
A Mixed Evolutionary-Statistical Analysis

of an Algorithm’s Complexity

Carlos Cotta1∗, Pablo Moscato2

1 Dept. Computer Science, ETSI Informática (3.2.49), Universidad de Málaga,

Campus de Teatinos, 29071-Málaga, Spain

2 Dept. de Engenharia de Computação e Automação Industrial, Universidade Estadual de Campinas,

C.P. 6101, Campinas, SP, CEP 13083-970, Brazil

1ccottap@lcc.uma.es 2moscato@densis.fee.unicamp.br

Abstract: A combination of evolutionary algorithms and statistical techniques is used to analyze

the worst-case computational complexity of two sorting algorithms. It is shown that excellent bounds for

these algorithms can be obtained using this approach; this fact raises interesting prospects for applying

the approach to other problems and algorithms. Several guidelines for extending this work are included.

Keywords: Algorithms, Statistical Analysis, Computational Complexity, Evolutionary Computing

1 Introduction

The central question we would like to address can be stated as: “Is it possible to systematically develop

computer-assisted, adversary-based approaches aimed to help with the analysis of algorithms and their

concrete implementations in actual code?” All practitioners and researchers know that the worst-case

asymptotic analysis of algorithms is one of the most successful paradigms in computing. However,

the process of finding the worst-case instance for the particular algorithm under scrutiny is a rather

complex process that highly depends on inspiration. Needless to say, it is a hard task that also involves

mathematical skills and good working knowledge of the many theoretical tools that have been developed

during the past century.

We will illustrate the use of evolutionary algorithms [1] to assist the task of finding worst-case

instances. Evolutionary algorithms are heuristic search techniques based on the principles of natural

evolution, namely adaptation and survival of the fittest. Starting from a pool of random solutions for

the problem at hand, an iterative process is performed comprising selection (propagation of the best

solutions in the pool according to an ad-hoc user-designed “fitness” function), reproduction (generation

of new trial solutions by combining and modifying propagated solutions) and replacement (substitution

∗Carlos Cotta is the author to whom correspondence should be addressed.

1



of the worst solutions in the pool by the newly created ones). When a termination criterion is met

(usually reaching a fixed number of solution evaluations), the best solution found is returned.

We propose the use of this type of heuristic search processes to find hard instances for particular

algorithms. By varying the size of the instances sought, we can obtain a data set comprising pairs

(sizei, complexityi). Subsequently, we can apply statistical tools in order to find a functional expres-

sion complexityi = f(sizei). This latter part of our approach is thus related to Chakraborty and

Choudhury’s work [2]. Actually, this work extends this cited approach by (a) tackling the worst-case

analysis, rather than the analysis of random instances, and (b) considering the case in which the shape

of the functional expression f is not completely known.

As in [2], we selected sorting as the algorithmic benchmark. The motivation is twofold: firstly, it

is a problem studied in depth from both a theoretical and experimental point of view; secondly, the

analysis of the most conspicuous algorithms for its solution still deliver us a non-trivial test suite. In

essence, in this article we are responding in a systematic way to challenges such as that proposed by

Sedgewick in [6] (page 110) that regarding an O(n3/2) algorithm for ShellSort said:

“The proof of this property is beyond the scope of this book, but the reader may not only

appreciate its difficulty but also be convinced that shellsort will run well in practice by at-

tempting to construct a file for which shellsort runs slowly.”

The comparison of the elaborate mathematical analysis required to obtain complexity bounds for

this algorithm with the relative simplicity of the presented approach will shed some light on the potential

usefulness of this method.

2 Statistical Analysis on Experimental Results

The sorting algorithms considered in this work are BubbleSort , and ShellSort . A problem instance for

a sorting algorithm is a sequence of elements to be sorted according to a key-value. Without loss of

generality, this sequence is chosen as a permutation of the set of natural numbers {1, 2, · · · , n}, where n

is the size of the instance. Thus, the task of the evolutionary algorithm will be to find hard permutations

for the particular sorting algorithm being analyzed.

We have considered a standard steady-state genetic algorithm (GA) (PoolSize = 100, pc = 0.9,

pm = 1/n, maxevals = 100n2) using ranking selection (η = 2.0), the uniform cycle crossover operator

(UCX) [4] for recombination, and the swap operator [5] for mutation. We purposefully decided to use

2



a very simple evolutionary scheme to test the feasibility of the original idea. We refer to [3] for the

implementation details of a GA. Our fitness function (i.e. the objective function to be maximized) is

the number of elemental operations (element exchanges in this case) the sorting algorithm makes for

finding the ordered sequence given an initial permutation.

The BubbleSort algorithm is based on making O(n) passes through the list, performing pairwise

comparisons (and exchanges if appropriate) between elements in consecutive positions. This is a very

simple, standard and well-known algorithm, so we refer to [2] or any standard textbook for the actual

code of the algorithm. It can be easily argued that this algorithm has a quadratic worst-case behavior.

Furthermore, the exact worst-case complexity is known to require n(n− 1)/2 exchanges.

The GA has been applied to this algorithm for instance sizes ranging from 10 up to 100 elements.

A total number of 20 runs have been done on each size, and the hardest instance of these 20 runs has

been kept. Subsequently, a least-squares fit to a 2nd-degree polynomial is sought. Fig. 1 (left) shows the

results: there exists an exact match between the experimental data provided by the worst-case instances

generated by the GA (for different values of n, the X-axis) and the parabola y = an2 + bn for a = 0.5

and b = −0.5. Trying higher-order polynomials yields the same result (actually, the residuals are zero

since empirical data are located right on the mentioned curve). In essence, the EA has matched the

exact asymptotic worst-case behavior for BubbleSort, consistently finding the precise hardest-instance

(the permutation ⟨n, n− 1, n− 2, · · · , 3, 2, 1⟩).

Fig. 1 here

ShellSort [7] was one of the earliest sorting methods to be discovered. Based on insertion sort, this

algorithm proceeds left to right through the list in a sequence of interleaved passes. These passes are

done on the basis of a certain increment sequence. The C code for ShellSort is the following:

void ShellSort (int list[], int length) {
int incs[14] = { 2391484, 797161, 265720, 88573,

29524, 9841, 3280, 1093, 364,

121, 40, 13, 4, 1 };
for (int k = 0; k < 14; k++)

for (int h = incs[k], i=h; i<length; i++) {
int v=list[i];

int j=i;

while ((j>=h) && (list[j-h]>v)) {
list[j] = list[j-h];

j -= h;

}
list[j] = v;

}
}

3



Despite its apparent simplicity, this algorithm has deserved an enormous amount of theoretical and

empirical studies. In this sense, one of the key points is the study of different increment sequences

and the determination of the corresponding complexity bounds. The sequence we have considered here

(h0 = 1, hi+1 = 3hi+1) was proposed by D. Knuth, and it is frequently used since it is easy to compute,

uses relatively few (about log3 n) increments, and does well in empirical studies.

The results of the GA applied to ShellSort for sizes ranging from 10 up to 100 are shown in Fig. 1

(right). As it can be seen, the experimental data can be fit both to a parabola y = an2+bn (a = 0.0902,

b = 8.5189) and to a power function y = anb (a = 2.0812, b = 1.4670). Higher-order polynomials

have been tested as well, yielding unrealistic results: the highest-order coefficient is negative for 3rd-

degree, 4th-degree, and 5th-degree polynomials. Clearly, these results are due to overfitting, and cannot

represent the known monotonic growth in the computational cost for increasing list sizes.

Notice that despite the fit to the power function being a very accurate estimate for the optimal

b = 3/2, the model measures are fairly the same for both the parabola and the power function (the

standard errors are se = 33.4373 and se = 33.7594 respectively, being the coefficients of determination

R2 = 0.99627 and R2 = 0.99620 respectively), so it is difficult to ascertain which function is more

representative of the underlying behavior of the algorithm. Nevertheless, recall that experimental data

should be interpreted as a lower bound of the worst-case complexity; considering this, new curves are

fit subject to the constraint that predicted values be greater or equal than experimental data (i.e.,

not contradicting the empirical data by producing underestimate predictions). The result is shown in

Fig. 2. In this case, the coefficients are a = 0.0972 and b = 8.8484 for the parabola, and a = 2.6604

and b = 1.4182 for the power function. The model measures are clearly better for the power function

(se = 54.2107 and R2 = 0.99020) than for the parabola (se = 65.9746 and R2 = 0.98548).

Fig. 2 here

This analysis can be complemented by studying the growth trend of the empirical data. To do so,

we consider a number of candidate functions, f1(n), · · · , fk(n). We then compute the ratio between

the empirical data and the values provided by each candidate function. Finally, we calculate a linear

interpolation to the obtained data. The rationale behind this is that the better the match between the

empirical data and the candidate function, the closer the slope of the linear interpolation will be to

zero, i.e., the ratio will tend toward a constant value.

Fig. 3 here

Fig. 3 is an interesting way of displaying this information. It shows the results of this analysis for the

4



following candidate solutions: f1(n) = n2, f2(n) = n log n, f3(n) = n3/2, f4(n) = n
√
2, and f5(x) = nϕ

where ϕ = (1 +
√
5)/2 ≈ 1.6180. The obtained data are conclusive, f1 clearly grows faster than the

empirical data. The same holds for f5. On the contrary, f2 has a lower growth rate than experimental

data. The exact function lies between f3 and f4, respectively upper and lower bound of the empirical

data. Again, this represents an excellent agreement with theory (recall the O(n3/2) optimal result).

Notice also that this analysis is consistent with the previous results for BubbleSort (see Fig. 3–right),

indicating an excellent match for f1.

3 Discussion and Future Work

The proposed approach seems promising. For any problem of finite-size, the analysis of algorithms de-

picted above can provide a useful lower-bound on the worst-case complexity. Notice that by no means

we are stating that our work suggests the “end of proofs” era. On the contrary, we strongly believe

that there is nothing that can replace an elegant proof relating a problem with a worst-case scenario.

However, we hope that this mixed evolutionary-statistical analysis can be a positive contribution, par-

ticularly when other approaches constitute a hard task for the practitioner and/or the researcher. In this

sense, this analysis may assist in this task, providing hard-to-solve instances which could be analyzed

and further revised to develop a formal worst-case asymptotic analysis following standard mathematical

methods.

Some guidelines for future work are:

(i) Analyze the CPU-time rather than the number of elemental operations, similarly to [2]. This

approach could be useful were the nature of these elemental operations difficult to disentangle.

(ii) We plan to apply this approach to vis-à-vis algorithmic comparisons as well. The addressed

question would be: “how badly can algorithm A perform with respect to algorithm B?”, i.e.,

seeking instances being hard for A but easy for B. This is very different from identifying worst-

case scenarios for individual algorithms, and much harder to approach analytically.

(iii) We also intend to use this approach to generate large hard instances, a very useful resource for

algorithmic benchmarks. We hypothesize that for some problems it can be possible to identify

relevant traits correlated with the hardness of solving an instance. Were this the case, it could be

possible to scale-up the instances generated using the presented approach.

5



Acknowledgements

The first author is partially supported by CICYT under grant TIC1999-0754-C03. The second author

is supported by CNPq under Proj. 52.1100/01-1.

References

[1] Th. Bäck, D.B. Fogel, and Z. Michalewicz. Handbook of Evolutionary Computation. Oxford Uni-

versity Press, New York NY, 1997.

[2] S. Chakraborty and P.P. Choudhury. A statistical analysis of an algorithm’s complexity. Applied

Mathematics Letters, 13:121–126, 2000.

[3] L.D. Chambers, editor. Practical Handbook of Genetic Algorithms: Vol.1 Applications. CRC Press,

Boca Ratón FL, 1995.

[4] C. Cotta and J.M. Troya. Genetic forma recombination in permutation flowshop problems. Evolu-

tionary Computation, 6(1):25–44, 1998.

[5] B. Manderick, M. de Weger, and P. Spiessens. The genetic algorithm and the structure of the

fitness landscape. In R.K. Belew and L.B. Booker, editors, Proceedings of the Fourth International

Conference on Genetic Algorithms, pages 143–150, San Mateo CA, 1991. Morgan Kaufmann.

[6] R. Sedgewick. Algorithms in C++. Addison-Wesley, 1992.

[7] D.L. Shell. A high-speed sorting procedure. Communications of the ACM, 2:30–32, 1959.

6



10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

list size

el
em

en
ta

l o
pe

ra
tio

ns

y=an2+bn

10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

1600

1800

list size

el
em

en
ta

l o
pe

ra
tio

ns

y=an2+bn

y=anb

Figure 1: Results obtained by the EA applied to BubbleSort (left) and ShellSort (right). The squares represents

the experimental data, the solid line is a fit to an2 + bn, and the dotted line (only in the right figure) is a fit to

anb.

10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

1600

1800

2000

list size

el
em

en
ta

l o
pe

ra
tio

ns

y=an2+bn

y=anb

Figure 2: Fitting experimental data for ShellSort to an2+bn (solid line) and to anb (dotted line). Fitted curves

are constrained to bound experimental data from above.

7



10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

list size

co
st

 r
at

io

f
1
(n) = n2 

f
5
(n) = nφ 

f
3
(n)=n3/2 

f
4
(n)=n√ 2 

f
2
(n) = n ⋅ log n 

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

list size

co
st

 r
at

io

f
1
(n)=n2 

f
5
(n)=nφ 

f
3
(n)=n3/2 

f
4
(n)=n√ 2 

f
2
(n)=n·log n 

Figure 3: Trend analysis of the cost growth for the empirical data obtained by the EA for ShellSort (left) and

BubbleSort (right). A linear interpolation of ratio between experimental data and some tentative cost functions

is shown.

8


