The Haskell 98 Report
top | back | next | contents | function index

B  Syntax

B.1  Notational Conventions

These notational conventions are used for presenting syntax:

[pattern] optional
{pattern} zero or more repetitions
(pattern) grouping
pat1 | pat2 choice
pat<pat'> difference---elements generated by pat
except those generated by pat'
fibonacci terminal syntax in typewriter font

BNF-like syntax is used throughout, with productions having the form:
nonterm -> alt1 | alt2 | ... | altn

There are some families of nonterminals indexed by precedence levels (written as a superscript). Similarly, the nonterminals op, varop, and conop may have a double index: a letter l, r, or n for left-, right- or nonassociativity and a precedence level. A precedence-level variable i ranges from 0 to 9; an associativity variable a varies over {l, r, n}. Thus, for example
aexp -> ( expi+1 qop(a,i) )
actually stands for 30 productions, with 10 substitutions for i and 3 for a.

In both the lexical and the context-free syntax, there are some ambiguities that are to be resolved by making grammatical phrases as long as possible, proceeding from left to right (in shift-reduce parsing, resolving shift/reduce conflicts by shifting). In the lexical syntax, this is the "maximal munch" rule. In the context-free syntax, this means that conditionals, let-expressions, and lambda abstractions extend to the right as far as possible.

B.2  Lexical Syntax

program -> {lexeme | whitespace }
lexeme -> varid | conid | varsym | consym | literal | special | reservedop | reservedid
literal -> integer | float | char | string
special -> ( | ) | , | ; | [ | ] | `| { | }
whitespace -> whitestuff {whitestuff}
whitestuff -> whitechar | comment | ncomment
whitechar -> newline | return | linefeed | vertab | formfeed
| space | tab | uniWhite
newline -> a newline (system dependent)
return -> a carriage return
linefeed -> a line feed
vertab -> a vertical tab
formfeed -> a form feed
space -> a space
tab -> a horizontal tab
uniWhite -> any UNIcode character defined as whitespace
comment -> dashes {any}newline
dashes -> -- {-}
opencom -> {-
closecom -> -}
ncomment -> opencom ANYseq {ncomment ANYseq}closecom
ANYseq -> {ANY}<{ANY}( opencom | closecom ) {ANY}>
ANY -> any | newline | vertab | formfeed
any -> graphic | space | tab
graphic -> small | large | symbol | digit | special | : | " | '
small -> ascSmall | uniSmall | _
ascSmall -> a | b | ... | z
uniSmall -> any Unicode lowercase letter
large -> ascLarge | uniLarge
ascLarge -> A | B | ... | Z
uniLarge -> any uppercase or titlecase Unicode letter
symbol -> ascSymbol | uniSymbol
ascSymbol -> ! | # | $ | % | & | * | + | . | / | < | = | > | ? | @
| \ | ^ | | | - | ~
uniSymbol -> any Unicode symbol or punctuation
digit -> ascDigit | uniDigit
ascDigit -> 0 | 1 | ... | 9
uniDigit -> any Unicode numeric
octit -> 0 | 1 | ... | 7
hexit -> digit | A | ... | F | a | ... | f

varid -> (small {small | large | digit | ' })<reservedid>
conid -> large {small | large | digit | ' }
reservedid -> case | class | data | default | deriving | do | else
| if | import | in | infix | infixl | infixr | instance
| let | module | newtype | of | then | type | where | _
specialid -> as | qualified | hiding
varsym -> ( symbol {symbol | :})<reservedop>
consym -> (: {symbol | :})<reservedop>
reservedop -> .. | : | :: | = | \ | | | <- | -> | @ | ~ | =>
specialop -> - | !
varid (variables)
conid (constructors)
tyvar -> varid (type variables)
tycon -> conid (type constructors)
tycls -> conid (type classes)
modid -> conid (modules)
qvarid -> [ modid . ] varid
qconid -> [ modid . ] conid
qtycon -> [ modid . ] tycon
qtycls -> [ modid . ] tycls
qvarsym -> [ modid . ] varsym
qconsym -> [ modid . ] consym
decimal -> digit{digit}
octal -> octit{octit}
hexadecimal -> hexit{hexit}
integer -> decimal
| 0o octal | 0O octal
| 0x hexadecimal | 0X hexadecimal
float -> decimal . decimal[(e | E)[- | +]decimal]
char -> ' (graphic<' | \> | space | escape<\&>) '
string -> " {graphic<" | \> | space | escape | gap}"
escape -> \ ( charesc | ascii | decimal | o octal | x hexadecimal )
charesc -> a | b | f | n | r | t | v | \ | " | ' | &
ascii -> ^cntrl | NUL | SOH | STX | ETX | EOT | ENQ | ACK
| BEL | BS | HT | LF | VT | FF | CR | SO | SI | DLE
| DC1 | DC2 | DC3 | DC4 | NAK | SYN | ETB | CAN
| EM | SUB | ESC | FS | GS | RS | US | SP | DEL
cntrl -> ascLarge | @ | [ | \ | ] | ^ | _
gap -> \ whitechar {whitechar}\

B.3  Layout

Section 2.7 gives an informal discussion of the layout rule. This section defines it more precisely.

The meaning of a Haskell program may depend on its layout. The effect of layout on its meaning can be completely described by adding braces and semicolons in places determined by the layout. The meaning of this augmented program is now layout insensitive.

The effect of layout is specified in this section by describing how to add braces and semicolons to a laid-out program. The specification takes the form of a function L that performs the translation. The input to L is:

The "indentation" of a lexeme is the column number indicating the start of that lexeme; the indentation of a line is the indentation of its leftmost lexeme. To determine the column number, assume a fixed-width font with this tab convention: tab stops are 8 characters apart, and a tab character causes the insertion of enough spaces to align the current position with the next tab stop. For the purposes of the layout rule, Unicode characters in a source program are considered to be of the same, fixed, width as an ASCII character. The first column is designated column 1, not 0. The application

L tokens [0]

delivers a layout-insensitive translation of tokens, where tokens is the result of lexically analysing a module and adding column-number indicators to it as described above. The definition of L is as follows, where we use ":" as a stream construction operator, and "" for the empty stream.

L (t:ts) (m:ms) = } : (L (t:ts) ms) if parse-error(t) (Note 1)
L (<n>:ts) (m:ms) = ; : (L ts (m:ms)) if m = n
= } : (L (<n>:ts) ms) if n < m
= L ts (m:ms) otherwise
L (}:ts) (0:ms) = } : (L ts ms) (Note 2)
L ({n}:ts) (m:ms) = { : (L ts (n:m:ms)) if n > m, (Note 3)
L ({:ts) ms = { : (L ts (0:ms)) (Note 4)
L (t:ts) ms = t : (L ts ms)
L [0] =
L (m:ms) = } : L ms if m /=0 (Note 5)

Note 1.
The side condition parse-error(t) is to be interpreted as follows: if the tokens generated so far by L together with the next token t represent an invalid prefix of the Haskell grammar, and the tokens generated so far by L followed by the token } represent a valid prefix of the Haskell grammar, then parse-error(t) is true.

Note 2.
By matching against 0 for the current layout context, we ensure that an explicit close brace can only match an explicit open brace.

Note 3.
A nested context must be further indented than the enclosing context (n>m). If not, L fails, and the compiler should indicate a layout error. An example is:

  f x = let
   h y = let
    p z = z
 in p
in h

Here, the definition of p is indented less than the indentation of the enclosing context, which is set in this case by the definition of h.

Note 4.
This means that all brace pairs are treated as explicit layout contexts, including record expressions. This is a difference between this formulation and Haskell 1.4.

Note 5.
At the end of the input, any pending close-braces are inserted. It is an error at this point to be within a non-layout context (i.e. m = 0).

If none of the rules given above matches, then the algorithm fails. It can fail for instance when the end of the input is reached, and a non-layout context is active, since the close brace is missing. Some error conditions are not detected by the algorithm, although they could be: for example let }.

Note 1 implements the feature that layout processing can be stopped prematurely by a parse error. For example

let x = e; y = x in e'

is valid, because it translates to

let { x = e; y = x } in e'

The close brace is inserted due to the parse error rule above. Another place where the rule comes into play is at the top level of a module:

module M where
f x = x

This translates to

module M where {
f x = x
}

The close brace is inserted because otherwise the end of file would cause a parse error.

B.4  Context-Free Syntax

module -> module modid [exports] where body
| body
body -> { impdecls ; topdecls }
| { impdecls }
| { topdecls }
impdecls -> impdecl1 ; ... ; impdecln   (n>=1)

exports -> ( export1 , ... , exportn [ , ] )   (n>=0)
export -> qvar
| qtycon [(..) | ( qcname1 , ... , qcnamen )]   (n>=0)
| qtycls [(..) | ( qvar1 , ... , qvarn )]   (n>=0)
| module modid
qcname -> qvar | qcon

impdecl -> import [qualified] modid [as modid] [impspec]
| (empty declaration)
impspec -> ( import1 , ... , importn [ , ] )   (n>=0)
| hiding ( import1 , ... , importn [ , ] )   (n>=0)
import -> var
| tycon [ (..) | ( cname1 , ... , cnamen )]   (n>=1)
| tycls [(..) | ( var1 , ... , varn )]   (n>=0)
cname -> var | con

topdecls -> topdecl1 ; ... ; topdecln   (n>=0)
topdecl -> type simpletype = type
| data [context =>] simpletype = constrs [deriving]
| newtype [context =>] simpletype = newconstr [deriving]
| class [scontext =>] tycls tyvar [where cdecls]
| instance [scontext =>] qtycls inst [where idecls]
| default (type1 , ... , typen)   (n>=0)
| decl

decls -> { decl1 ; ... ; decln }   (n>=0)
decl -> gendecl
| (funlhs | pat0) rhs
cdecls -> { cdecl1 ; ... ; cdecln }   (n>=0)
cdecl -> gendecl
| (funlhs | var) rhs
idecls -> { idecl1 ; ... ; idecln }   (n>=0)
idecl -> (funlhs | qfunlhs | var | qvar) rhs
| (empty)
gendecl -> vars :: [context =>] type (type signature)
| fixity [digit] ops (fixity declaration)
| (empty declaration)
ops -> op1 , ... , opn   (n>=1)
vars -> var1 , ..., varn   (n>=1)
fixity -> infixl | infixr | infix

type -> btype [-> type] (function type)
btype -> [btype] atype (type application)
atype -> gtycon
| tyvar
| ( type1 , ... , typek ) (tuple type, k>=2)
| [ type ] (list type)
| ( type ) (parenthesized constructor)
gtycon -> qtycon
| () (unit type)
| [] (list constructor)
| (->) (function constructor)
| (,{,}) (tupling constructors)
context -> class
| ( class1 , ... , classn ) (n>=0)
class -> qtycls tyvar
| qtycls ( tyvar atype1 ... atypen ) (n>=1)
scontext -> simpleclass
| ( simpleclass1 , ... , simpleclassn ) (n>=0)
simpleclass -> qtycls tyvar

simpletype -> tycon tyvar1 ... tyvark (k>=0)
constrs -> constr1 | ... | constrn (n>=1)
constr -> con [!] atype1 ... [!] atypek (arity con = k, k>=0)
| (btype | ! atype) conop (btype | ! atype) (infix conop)
| con { fielddecl1 , ... , fielddecln } (n>=0)
newconstr -> con atype
| con { var :: type }
fielddecl -> vars :: (type | ! atype)
deriving -> deriving (dclass | (dclass1, ... , dclassn)) (n>=0)
dclass -> qtycls

inst -> gtycon
| ( gtycon tyvar1 ... tyvark ) (k>=0, tyvars distinct)
| ( tyvar1 , ... , tyvark ) (k>=2, tyvars distinct)
| [ tyvar ]
| ( tyvar1 -> tyvar2 ) tyvar1 and tyvar2 distinct

funlhs -> var apat {apat }
| pati+1 varop(a,i) pati+1
| lpati varop(l,i) pati+1
| pati+1 varop(r,i) rpati
| ( funlhs ) apat {apat }
qfunlhs -> qvar apat {apat }
| pati+1 qvarop(a,i) pati+1
| lpati qvarop(l,i) pati+1
| pati+1 qvarop(r,i) rpati
| ( qfunlhs ) apat {apat }
rhs -> = exp [where decls]
| gdrhs [where decls]
gdrhs -> gd = exp [gdrhs]
gd -> | exp0

exp -> exp0 :: [context =>] type (expression type signature)
| exp0
expi -> expi+1 [qop(n,i) expi+1]
| lexpi
| rexpi
lexpi -> (lexpi | expi+1) qop(l,i) expi+1
lexp6 -> - exp7
rexpi -> expi+1 qop(r,i) (rexpi | expi+1)
exp10 -> \ apat1 ... apatn -> exp (lambda abstraction, n>=1)
| let decls in exp (let expression)
| if exp then exp else exp (conditional)
| case exp of { alts } (case expression)
| do { stmts } (do expression)
| fexp
fexp -> [fexp] aexp (function application)

aexp -> qvar (variable)
| gcon (general constructor)
| literal
| ( exp ) (parenthesized expression)
| ( exp1 , ... , expk ) (tuple, k>=2)
| [ exp1 , ... , expk ] (list, k>=1)
| [ exp1 [, exp2] .. [exp3] ] (arithmetic sequence)
| [ exp | qual1 , ... , qualn ] (list comprehension, n>=0)
| ( expi+1 qop(a,i) ) (left section)
| ( qop(a,i) expi+1 ) (right section)
| qcon { fbind1 , ... , fbindn } (labeled construction, n>=0)
| aexp{qcon} { fbind1 , ... , fbindn } (labeled update, n >= 1)

qual -> pat <- exp (generator)
| let decls (local declaration)
| exp (guard)
| (empty qualifier)
alts -> alt1 ; ... ; altn (n>=0)
alt -> pat -> exp [where decls]
| pat gdpat [where decls]
| (empty alternative)
gdpat -> gd -> exp [ gdpat ]
stmts -> stmt1 ; ... ; stmtn   (n>=0)
stmt -> exp
| pat <- exp
| let decls
| (empty statment)
fbind -> qvar = exp

pat -> var + integer (successor pattern)
| pat0
pati -> pati+1 [qconop(n,i) pati+1]
| lpati
| rpati
lpati -> (lpati | pati+1) qconop(l,i) pati+1
lpat6 -> - (integer | float) (negative literal)
rpati -> pati+1 qconop(r,i) (rpati | pati+1)
pat10-> apat
| gcon apat1 ... apatk (arity gcon = k, k>=1)

apat -> var [@ apat] (as pattern)
| gcon (arity gcon = 0)
| qcon { fpat1 , ... , fpatk } (labeled pattern, k>=0)
| literal
| _ (wildcard)
| ( pat ) (parenthesized pattern)
| ( pat1 , ... , patk ) (tuple pattern, k>=2)
| [ pat1 , ... , patk ] (list pattern, k>=1)
| ~ apat (irrefutable pattern)
fpat -> qvar = pat
gcon -> ()
| []
| (,{,})
| qcon
var -> varid | ( varsym ) (variable)
qvar -> qvarid | ( qvarsym ) (qualified variable)
con -> conid | ( consym ) (constructor)
qcon -> qconid | ( gconsym ) (qualified constructor)
varop -> varsym | `varid ` (variable operator)
qvarop -> qvarsym | `qvarid ` (qualified variable operator)
conop -> consym | `conid ` (constructor operator)
qconop -> gconsym | `qconid ` (qualified constructor operator)
op -> varop | conop (operator)
qop -> qvarop | qconop (qualified operator)
gconsym -> : | qconsym


The Haskell 98 Report
top | back | next | contents | function index
1 February, 1999