
Embedding Branch and Bound within Evolutionary Algorithms

Carlos Cotta and José M. Troya

Dept. Lenguajes y Ciencias de la Computación, University of Málaga

ETSI Informática (3.2.49), Campus de Teatinos, 29071 - Málaga, SPAIN

ccottap@lcc.uma.es

Abstract

A framework for hybridizing evolutionary algorithms with the branch-and-bound algorithm
(B&B) is presented in this paper. This framework is based on using B&B as an operator embedded
in the evolutionary algorithm. The resulting hybrid operator will intelligently explore the dynastic
potential (possible children) of the solutions being recombined, providing the best combination
of formae (generalized schemata) that can be constructed without introducing implicit mutation.
As a basis for studying this operator, the general functioning of transmitting recombination is
considered. Two important concepts are introduced, compatibility sets, and granularity of the
representation. These concepts are studied in the context of different kinds of representation:
orthogonal, non-orthogonal separable, and non-separable.

The results of an extensive experimental evaluation are reported. It is shown that this model
can be useful when problem knowledge is available in the form of an optimistic evaluation function.
Scalability issues are also considered. A control mechanism is proposed to alleviate the increasing
computational cost of the algorithm for highly multidimensional problems.

1 Introduction

Evolutionary Algorithms [1] are powerful heuristics for optimization based on the principles of natural
evolution, namely adaptation and survival of the fittest. These techniques are based on the iterative
generation of tentative solutions for a target problem: starting from a population (pool) of randomly
created individuals (solutions), a basic cycle comprising selection (promising solutions are picked from
the pool), reproduction (new solutions are created by modifying selected solutions), and replacement
(the pool is updated by replacing some existing solutions by the newly created ones) is performed. A
fitness function measuring the goodness of solutions is used to drive the whole process, especially dur-
ing the selection stage. Evolutionary computation constitutes nowadays a state-of-the-art approach
to tackle hard optimization problems for which classical techniques are inadequate.

In spite of their boundaries becoming blurred nowadays, three main streams can be identified
within the field of evolutionary computation: Evolutionary Programming [2], Genetic Algorithms [3],
and Evolution Strategies [4]. Each of these families approaches evolutionary optimization by putting

1

emphasis on different aspects of the common underlying model. A disparity in both methodological
and conceptual aspects of the optimization process arises from these different views of the field.

Among these methodological differences, the utilization of recombination operators (i.e., operators
that create new solutions by combining information pieces taken from selected solutions) within
the reproductive stage has always been a controversial issue. On one hand, many evolutionary-
programming practitioners consider that recombination reduces in most cases to macromutation. On
the other hand, recombination is assigned a paramount rôle by genetic-algorithm researchers. In fact,
extended recombination mechanisms have been defined in which more than two individuals contribute
to create a new solution [5].

These opposed arguments have motivated a plethora of theoretical studies to determine when and
how to recombine. As to the first question, the most classical answer is Goldberg’s building block hy-
pothesis [6]. This hypothesis has been notably reformulated by Radcliffe [7], generalizing the concept
of schema to abstract entities called formae, and defining representation-independent recombination
operators with specific properties with respect to these formae [8]. The resulting framework (Forma
Analysis) has provided very important insights on the functioning of genetic algorithms.

It is both the strength and the weakness of these representation-independent operators that their
application is blind, i.e., randomly guided. The underlying idea is not to introduce any bias in the
evolution of the algorithm, thus preventing premature convergence to suboptimal solutions. This
intuitive idea is questionable though. First, notice that the evolution of the algorithm is in fact
biased by the choice of representation and the mechanics of the particular operators. Second, there
exist widely known mechanisms (e.g., spatial isolation [9, 10]) to promote diversity in the population,
thus precluding (or at least hindering) extremely fast convergence to suboptimal solutions. Finally,
it can be better to quickly obtain a suboptimal solution and restart the algorithm than using blind
operators for a long time in pursuit of an asymptotically optimal behaviour.

This paper discusses the use of recombination operators that use problem knowledge to bias the
generation of new solutions. To be precise, the problem knowledge is used to determine the best
possible combination of the ancestors’ features, thus removing the blindness of the recombination
process. The utilization of these knowledge-augmented operators (also known as hybrid operators)
has an additional motivation. As initially stated in [11] and later popularized in the so-called No
Free Lunch Theorem [12] (see also [13]), using problem knowledge is not an optional mechanism for
improving the performance of the algorithm, but it is a strong requirement for ensuring a minimal
quality of the results. In this sense, the framework proposed and described in this paper constitutes
another tool that evolutionary-algorithm designers can put into their toolbox, to be considered when
trying to adapt their algorithm for a specific problem [14, 15, 16].

The remainder of the paper is organized as follows: first, and in order to make this work self-
contained, the necessary concepts on forma analysis and notational details are given in Section 2.
Then, the properties of different kinds of representation are studied in Section 3, introducing key
concepts for the subsequent development. Next, the hybrid framework is presented in Section 4,
describing its internal functioning, and analyzing factors with impact in the computational complexity

2

of the resulting algorithm. Subsequently, experimental results are reported in Section 5. Finally,
conclusions are presented in Section 6, outlining future work as well. An appendix describing the test
suite used in the experiments is also included.

2 Background

First of all, let Ξ = {ψ1, · · · , ψn} be a set of n independent equivalence relations defined over the
search space S. Let it hold for Ξ that for all x, y ∈ S, there exists ψi ∈ Ξ such that ψi(x, y) =
FALSE, i.e., no two solutions share membership to the same equivalence classes for all equivalence
relations in Ξ . In this case, Ξ is said to cover the search space, and each solution x ∈ S can be
represented as x = {ηi, · · · , ηn}, where ηi is the equivalence class1 to which x belongs under ψi. Thus,
x = 〈ηi, · · · , ηn〉 ⇔ {x} = ∩n

i=1ηi. Each of these equivalence classes is termed a basic forma [7].
Formae allow encapsulating together arbitrary sets of solutions. From a practical point of view,

the evolutionary-algorithm designer will identify relevant features of solutions (this can be done in
a variety of ways, e.g., measuring fitness variance [17, 18]), defining equivalence relations that group
together solutions sharing these features. Notice that equivalence relations are analogous to genes,
while formae are analogous to alleles. The concept of dynastic potential can then be defined as follows:
Definition 1 (Dynastic Potential). Let x = {ηi, · · · , ηn} and y = {ζi, · · · , ζn} be two feasible
individuals. Their dynastic potential is defined as Γ({x, y}) =

⋂n
i=1(ηi∪ζi), i.e., the set of individuals

that only carry information contained in x and y. ¥
Now, a recombination operator X can be defined as a probability distribution X : S×S×S → [0, 1],

where X(x, y, z) represents the probability of generating z when recombining x and y. Subsequently,
it is possible to define the concept of Immediate Dynastic Span [8] as follows2:
Definition 2 (Immediate Dynastic Span). The immediate dynastic span of two individuals x

and y with respect to a recombination operator X is defined as Γ1
X({x, y}) = {z | X(x, y, z) > 0},

i.e., the set of solutions that can be obtained when X is applied on x and y. ¥
Having defined these concepts, three major properties [17] can be present in a recombination

operator X:

• Respect: {x, y} ⊆ η ⇒ Γ1
X({x, y}) ⊆ η.

• Proper assortment: [(x ∈ η) ∧ (y ∈ ζ) ∧ (η ∩ ζ 6= ∅)] ⇒ Γ1
X({x, y}) ∩ η ∩ ζ 6= ∅.

• Transmission: Γ1
X({x, y}) ⊆ Γ({x, y}).

where x and y are arbitrary solutions, and η and ζ are two different formae.
The first property represents the exploitative side of recombination. A recombination operator is

said to be respectful if, and only if, it generates descendants belonging to all basic formae common
to both parents. This property becomes more important as the algorithm converges since diversity
decreases and individuals are thus more likely to be similar.

On the other hand, assortment represents the exploratory side of recombination. A recombination
operator is said to be properly assorting if, and only if, it can generate descendants carrying any

3

combination of compatible formae (i.e., formae η and ζ for which η ∩ ζ 6= ∅) taken from the parents.
The assortment is said to be weak if it is necessary to perform several recombinations within the
descendants to achieve this effect.

Finally, transmission is a very important property that captures the classical rôle of recombination.
An operator is said to be transmitting if every basic forma to which the descendants belong contains at
least one of the parents as well. Thus, a transmitting recombination operator combines the information
present in the parents but does not introduce new information. This latter task, introducing new
genetic material, is left to the mutation operator. For this reason, a non-transmitting recombination
operator is said to introduce implicit mutation.

These three properties are not always simultaneously achievable. First, notice that gene trans-
mission implies respect [8], but the reverse is not true in general (e.g., see [19]). Likewise, assortment
and respect are not always compatible. For example, consider the edge-based representation of the
TSP [20]; in the solutions 1− 2− 3− 4− 5− 6 and 1− 2− 4− 6− 3− 5, the undirected edges 23u and
24u are perfectly compatible but combining them excludes the common edge 12u. In such a situation,
the representation is said to be non-separable. Not all representations have this property. For exam-
ple, consider the position-based representation of permutations [6, 18], i.e., considering the elements
occurring in absolute positions as the basic features. It is easy to see that common positions can be
respected and then any pair of compatible position formae (i.e., assignments of different elements to
different positions) can be included. Such a representation is said to be separable.

Notice that an arbitrary assortment of separable formae generally results in the lack of full trans-
mission (i.e., implicit mutation is introduced). For example, assume that 1− 3 − 2 − 5 − 4 − 6 and
1 − 2 − 3 − 4 − 6 − 5 are recombined. Assorting 6 in the sixth position (first parent) and 4 in the
fourth position (second parent) forces 5 to be placed in the 1st, 2nd, 3rd or 5th position, in none of
which it appears in any parent.

Finally, the three properties are fully compatible in orthogonal representations (representations
in which any tuple of formae corresponding to different equivalence relations are compatible), e.g.,
traditional schemata [6]. Unfortunately, no suitable orthogonal representation can be found for most
problems. For that reason, usually a choice has to be made to decide which of these properties should
be exhibited by the recombination operator.

In this sense, there exists empirical evidence suggesting respect as a desirable property, e.g., see
[21, 18]. Furthermore, implicit mutation is usually regarded as undesirable [20]. For these reasons,
transmission has been chosen as the central feature for the operators described in this work. This
feature is further enhanced by the inclusion of problem-knowledge.

3 Forma Transmission and Representation Granularity

In light of the concepts presented above, a transmitting recombination can be generally considered as
a process in which information is incrementally taken from the parents to construct the descendant
(see Fig. 1), that is, starting from a totally unspecified solution (i.e., Ψ1

0 = S) properties from any
of the parents are selected and assigned to the child until a fully-specified solution is obtained. As it

4

can be seen, each step involves determining a subset of the remaining unspecified properties of the
descendant, and deciding from which parent is transmitted this information.

Fig. 1 here.

Let the notation ξ . Ψ denote that, given Ψ = ∩s
j=1θj , ∃j : ξ = θj , where ξ and θj are formae

induced by the same equivalence relation ψi ∈ Ξ. Now, each of the pieces of information used in the
recombination process sketched above will be called a construction unit, and can be formally defined
as follows:
Definition 3 (Construction Unit). A construction unit Υ(Ψ, u, w) is any intersection of basic
formae Θ , ∩g

j=1θj , with g ≥ 1, and u ∈ Θ, such that Θ ∩ Ψ 6= ∅, and for any θ . Θ, it holds that
θ 7 Ψ, where Ψ is the partially specified solution, u and w are the parents, and g is a parameter
termed granularity of the representation. ¥

Notice that although w is not explicitly used in the above definition, it is relevant to determine
what construction units are valid as it will be shown below. Construction units constitute the infor-
mation atoms used to create the descendants, and their structure is clearly dependent of particulars
of the representation. The simplest scenario is that in which the representation is orthogonal. In this
case, the dynastic potential of x and y is

Γ({x, y}) = Γ({〈η1, · · · , ηn〉, 〈ζ1, · · · , ζn〉}) ,
n∏

i=1

{ηi, ζi} , (1)

i.e., the Cartesian product of all pairs {ηi, ζi}, where x ∈ ηi, and y ∈ ζi, for 1 ≤ i ≤ n. Thus, it is
possible to extend any partially specified solution by considering a single basic forma at a time, i.e.,

Υ(Ψ, u, w) = σ(Ψ, u) = σ(Ψ, 〈ξ1, · · · , ξn〉) = ξi, (2)

where σ(Ψ, u) = ξi is the forma to which u belongs under the first unspecified equivalence relation
(under a fixed arbitrary order) in Ψ. Let us define the concept of dual forma as follows:
Definition 4 (Dual Forma). The dual forma $(η, x, y) of a forma η 3 x is ζ 3 y if, and only if, η

and ζ are formae induced by the same equivalence relation ψi ∈ Ξ. ¥
In orthogonal representations, decisions thus reduce to either considering Υ(Ψ, u, w) or Υ(Ψ, w, u) =

$(Υ(Ψ, u, w), u, w). These representations have the finest granularity (g = 1). However, such a fine
granularity is not always achievable. As an example, consider the position-based representation of
permutations mentioned in Section 2. Clearly, using the construction units shown in Eq.(2) would
be a waste of computational resources since many of the generated formae would consider repeated
elements and hence would be empty (i.e., infeasible). Moreover, even when a particular forma Ψ were
not infeasible per se, it might happen that Ψ∩Γ({x, y}) = ∅. This would be detected when in further
steps all descendants Ψ′ of Ψ in the decision tree shown in Fig. 1 were empty. All the computational
effort needed to extend Ψ to Ψ′ would have been useless. In this case, construction units must be
more complex. To be precise, choosing a certain forma at a given step may force the inclusion or
exclusion of other formae in further steps. This is formalized within the concept of compatibility sets
as follows:

5

Definition 5 (Compatibility Set). The compatibility set of a forma η is inductively defined as:

η . K(Ψ, η, x, y) (3)

[
Γ({x, y}) ∩Ψ ∩K(Ψ, η, x, y) ∩$(η′, x, y) = ∅] ⇒ η′ . K(Ψ, η, x, y), (4)

i.e., the intersection of all formae η′ (x ∈ η′) that must be included along with η to preserve feasibility
within the dynastic potential. ¥
Example 6 (Compatibility Sets for Position Formae).
The position-based representation of n-element permutations is defined by a set of n equivalence
relations Ξ = {ψ1, · · · , ψn}, where ψi(x, y) = TRUE if, and only if, x and y have the same element
at the ith position. Thus, every equivalence relation ψi induces n equivalence classes ηij , each one
comprising those solutions in which element j occurs at the ith position.

Assume now that two individuals x = 1− 2− 3− 4− 5− 6 and y = 6− 3− 2− 1− 5− 4 are being
recombined under the assumption of transmission. If element 1 in the first position is transmitted
to the descendant, so must element 6 in the sixth position (it could only appear in the 1st or 6th
position, and the 1st is already occupied). This in turn implies that element 4 must be placed in the
fourth position. Since element 1 appears in the fourth position of y, and this element has already
been placed, no further formae need to be included in the compatibility set. These compatibility sets
are termed cycles [18, 22] and can be inductively defined as follows [23]:

ηab . K(Ψ, ηab, x, y), (5)

[ηcd . K(Ψ, ηab, x, y) ∧ (y ∈ ηce) ∧ (x ∈ ηfe)] ⇒ ηfe . K(Ψ, ηab, x, y). (6)

Notice the cyclic nature of the compatibility set. Following the above example, the same result
– i.e., 〈1¤¤4¤6〉 – would have been obtained if we had started by transmitting element 4 or 6 in
the 4th or 6th position respectively. On the other hand, transmitting the dual forma of η11, i.e., η16,
would have resulted in the compatibility set 〈6¤¤1¤4〉.

In the context of non-orthogonal representations, construction units are compatibility sets rather
than single formae. It has been shown elsewhere that any solution in Γ({x, y}) can be generated by
considering equivalence relations in any arbitrary order, and taking binary decisions on the compati-
bility sets of the first unspecified forma and its dual one. Thus, the decision tree in Fig. 1 is in fact
binary. This is a desirable property since it simplifies the decision structure.

The next step is computing the compatibility sets involved in these decisions. The following
proposition shows that this computation can be very hard for non-separable representations:
Proposition 7 (Complexity of Computing Compatibility Sets). Computing compatibility
sets in non-separable representations is NP−hard in general.
Proof of proposition 7: Consider the edge-based representation of permutations. As exemplified
in Section 2, this is a non-separable representation. Now notice that the dynastic potential of two
solutions x and y is the set of Hamiltonian cycles that can be found in the incomplete graph composed
of those edges occurring in x or y. Deciding whether a certain forma (edge) ζ must be included

6

in a compatibility set K(Ψ, η, x, y) implies determining whether a Hamiltonian cycle exists in the
previously mentioned graph, forcing edges in Ψ and excluding ζ. This is known as the Constrained

Hamiltonian Circuit Problem, an NP−hard problem [24]. ¤
Non-separable representations are thus difficult to tackle. Some work has been done regarding

transmission in this kind of representations [25]. Nevertheless, it is clear that the study and design
of efficient mechanisms for handling them is a very substantial topic. Hence, they are deferred to
a further work. This does not leave a trivial problem at all, since very hard problems can still be
defined in terms of separable representations. Furthermore, separable representations exhibit a nice
property: compatibility sets do not depend upon the partially specified descendant (cf. [15]). This
independence from decisions taken on-the-fly imply that they can be computed in advance at the
beginning of the recombination process. The algorithm can subsequently handle them in the same
way as single formae in orthogonal representations, i.e., as units that can be freely combined.

4 Dynastically Optimal Recombination

In light of the concepts presented above, the design of a recombination operator is addressed in
this section. First, the necessity of utilizing knowledge in the recombination process is presented,
introducing the dynastically optimal recombination operator. The functioning and requirements of
this operator are subsequently described. Finally, the complexity of the operator is shown to be
related to the granularity of the representation.

4.1 Random Transmission vs. Heuristic Recombination

A transmitting recombination operator is thus a mechanism for traversing the tree shown in Fig.
1. The easiest way for doing this is at random, i.e., starting at Ψ1

0 and randomly selecting one of
the available branches at each step. Operators exhibiting this behavior fall within the framework
of Random Transmitting Recombination (RTR) [8]. According to the formulation of recombination
presented in Section 2, this generic operator is defined as follows:
Definition 8 (Random Transmitting Recombination). The Random Transmitting Recombina-
tion operator is defined as

RTR(x, y, z) =

{
1

|Γ({x,y})| z ∈ Γ({x, y})
0 otherwise

(7)

¥
Thus, RTR returns a random member of Γ({x, y}), all individuals having the same probability of

being selected, e.g., uniform crossover [26] in binary representations. As stated in [27], this uniform
selection is inappropriate if problem-dependent knowledge is available. For example, consider the case
in which the representation induced by Ξ is orthogonal. In this case, RTR traverses a complete binary
tree of n levels, deciding at random in each level i whether the descendant should belong to ηi 3 x

or ζi 3 y, where x and y are the parents. Now, if the representation is epistatic, the contribution of

7

each basic feature of a solution to its final quality depends upon which other features are present in
the solution. In this situation, a random shuffle of this information is likely to disrupt the context in
which a certain forma is immersed, thus resulting in pure macromutation. Hence, problem-dependent
knowledge must be used to identify higher-order formae that can be satisfactorily linked. Moreover,
even when no epistasis is involved, problem-knowledge can dramatically reduce the time required to
find acceptable solutions.

The use of such heuristic knowledge is usually addressed in the literature in two ways:

1. Memetic approach [16]: after the child has been generated a local hill-climbing mechanism is
applied3.

2. Patching by forma completion [17]: a partially-specified child is generated using an operator that
combines respect and assortment, e.g., the RARω operator [8]. This child is then completed
using either of the two following mechanisms:

(a) Locally optimal forma completion: the gaps are randomly filled and then a local hill-
climbing procedure is applied to them.

(b) Globally optimal forma completion: the subspace of solutions matching the currently spec-
ified features is explored to determine the best completion of the child.

These two approaches are incompatible with the principle of forma transmission observed in this
paper; the use of a local hill-climber will almost surely introduce a considerable amount of implicit
mutation. Although this is not necessarily bad (in fact, local-search-based memetic algorithms have
been quite successful in several problem domains), it complicates both a general analysis and a
performance prediction. This is also true for globally optimal forma completion which, additionally,
can be computationally expensive.

The approach proposed in this work tries to combine the positive features of the RTR operator and
the two heuristic approaches described above. Like RTR, it is a strictly transmitting operator. Like
the heuristic approaches, problem-knowledge is used to select a feasible forma combination but, unlike
globally optimal forma completion, only the dynastic potential is explored and hence the computa-
tional cost is considerably reduced. This approach is termed Dynastically Optimal Recombination,
and is defined as follows:
Definition 9 (Dynastically Optimal Recombination). Let φ : S → R be the fitness function.
Let the notation φ[R] be used to represent the image of R ⊆ S under φ, i.e., φ[R] = {φ(w) | w ∈ R}.
Let ≺ be a partial order relation defined over φ[S], such that x is a better solution than y if, and only
if, φ(x) ≺ φ(y). Then, the Dynastically Optimal Recombination operator is defined as a transmitting
recombination operator for which it holds that

DOR(x, y, z) > 0 ⇒ φ(z) ∈ sup≺ (φ [Γ({x, y})]) . (8)

¥

8

Hence, DOR returns the best individual (or one of the best individuals in case there were several
solutions with the same best fitness) of the dynastic potential. The way this is achieved will be shown
below.

4.2 The Internal Functioning of DOR

According to the definition of the DOR operator given in Subsection 4.1, it appears that an exhaustive
search mechanism must be used on the dynastic potential Γ({x, y}) in order to determine the returned
child. For this purpose, a very efficient option is to use branch-and-bound (B&B) for incrementally
constructing solutions. This mechanism is described below in more detail.

According to the notation shown in Fig. 1, let Ψj
i , where 0 ≤ i ≤ n, and 2i ≤ j ≤ 2i+1 − 1,

represent a partially specified solution located at level i. Initially, Ψ1
0 = S; subsequently,

Ψ2j
i+1 , Ψj

i ∩Υ(Ψj
i , x, y), and (9)

Ψ2j+1
i+1 , Ψj

i ∩Υ(Ψj
i , y, x), (10)

are considered, where the construction units Υ(Ψj
i , u, w) are the corresponding compatibility sets of

the formae induced by the first unspecified equivalence relation in Ψj
i .

Now, it is necessary to use a function φ∗ : 2S → R meeting the following requirements:

1. Monotonic growth: ∀R ⊆ S @T ⊂ R : φ∗(T) ≺ φ∗(R)

2. Optimistic estimation: ∀R ⊆ S @r ∈ φ[R] : r ≺ φ∗(R)

3. Accuracy in the limit: ∀x ∈ S : φ∗({x}) = φ(x)

4. Infeasibility avoidance: ∀s ∈ φ[S] : s ≺ φ∗(∅)

Actually, φ∗ need not be defined over all arbitrary sets of solutions, but just on sets defined by
the intersection of the basic formae induced by equivalence relations in Ξ. This function comprises
the available knowledge about the fitness function, providing optimistic estimations of the quality
of partially-specified solutions. Following the well-known B&B algorithm [28], these estimations are
used to traverse the tree shown in Fig. 1, determining the order in which formae Ψj

i are generated,
and discarding those formae Ψ for which φbest ≺ φ∗(Ψ), where φbest is the fitness of the best-so-far
generated solution. This latter value is updated whenever a forma Ψ′ = {z} is generated such that
φ(z) ≺ φbest. Initially, φbest = inf≺{φ[S]}.

Notice that, if the representation is non-epistatic, DOR admits a very simple implementation.
Such implementation is based on the fact that the fitness function can be decomposed in this case as

φ({ξ1, · · · , ξn}) =
n∑

i=1

φi(ξi). (11)

For this kind of function, DOR must simply take local decisions at each level, selecting the formae
that individually optimize the fitness function. Hence it has linear-time complexity. The scenario is
different when epistasis is involved, as shown in the next subsection.

9

4.3 Representation Granularity and the Complexity of DOR

The granularity of the representation has an unquestionable impact on the time complexity of the
algorithm. Consider that the size of the dynastic potential is O(2m), where m is the number of
construction units that can be identified in the selected individuals. In the case of orthogonal repre-
sentations, each construction unit comprises a single forma (i.e., m = n, where n is the dimensionality
of the problem), and thus the size of the dynastic potential is O(2n). Obviously, and as mentioned
above, this size is only relevant when epistasis is involved, since DOR behaves linearly otherwise.

In the case of epistatic representations, the exponential growth of the dynastic potential becomes
very important. As an example, consider the curve labeled as ‘g=1’ in Fig. 2 (left). It shows the time4

required for performing one hundred recombinations of randomly generated individuals as a function
of the dimensionality of the problem (the design of a brachystochrone in this case). As it can be
seen, the computational cost grows extremely fast for dimensionalities above 10, thus confirming the
influence of the number of construction units. Of course, there exist other factors affecting the time
complexity of the operator, namely the amount of knowledge used in the φ∗ function. If this function
were defined to return a constant value for underspecified solutions (i.e., if no problem-knowledge were
used), DOR would reduce to an exhaustive enumeration of all members of the dynastic potential and
hence O(2n) individuals would have to be evaluated. On the contrary, if φ∗ provides good estimations
of the fitness function this quantity can be dramatically reduced, so as to become affordable for a
certain range of dimensionalities.

It is interesting to notice that, as the algorithm converges, individuals tend to be more similar and
hence their dynastic potential is reduced. To be precise, suppose that the individuals to be recombined
share membership to a set of basic formae Θ = θi1 ∩ · · · ∩ θik . Given that gene transmission implies
respect [8], it is clear that Γ({x, y}) ⊆ Θ. Hence, the search can be started from Ψ1

0 = Θ, and
|Γ({x, y})| ≤ 2n−k.

Nevertheless, it must be taken into account that, even when the above consideration is true, it
does not necessarily imply that the number of construction units in non-orthogonal representations
decreases monotonically as well. This follows from the fact that having common formae allows
bounding the maximum size of the dynastic potential, but its actual size may vary below that bound.
This is shown in the following example.
Example 10 (Common Formae and Dynastic Potential).
Consider the permutations 1−2−3−4−5−6−7−8 and 2−3−1−5−6−7−8−4. From the point
of view of position formae, they do not belong to any common basic forma, existing two compatibility
sets in each permutation: 〈123¤¤¤¤¤〉 and 〈¤¤¤45678〉 from the first one and 〈231¤¤¤¤¤〉 and
〈¤¤¤56784〉 from the second one. Thus, there are 22 solutions in their dynastic potential.

On the other hand, the permutations 1− 2− 3− 4− 5− 6− 7− 8 and 1− 3− 2− 4− 6− 5− 8− 7
belong to two common position formae. However, there exist three non-common compatibility sets in
each of them: 〈¤23¤¤¤¤¤〉, 〈¤¤¤¤56¤¤〉 and 〈¤¤¤¤¤¤78〉 in the first one and 〈¤32¤¤¤¤¤〉,
〈¤¤¤¤65¤¤〉 and 〈¤¤¤¤¤¤87〉 in the second one. Hence their dynastic potential has 23 solutions.

The above example simply illustrates that, even when diversity tends to decrease due to the

10

natural evolution of the algorithm, an additional control has to be put on the number of construction
units should the computational cost of the algorithm become prohibitive for the problem under
consideration. This is specifically true in highly multidimensional problems as shown in Fig. 2. Such
a control can be achieved by tuning the granularity parameter g.

First of all, consider the case of orthogonal representations. The granularity may be increased
by making construction units contain more than one basic forma. These formae can be selected at
random or using a priori knowledge about the epistatic relations of these formae. To be precise, in the
problem considered above there exist epistatic relations between adjacent variables. For this reason,
it is convenient to choose consecutive variables, thus preserving a larger part of their context. Hence,

Υ(Ψj
i , u, w) = Υ(Ψj

i , 〈ξ1, · · · , ξn〉, w) =
min(g,n−i·g)⋂

k=1

ξi·g+k. (12)

The curves labeled with ‘g=2’ to ‘g=5’ in Fig. 2 (left) show the results of the same benchmark
mentioned above for higher dimensionalities. As it can be seen, when the granularity is increased,
the algorithm reduces its computational cost, being capable of tackling larger problem instances.
Moreover, and as it can be seen in Fig. 2 (right), there exists a very good linear relation between
the granularity of the representation and the highest affordable dimensionality of the problem when
a constant computational cost is kept.

Fig. 2 here.

A similar approach can be taken when the representation is non-orthogonal although, in this case,
compatibility sets rather than single basic formae must be joined. For instance, this is the underlying
idea of the block representation [18], defined as follows:

Definition 11 (Block Formae). A block B(k, x, y) is a macro-compatibility-set inductively defined
on the basis of cycles as

x ∈ ηka ⇒ ∀ζ . K(ηka, x, y) : ζ . B(k, x, y), (13)

(x ∈ ηsb) ∧ [ηrc, ηtd . B(k, x, y)] ∧ (r < s < t) ⇒ ∀ζ . K(ηsb, x, y) : ζ . B(k, x, y), (14)

where k is the index of the first position of the block. In the equations above, the first parame-
ter of compatibility sets K(·) – the partially specified solution – has been dropped because of the
independence mentioned in Section 3. ¥
Example 12 (Blocks vs. Cycles).
Consider the permutations 1 − 2 − 3 − 4 − 5 − 6 − 7 − 8 − 9 and 4 − 3 − 2 − 1 − 6 − 5 − 9 − 8 − 7.
According to the definition of cycles presented in Example 6, the following compatibility sets can be
identified in the first solution: 〈1¤¤4¤¤¤¤¤〉, 〈¤23¤¤¤¤¤¤〉, 〈¤¤¤¤56¤¤〉, 〈¤¤¤¤¤¤7¤9〉,
and 〈¤¤¤¤¤¤¤8¤〉. On the other hand, considering the previous definition of blocks, there exist
just three compatibility sets: 〈1234¤¤¤¤¤〉, 〈¤¤¤¤56¤¤¤〉, and 〈¤¤¤¤¤¤789〉. We obtain a
lower number of construction units but each of them has a more coarse granularity.

As shown in [23], the average size of the dynastic potential of recombined solutions is more than
one order of magnitude smaller using the block representation that the cycle representation. This

11

implies that the computational cost of DOR will be considerably reduced as well. Nevertheless, an
important fact must be taken into account: reducing the dynastic potential also reduces the chances
for combining valuable information taken from the parents. In an extreme situation, this could be
as undesirable as the unaffordable computational cost of DOR for low (respectively high) values of g

(respectively n). This is one of the issues studied in next section.

5 Experimental Results

A set of experiments has been realized in order to assess the usefulness of DOR as a tool for hy-
bridization. The test suite used has been chosen to comprise complex problems exhibiting different
properties such as orthogonality/non-orthogonality, and presence/absence of epistasis. This test suite
is described in the appendix.

Except where otherwise noted, an elitist generational genetic algorithm (popsize=100, probability
of recombination pc=.9, maxevals = 105) using linear ranking selection (with maximum expected
value η+ = 2.0 [29]) has been utilized. In order to make a fair comparison between DOR and other
classical operators, the internal partial evaluations of the former have been taken into account. More
precisely, computing the optimistic evaluation φ∗(Υ) of a construction unit Υ of granularity g is
accounted as g/n evaluations, where n is the dimensionality of the problem. Thus, comparisons
are done on the basis of an analogous utilization of resources, since the evaluation of a solution is
usually considered the basic unit to measure the computational cost of an evolutionary algorithm
(actually, all algorithms considered behave similarly in terms of computational time). Also, mutation
is performed before recombination (hence new information is still introduced in the population but
the smart recombination performed by DOR is preserved). No fine tuning of parameters has been
attempted.

The first results (shown in Fig. 3) correspond to the Schwefel function (§A.1), a non-epistatic
orthogonal function. In this problem, variables have been encoded using 64 bits, and the probability of
mutation pm has been set to 1/64. For comparison purposes, the experiments have been realized with
some classical operators such as single-point crossover (SPX), double-point crossover (DPX), uniform
crossover (UX), arithmetic crossover (AX) and random respectful recombination (R3) [30]. It can be
seen that, while most operators behave very similarly for low dimensionalities, DOR becomes nearly
two orders of magnitude better than the remaining operators for 32 variables. As mentioned before,
this kind of function is very easy for DOR to optimize. Thus, more difficult problems are considered
henceforth.

Fig. 3 here.

The first epistatic problem considered is the design of a reactive rulebase for a mobile agent
(§A.2). This rulebase must make the agent reach a destination point in minimal time starting from
an arbitrary point. It is clear that this problem is strongly epistatic since learning the rulebase implies
determining a set of rules whose interplay results in an appropriate behavior (the choice of the training
set ensures that every rule is activated sometime). The optimistic evaluation function φ∗(B) –where
B is a partially specified rulebase– is simply defined as the number of steps the agent would perform

12

until falling in a state for which no rule is specified, plus the Manhattan distance from the current
location to the target point. A rulebase is encoded as a linear string, each position containing a symbol
representing the specific action to be undertaken upon reception of the corresponding sensorial input.

The results for nine different environments are shown in Table 1. As it can be seen, DOR is much
more satisfactory than SPX, DPX or UX in solving the training set: while standard operators only
provide an acceptable performance on the smallest instances and with the lowest obstacle-density,
DOR consistently yields satisfactory results: above 70% of the runs provide a fully successful solution
for the training set (the percentage is 100% for 5 out of 9 test worlds). The exception is world W50c,
a very hard instance for which none of the operators could find a full solution (it must be noted
that such a solution may be non-existent). Nevertheless, DOR was capable of solving 3 out of the
5 training cases while SPX could only solve one and neither DPX nor UX could solve any of them.
Furthermore, DOR also provides higher-quality results, close to the optimal/best-known solutions
[31]. The results obtained on the test set are consistent with the above considerations. Notice the
poor results of standard operators: the solutions provided by UX, DPX and SPX do not reach 50%
success in 6 out of 9 worlds. DOR provides the overall best results, outperforming standard operators
on all worlds. It must also be noted that pure B&B provides worse results than DOR in small problem
instances, and runs out of memory in larger problem instances.

Table 1 here.

The next epistatic problem considered was the brachystochrone design problem (§A.3). In this
problem, variables are encoded with 16 bits, pm is set to 1/16 and maxevals = 5 ·105. The optimistic
evaluation function is φ∗(〈h0, h1, · · · , hi〉) = ti + d∗/v∗, where ti is the time needed to travel from
the starting point to the ith pillar, d∗ is the straight distance from the last specified location to the
destination point, and v∗ is the maximum of vi (velocity at the ith pillar) and vn+1 (velocity at the
end of the track).

The results are shown in Table 2. As it can be seen, low values of g are better when the dimension-
ality of the problem is small, becoming the quality of the results slightly worse when the granularity
is increased. For large dimensionalities of the function (i.e., above 32), low values of g are either pro-
hibitive or provide worse results. This is due to the fact that a higher number of construction units
are manipulated and hence the algorithm consumes very quickly the allocated number of epistatic
calculations.

Table 2 here.

To confirm these results, this same problem was tackled using a constant ratio n/g ≈ 10, and a
different base-algorithm, an evolution strategy. To be precise, a (2,20)-ES with independent stepsizes
for each variable was used. These stepsizes underwent self-adaptation using a global learning rate
τ ′ = (2n)−1/2 and a local learning rate τ = (4n)−1/4 [32]. The results are shown in Table 3. Besides
obtaining globally better results than with the genetic algorithm, DOR keeps outperforming the
remaining operators, thus backing up the previous results.

Table 3 here.

Finally, experiments were done using the k−Epistatic Minimal Permutation (k−EMP) problem

13

(§A.4), considering instances of different dimensionalities and degrees of epistasis. The first results
correspond to 1−EMP instances. As for the previous test problems, other recombination operators
for permutations such as PMX [33], three variants of OX [34, 35, 14], RCX, UCX, BX and UBX (see
[18]) have been also used. The results are shown in Table 4. Notice the poor results of the different
variants of order crossover. This is due to the fact that this problem is defined on the basis of position
formae rather than precedence formae. For that reason, UCX (Uniform Cycle Crossover) provides
the best results. It is interesting to notice that this operator is based on a blind interchange of the
compatibility sets defined in Eqs.(5) and (6), i.e., UCX is RTRcycle.

Table 4 here.

Table 5 shows the results of the DOR operator. In this problem, the optimistic evaluation function
φ∗ applied on a partially specified permutation simply computes the epistatic contribution of specified
positions, using a lower bound for the epistatic coefficients of unspecified solutions. The granularity
is tuned by defining a maximum allowed number of construction units f (recall that the size of each
construction unit is not under direct control of the user). Whenever the number of construction units
is greater than f , two of them are picked at random and joined. This process is repeated until at
most f construction units are available. Compacting cycles into blocks as indicated in Eqs.(13) and
(14) has also been tried.

Table 5 here.

As it can be seen, the results for very coarse granularities (i.e., low values of f) are worse than
for fine granularities. DORblock is included in the former category since blocks are larger units than
cycles. In fact, the performance of DORblock is intermediate between f = 2 and f = 3. Notice that
the performance is stabilized around f = 6, with a slight tendency to decrease for higher values.
In any case, the quality of the results is always much better than UCX (with the exception of the
extreme situation f = 2).

To confirm these results, further experiments with the DOR operator have been realized with
higher degrees of epistasis (k = 2, k = 5, and k = 10). The results are shown in Table 6. In these
experiments, the behavior of the algorithm is clearer. First, notice that the quality of the results is
improved when f is increased up from f = 2. The best results are achieved in the intermediate values
f = 5 and f = 6, existing a soft degradation of performance for higher values of f . The reason for this
behavior has already been mentioned: low values of f reduce the chances for transferring information
from parents to descendants, while high values of f quickly consume the allocated number of epistatic
calculations.

Table 6 here.

6 Conclusions

This work has presented a framework for hybridizing evolutionary algorithms with the branch-and-
bound algorithm. Within this framework, the available knowledge about the fitness function is ex-
ploited by intelligently combining valuable parts of solutions independently discovered. As men-
tioned in Section 1, this particular type of hybridization is another tool available in the evolutionary-

14

algorithm designer’s toolbox, and should not be seen as the ultimate tool for solving any problem
(actually, such an assertion would be precluded by the results of [11, 12] among others). This model
is useful when problem dependent knowledge can be expressed in terms of an optimistic evaluation
function φ∗. In fact, the better these optimistic estimations are, the more effective the resulting
hybrid algorithm will be. Obviously, this requires the involvement of the problem-aware user in the
design process, so as to provide sensible knowledge on the innards of the target problem. The extent
of this involvement clearly depends on the particular problem under consideration, and it should not
be seen as a disadvantageous fact. Actually, Lawrence Davis already argued for this involvement in
the “Handbook of Genetic Algorithms” [14], back in 1991. The final user is precisely the one who
can provide the most valuable information in terms of wise representations of solutions, or existing
ad hoc algorithms. This cooperation between the problem-aware user and the evolutionary-algorithm
expert is certainly a recipe for success.

To study the functioning of this heuristic recombination model (DOR), we have focused on the
construction units used for creating new solutions. To be precise, the size of these construction
units (i.e., the so-called granularity of the representation) has been considered as a central factor for
determining the computational cost of the operator and the quality of the results it provides. It has
been shown that there exists a basic (ground-level) granularity for each representation. This basic
granularity is minimal in the case of orthogonal representations, in which basic formae can be freely
combined. However, the basic granularity is variable when dealing with non-orthogonal separable
representations. In this situation, it depends upon the size of the basic transference units (i.e., the
compatibility sets), and it is not under direct control of the user.

This relationship between the granularity (and hence the size of the dynastic potential of the
solutions to be recombined) and the computational cost of the DOR operator has been empirically
corroborated. Thus, it has been proposed to increase the granularity factor (i.e., use larger construc-
tion units) to reduce this cost. In fact, this parameter can be adjusted according to the available
computational resources to allow a finer exploration.

An extensive experimental investigation has been done in order to assess the performance of
DOR, and its usefulness as a hybridization mechanism. It must be stressed that the focus of this
experimental investigation has been to compare DOR with other operators on a ceteris paribus basis.
The results have been very satisfactory, since other classical operators have been outperformed on a
benchmark comprising several multimodal epistatic problems. Tuning the granularity of the represen-
tation appears as an acceptable mechanism to control the computational cost of the algorithm. It has
been shown that the performance is significantly degraded only for significantly larger construction
units. Moreover, intermediate granularities provide better results than very fine granularities since
the former consume less computational resources (and hence the algorithm can be executed for a
larger number of iterations).

A very interesting extension of this work would be the use of mechanisms for adapting or self-
adapting the granularity used by DOR during the run. Intuitively, it is possible to use a very coarse
granularity in the early stages of evolution, using a progressively finer granularity later. Nevertheless,

15

a more careful study of this possibility is required.
Additionally, the use of a truncated B&B search is also a valid option to further improve the

performance of the algorithm. This is based on the fact that for some problems, B&B uses more
resources for establishing the optimality of the final solution than for finding it. Work is in progress
in this area.

A Description of the Test Problems

A.1 Generalized Schwefel Function

The generalized Schwefel function is a non-linear minimization problem whose n-dimensional form is
defined as F (~x) = n · V − ∑n

i=1 xi · sin(
√
|xi|) for x ∈ [−512, 511], where V = max{x · sin(

√
|x|) :

x ∈ [−512, 511]}. The value for V depends upon the floating-point accuracy of the underlying
system, being about 418.98288. This function is continuous and highly multimodal for gradient-
based techniques. The global minimum is 0, being its location dependent of the underlying system.

A.2 Rulebase Learning in Mobile Agents

In this problem, a mobile agent located in a two-dimensional toroidal grid-world is considered. The
purpose of the agent is to reach a certain target point from its initial location within an allowed time.
To do so, the agent is capable of making some elementary actions such as moving straight ahead a
single grid square, turning 90o to its left, or turning 90o to its right. While navigating, the agent must
avoid some obstacles distributed all over the world. For this purpose, it is equipped with proximity
sensors that can inform of the presence or absence of obstacles in front of the agent, 90o to its left, or
90o to its right. In addition, these sensors can also detect whether the target point is in any of these
three locations or not.

The agent is equipped with a direction sensor as well. This sensor allows determining in which
of four imaginary regions of the world the target point is located. These regions are determined by
computing the angle between the target point and the current agent orientation, and calculating in
which quadrant it falls. The toroidal shape of the world is taken into account in these calculations.

To control the agent, a reactive rulebase must be found. This rulebase defines a stimulus-to-
response mapping, i.e., the agent receives some sensorial input about its local environment and,
exclusively on the basis of such information, decides which primitive action must be undertaken.

A set of nine different worlds has been considered for this problem. These worlds are named
as Wxy, where x ∈ {10, 25, 50} indicates the dimension of the world (each world is a x × x grid),
and y ∈ {a, b, c} indicates the density of obstacles (5%, 10% and 20% respectively). For each world,
a training set of five cases has been selected. The fitness function is the sum of the number of
steps required to reach the destination in each training case (or the number of steps taken plus the
Manhattan distance to the target plus a penalty term –the maximum number of steps– if the agent
could not solve the corresponding training case). Depending upon the size of the world, the agent is

16

allowed a maximum number of 25, 150, and 400 time steps respectively. A test set of 50, 400 and
2000 cases respectively is used to evaluate the generalizability of the agent behavior.

A.3 Design of a Brachystochrone

The design of a brachystochrone is a classical problem of the calculus of variations. This problem
involves determining the shape of a frictionless track along which a cart slides down by means of its
own gravity, so as to minimize the time required to reach a destination point from a motionless state
at a given starting point. To approach this problem by means of evolutionary algorithms, the track is
divided into a number of equally spaced pillars. Subsequently, the algorithm determines the heights
of each of these pillars.

As stated above, the objective is to minimize the time required by the cart to traverse the track.
This time can be calculated as the sum of the times required for moving between any two consecutive
pillars, i.e., t =

∑n+1
i=1 ti =

∑n+1
i=1 t(hi−1, hi, λ, vi−1), where n is the number of pillars, hi is the height

of the ith pillar (h0 and hn+1 are data of the problem), λ is the distance between consecutive pillars
(a problem parameter as well), and vi = v(vi−1, hi−1, hi) is the velocity at the ith pillar (v0 = 0).

As it can be seen, this is also an epistatic problem: the contribution of each variable (i.e., pillar
height) depends on the value of previous variables; The experiments with this function have been
carried out using h0 = 2, hn+1 = 0, (n + 1) · λ = 4, and (2hn+1 − h0) ≤ hi ≤ h0.

A.4 k−Epistatic Minimal Permutation

The k-Epistatic Minimal Permutation (k−EMP) problem is a generalization of the Minimal Per-
mutation (MP) problem [19]. The latter is a minimization problem defined by a n × n matrix
M = {mij | 1 ≤ i, j ≤ n} such that each row of M is a permutation of the elements {0, · · · , n − 1}
and no column has more than one zero. Subsequently, a permutation p = p1p2 · · · pn is evaluated as
MP(p) =

∑
1≤i≤n mi,pi . The constraints posed on M ensure that there is a unique permutation (the

minimal permutation) whose fitness value is 0.
The k−EMP problem adds epistatic relations to the expression above, being defined as

k − EMP(p) =
∑

1≤i≤n


mi,pi ·

i−1∏

j=min(1,i−k)

α(pi, pj)


 . (15)

In the instances considered in this work, the coefficients α(pi, pj) are drawn from a uniform distribution
in [1, 2].

References

[1] T. Bäck, D. Fogel, Z. Michalewicz, Handbook of Evolutionary Computation, Oxford University
Press, New York NY, 1997.

17

[2] L. Fogel, A. Owens, M. Walsh, Artificial Intelligence Through Simulated Evolution, Wiley, New
York NY, 1966.

[3] J. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann
Harbor, 1975.

[4] H.-P. Schwefel, Evolution strategies: A family of non-linear optimization techniques based on
imitating some principles of natural evolution, Annals of Operations Research 1 (1984) 165–167.

[5] A. Eiben, P.-E. Raue, Z. Ruttkay, Genetic algorithms with multi-parent recombination, in:
Y. Davidor, H.-P. Schwefel, R. Männer (Eds.), Parallel Problem Solving From Nature III, Vol.
866 of Lecture Notes in Computer Science, Springer-Verlag, Berlin Heidelberg, 1994, pp. 78–87.

[6] D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-
Wesley, Reading, MA, 1989.

[7] N. Radcliffe, Equivalence class analysis of genetic algorithms, Complex Systems 5 (1991) 183–205.

[8] N. Radcliffe, The algebra of genetic algorithms, Annals of Mathematics and Artificial Intelligence
10 (1994) 339–384.

[9] R. Tanese, Distributed genetic algorithms, in: J. Schaffer (Ed.), Proceedings of the 3rd In-
ternational Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA, 1989, pp.
434–439.

[10] P. Spiessens, B. Manderick, A massively parallel genetic algorithm, in: R. Belew, L. Booker
(Eds.), Proceedings of the 4th International Conference on Genetic Algorithms, Morgan Kauff-
man, San Mateo CA, 1991, pp. 279–286.

[11] W. Hart, R. Belew, Optimizing an arbitrary function is hard for the genetic algorithm, in:
R. Belew, L. Booker (Eds.), Proceedings of the 4th International Conference on Genetic Algo-
rithms, Morgan Kaufmann, San Mateo CA, 1991, pp. 190–195.

[12] D. Wolpert, W. Macready, No free lunch theorems for optimization, IEEE Transactions on
Evolutionary Computation 1(1) (1997) 67–82.

[13] J. Culberson, On the futility of blind search: An algorithmic view of “no free lunch”, Evolutionary
Computation 6 (2) (1998) 109–128.

[14] L. Davis, Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York NY, 1991.

[15] C. Cotta, A study of hybridisation techniques and their application to the design of evolutionary
algorithms, AI Communications 11 (3-4) (1998) 223–224.

[16] P. Moscato, Memetic algorithms: A short introduction, in: D. Corne, M. Dorigo, F. Glover
(Eds.), New Ideas in Optimization, McGraw-Hill, 1999, pp. 219–234.

18

[17] N. Radcliffe, P. Surry, Fitness variance of formae and performance prediction, in: L. Whitley,
M. Vose (Eds.), Foundations of Genetic Algorithms III, Morgan Kauffman, San Mateo CA, 1994,
pp. 51–72.

[18] C. Cotta, J. Troya, Genetic forma recombination in permutation flowshop problems, Evolutionary
Computation 6 (1) (1998) 25–44.

[19] C. Cotta, E. Alba, J. Troya, Utilising dynastically optimal forma recombination in hybrid genetic
algorithms, in: A. Eiben, T. Bäck, M. Schoenauer, H.-P. Schwefel (Eds.), Parallel Problem
Solving From Nature V, Vol. 1498 of Lecture Notes in Computer Science, Springer-Verlag, Berlin,
1998, pp. 305–314.

[20] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, Springer-Verlag,
Berlin, 1992.

[21] T. Starkweather, S. McDaniel, K. Mathias, D. Whitley, C. Whitley, A comparison of genetic
sequencing operators, in: R. Belew, L. Booker (Eds.), Proceedings of the 4th International Con-
ference on Genetic Algorithms, Morgan Kauffman, San Mateo CA, 1991, pp. 69–76.

[22] I. Oliver, D. Smith, J. Holland, A study of permutation crossover operators on the traveling
salesman problem, in: J. Grefenstette (Ed.), Proceedings of the 2nd International Conference on
Genetic Algorithms, Lawrence Erlbaum Associates, Hillsdale NJ, 1987, pp. 224–230.

[23] C. Cotta, J. Troya, On the influence of the representation granularity in heuristic forma recom-
bination, in: J. Carroll, E. Damiani, H. Haddad, D. Oppenheim (Eds.), ACM Symposium on
Applied Computing 2000, ACM Press, 2000, pp. 433–439.

[24] M. Garey, D. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, Freeman and Co., San Francisco CA, 1979.

[25] C. Cotta, J. Aldana, A. Nebro, J. Troya, Hybridizing genetic algorithms with branch and bound
techniques for the resolution of the TSP, in: D. Pearson, N. Steele, R. Albrecht (Eds.), Artificial
Neural Nets and Genetic Algorithms 2, Springer-Verlag, Wien New York, 1995, pp. 277–280.

[26] G. Syswerda, Uniform crossover in genetic algorithms, in: J. Schaffer (Ed.), Proceedings of the
3rd International Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA, 1989,
pp. 2–9.

[27] C. Cotta, J. Troya, Tackling epistatic problems using dynastically optimal recombination, in:
B. Reusch (Ed.), Computational Intelligence. Theory and Applications, Vol. 1625 of Lecture
Notes in Computer Science, Springer-Verlag, Berlin Heidelberg, 1999, pp. 197–205.

[28] E. Lawler, D. Wood, Branch and bounds methods: A survey, Operations Research 4 (4) (1966)
669–719.

19

[29] T. Bäck, Selective pressure in evolutionary algorithms: A characterization of selection mecha-
nisms, in: Proceedings of the 1st IEEE Conference on Evolutionary Computation, IEEE Press,
Piscataway NJ, 1994, pp. 57–62.

[30] N. Radcliffe, Forma analysis and random respectful recombination, in: R. Belew, L. Booker
(Eds.), Proceedings of the 4th International Conference on Genetic Algorithms, Morgan Kauf-
mann, San Mateo, CA, 1991, pp. 222–229.

[31] C. Cotta, J. Troya, Using a hybrid evolutionary-A* approach for learning reactive behaviors, in:
S. Cagnoni, et al. (Eds.), Real-World Applications of Evolutionary Computation, Vol. 1803 of
Lecture Notes in Computer Science, Springer-Verlag, Edinburgh, 2000, pp. 347–356.

[32] T. Bäck, Evolutionary Algorithms in Theory and Practice, Oxford University Press, New York
NY, 1996.

[33] D. Goldberg, R. J. Lingle, Alleles, loci, and the travelling salesman problem, in: J. Grefenstette
(Ed.), Proceedings of an International Conference on Genetic Algorithms, Lawrence Erlbaum
Associates, Hillsdale NJ, 1985.

[34] L. Davis, Applying adaptive algorithms to epistatic domains, in: Proceedings of the 9th Interna-
tional Joint Conference on Artificial Intelligence, Morgan Kaufmann, Los Angeles CA, 1985, pp.
162–164.

[35] G. Syswerda, Schedule optimization using genetic algorithms, in: L. Davis (Ed.), Handbook of
Genetic Algorithms, Van Nostrand Reinhold, New York NY, 1991, pp. 335–349.

[36] P. Moscato, C. Cotta, A gentle introduction to memetic algorithms, in: F. Glover, G. Kochen-
berger (Eds.), Handbook of Metaheuristics, Kluwer Academic Publishers, Boston MA, 2003, pp.
105–144.

20

Acknowledgements

This work is partially supported by the Spanish Comisión Interministerial de Ciencia y Tecnoloǵıa
(CICYT) under grant TIC99-0754-C03-03.

Notes

1For simplicity, we use the same symbol to denote a equivalence class and for labeling it.

2This definition is formulated in a slightly different way than in [8] since we have defined recom-
bination operators as probability distributions instead of as transformation functions.

3As it can be seen, the term memetic is used here in the classical sense of combining an evolutionary
algorithm with a local-search technique; nevertheless, it must be noted that the term has a broader
meaning, and can be safely used nowadays as a synonym of ‘hybrid’ [36]

4Times have been measured on a SUN Ultra1 workstation under Solaris 2.6.1.

21

Figure 1: General view of the incremental construction of a solution. At each step, the partial solution
(initially empty) is augmented with information taken from the parent. Thus, decisions are taken,
regarding the subset of the properties of the resulting solution to augment, and the parent from which
the information is taken. This results in an implicitly defined decision tree as shown.

Figure 2: (Left) Times required for performing 100 recombinations of random individuals in the
brachystochrone design problem. The results are shown for different granularities. (Right) Lowest
dimensionalities for which the time required for performing 100 recombinations of random individuals
is greater than 30 seconds.

22

Figure 3: Scalability of different recombination operators for the Schwefel function (results averaged
for 20 runs). Notice the use of logarithmic scales. The results for DPX (not shown to make the figure
more readable) are virtually identical to those for SPX.

Table 1: Results of different genetic operators for the reactive-rulebase learning problem on nine
different environments. The ‘%R’ column represents the percentage of runs (out of 40) in which a
fully satisfactory solution was found for the training set. The ‘%T’ column represents the percentage
of the test set solved by the best solution found.

SPX DPX UX DOR
World mean %R %T mean %R %T mean %R %T mean %R %T

W10a 17.36 95% 74% 15.09 95% 76% 15.88 97% 65% 13.85 100% 81%
W10b 22.15 92% 78% 19.16 95% 78% 18.10 92% 80% 14.35 100% 90%
W10c 51.49 40% 46% 51.99 38% 48% 53.85 40% 42% 18.75 85% 76%

W25a 176.70 65% 58% 101.12 85% 68% 121.63 82% 66% 33.17 100% 83%
W25b 376.08 32% 31% 448.67 23% 24% 380.96 27% 27% 36.65 100% 74%
W25c 520.32 5% 13% 480.71 13% 18% 502.23 10% 16% 99.92 72% 55%

W50a 442.39 30% 34% 321.01 50% 44% 423.87 32% 35% 61.17 100% 69%
W50b 1532.52 5% 5% 1466.64 5% 10% 457.65 0% 2% 337.32 67% 49%
W50c 2021.45 0% 0% 2031.20 0% 0% 2031.20 0% 0% 1638.78 0% 3%

23

Table 2: Mean best fitness for the Brachystochrone design problem (averaged for 20 runs). N/A
entries correspond to prohibitive granularity/dimensionality combinations.

Number of Pillars
Operator 8 12 16 24 32 40 48 56 64

SPX 1.1577 1.1788 1.2156 1.2713 1.3908 1.6262 1.7787 2.1049 2.5971
DPX 1.1582 1.1792 1.2100 1.3036 1.4199 1.5810 1.7871 2.1036 2.5370
UX 1.1757 1.2300 1.2862 1.3499 1.5305 1.6771 1.9379 2.2172 2.6658
AX 1.1560 1.1668 1.1828 1.2219 1.2722 1.3534 1.4841 1.6327 1.8845
R3 1.1540 1.1627 1.1783 1.2149 1.2803 1.3683 1.5295 1.7357 1.9061
DORg=1 1.1530 1.1549 1.1779 N/A N/A N/A N/A N/A N/A
DORg=2 1.1544 1.1628 1.1726 1.2110 N/A N/A N/A N/A N/A
DORg=3 1.1548 1.1798 1.1815 1.2458 1.2660 1.3827 N/A N/A N/A
DORg=4 1.1574 1.1901 1.1944 1.2485 1.2971 1.3413 1.4759 2.1635 N/A
DORg=5 1.1601 1.1919 1.2111 1.2494 1.2977 1.3468 1.3886 1.5386 2.1009
DORg=6 1.1649 1.2010 1.2053 1.2598 1.3001 1.3483 1.3695 1.4720 1.6750
DORg=7 1.1729 1.1998 1.2112 1.2635 1.2981 1.3646 1.4073 1.4821 1.5894

Table 3: Mean best fitness for the Brachystochrone design problem using an evolution strategy
(averaged for 20 runs) .

Number of Pillars
Operator 8 12 16 24 32 40 48 56 64

mutation only 1.1515 1.1484 1.1471 1.1545 1.1823 1.2257 1.3064 1.4257 1.5526
AX 1.1514 1.1478 1.1463 1.1459 1.1595 1.1868 1.2018 1.2326 1.2787
R3 1.1516 1.1481 1.1466 1.1476 1.1645 1.1907 1.2216 1.2742 1.3034
DOR 1.1511 1.1475 1.1457 1.1448 1.1454 1.1529 1.1744 1.1999 1.2282

Table 4: Results of classical operators on 1−EMP problems (averaged for 20 runs).

Number Operator
of elements OX#1 OX#2 OX#3 PMX RCX UCX BX UBX

100 2534 2809 2375 795 911 647 963 945
125 4412 4667 4046 1373 1598 1066 1715 1662
150 6803 7571 6502 2114 2537 1660 2637 2665
200 13607 14809 12845 4317 5244 3468 5364 5423

24

Table 5: Results of the DOR operator on 1-EMP problems (averaged for 20 runs).

Number Number of construction units allowed (f)
of elements blocks 2 3 4 5 6 7 8 9 10

100 572 773 346 319 316 315 302 312 297 319
125 1012 1318 533 482 478 454 481 494 466 463
150 1595 2151 773 691 668 670 657 675 648 679
200 3245 4293 1370 1193 1135 1116 1140 1142 1126 1175

Table 6: Results of the DOR operator on k−EMP problems (averaged for 20 runs).

k = 2 k = 5 k = 10
f 100 125 150 200 100 125 150 200 100 125 150 200

2 1114 1959 3099 6358 3193 5693 9007 18747 14847 27396 44099 94567
3 481 750 1075 2106 1295 2081 3261 6184 6397 10114 16183 33022
4 407 634 912 1614 994 1655 2452 4706 4878 8046 12622 23733
5 410 616 939 1537 1065 1625 2278 4195 4292 7721 11771 22875
6 406 633 898 1534 1023 1591 2415 4112 4754 8140 11717 21986
7 427 633 915 1566 1239 1710 2387 4395 4887 8381 12053 22266
8 444 653 961 1577 1074 1729 2557 4736 4667 8469 12339 23024
9 432 644 930 1622 1081 1747 2483 4819 4932 8632 13565 23958
10 416 634 955 1644 1181 1866 2661 4858 5252 9073 14210 25823

25

