E.T.S.I.	Informática.	Ordinario	de S	Setiembr	e 2009
Lengua	ajes de Pro	gramació	ón (tercer	curso

Apellidos:		
NT		

Puntos:

	1	2	3	4	5	total
s:	1.5	1.5	2.5	2.5	2.0	10.0

 $\boxed{\mathbf{1}} \text{ Demuestra la fórmula } [(P \lor (A \Rightarrow B)) \equiv (A \Rightarrow P \lor B)].$

 $[\]fbox{\textbf{2}}$ Escribe un programa S indeterminista satisfaciendo $\{y>0\}S\{y=8\}$ $\{y\le 0\}S\{y=-10\}$. Prueba que efectivamente es indeterminista.

Prueba la corrección del siguiente programa aplicando el teorema de los contadores generalizados:

$$\begin{split} x, y, z, u &:= A, B, C, D; \\ * [\![& x < u \to x, u := u, x \\ & y < u \to y, u := u, y \\ & z < u \to z, u := u, z \,]\!] \, \{ u = \min(A, B, C, D) \} \end{split}$$

Para ello prueba que $t \doteq (u, z, y, x)$ es un contador generalizado para el invariante

$$I \doteq \dots$$

y para el conjunto bien construido $\mathcal{C} \doteq \ldots$

Tengo que probar:

1. –

2.-

 $3.-\dots$

E.T.S.I. Informática.	Ordinario de	Setiembre 2009
Lenguajes de Pro	gramación	(tercer curso)

APELLIDOS:	 	
Nombre:		

4 S	ea el	procedimiento	recursivo
------------	-------	---------------	-----------

$$\begin{split} m = \llbracket & i > 100 \rightarrow nada \\ & i \leq 100 \rightarrow i := i+1; m; m \, \rrbracket \end{split}$$

Traza una llamada al procedimiento m para los valores iniciales de $i=101,100,99,\ldots$ ¿Qué puedes conjeturar sobre el comportamiento de m para estos valores?

Prueba, por inducción sobre $k, \ \forall k : k \leq 101 : [i = k \land m.Z] \equiv i = k \land i :=$. Z] (si algún alumno no deduce la fórmula le será facilitada con medio punto de penalización).

 $\boxed{\mathbf{5}}$ Consideremos la lógica de Hoare estándar para un lenguaje sin bucles; es decir, con las reglas (ref), (:=), (;), (si) indeterminista. Interpreta y prueba la propiedad:

 $\forall S: S \in \mathcal{P}rog: \ (\forall Q :: \vdash_{\mathcal{H}} \{Falso\}S\{Q\})$