider the shape of compatibility
sets.

Again, K(\I!,w?j,dl,dg) = w?j, since excluding an
edge from a DAG cannot make it infeasible, i.e., it can-
not introduce a cycle. This risk of introducing cycles
only exist when an edge (i,7) is transmitted to the
DAG. In this case, cycle avoidance implies that edges
from j —and from any k for which a directed path from
j to k exist— to ¢ must be forbidden in the descendant.
Let Cp be the adjacency matrix of a digraph D, and
let C'9y be the transitive closure of Cp, then

K(U,pl,di,do) =950 () ¢).  (30)
C®(r,s)=1
where C® = Cg’i(\y) XOR Cg‘i(\lfﬁw}j)'

We will use this DAG structure learning problem to
exemplify an interesting difference in the dynamics of
GT and AT. Recall firstly that GT would work in this
case by selecting an unspecified gene, and determining
which of the available alleles for that gene will be trans-
mitted to the descendant. Since any time a w}j allele is
transmitted a number of other 9. alleles are enforced
(i.e., several edges are forbidden,) it is clear that GT
has a bias to produce offspring with a lower number of
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Figure 1: Descendant number of edges for GT as a
function of the parents’ mean number of edges. Parent
density fixed to 6 = .5

edges than the parents’ average. This can be seen in
Figure 1.

As the number of vertices grows, the deviation from
the parents’ average also grows (empirical modelling [5]
suggests that the descendant’s mean number of edges
is proportional to u2%, where j. is the parents’ mean
number of edges.)

In the allelic context, AT would work by selecting
any of the available w}j alleles until no such allele re-
mains, or an early exit is decided. It is not difficult to
adjust this exit criterion so as to have a desired number
of edges in the descendant. This is shown in Figure 2;
to be precise, the exit criterion has been here selected
as reaching a number of edges following a binomial dis-
tribution (v, ¢) where ¢ = 1/2 and v/2 approximates
the parents’ mean number of edges. This results in a
recombination operator without density bias.

5 Conclusions

This work has presented an analysis of recombination
from the allelic point of view. It has been shown that
the syntax of the the information pieces manipulated
by an allelic operator can be simpler than those of its
genetic counterpart. In turn, such a simplification re-
sults in the possibility of using a simpler algorithmic
template, whose functioning is also more flexible than
that of the genetic operator.

Among the advantages of using an allelic approach
we can cite the possibility of exerting a stronger control
on the information exchange, as it was exemplified in
the domain of DAGs. Furthermore, the allelic operator
can be gracefully endowed with heuristic information
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Figure 2: Descendant number of edges for AT as a
function of the parents’ mean number of edges. Parent
density fixed to § = .5

in this context. This has been shown in [1], where a
heuristic measure was successfully used for selecting the
next edge to be transmitted (recall step 3b in Defini-
tion 7) in a Bayesian-network inference problem. This
policy is more flexible than the treatment of individual
genes that would be carried out in the genetic context.
Future work will be directed to a quantitative study
of AT properties. For example, the closed form of the
distribution probability defined over the dynastic po-
tential by some instances of GT is known. Finding
analogous expressions for AT must be the next step.
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Update — January 2004

There is a caveat in the proof of Lemma 2. To be
precise, Equation (19) does not fully characterize the
situations in which a negative allele is in K4(Q, n, z, y).
The correct expression should be:

VE € [As(2) U Az (1) N Cy, : T(z,y) NEN [ (=10
e
(31)
The additional term T'(z,y) is required to ensure
that the compatibility of non-negative alleles holds
within the dynastic potential of the solutions being

recombined. It is possible that non-negative alleles
be orthogonal in general, but not within an arbitrary
dynastic potential. Consider the following example:

Example 1. Let E = {¢1,---,%¢,}, were n = 2k for
some k > 0 and Cy, = {¢?,4!}. Now, let the search
space S be such that:

VoeS: > o(x,i)=2k k>0 (32)

i=1

where z € w;’(m’l)7 1 <7 < n. It can be seen that
any S ({will,---,wilm}) is non-empty (it comprises
all solutions belonging to an even number m’ > m
of positive alleles, for example N?_;+}.) Hence, non-
negative alleles are orthogonal. If we consider x and
y such that |Az(z) U A=(y)| is odd, we can see that
S (Az(z) U A=(y)) = 0 since no solution can belong
to an odd number of non-negative alleles. Hence,
orthogonality does not imply compatibility within an
arbitrary dynastic potential.

In the light of Equation (31), the statement of
Lemma 2 (and subsequently that of Theorem 1) must
be modified so as to include the tag “within an arbi-
trary dynastic potential” whenever “orthogonality” is
referred. The examples shown in Sections 4.2 and 4.3
verify this property of orthogonality within an arbi-
trary dynastic potential.



