F	TSI	Informática.	g	dе	Febrero	dе	2007
_	. 1	iiiioiiiiatica.	9	uc	i enicio	ue	2001

Lenguajes de Programación (tercer curso)

Αр	ELL	IDOS	ς.
7 T T	$_{\rm LLL}$	$1DO_{k}$	<i>)</i> •

Nombre:

1	2	3	4	5	N	□si	$\left.\begin{array}{c} \\ \\ \\ \\ \end{array}\right\} \text{ deseo que se publique mi calificación} \right. \left[$	Todo: 2,3,4,5; 1° parcial: 1, 2° parc.: 2		
						□ no ,		3° parc.: 3, 4° parc.: 5,6		

1 Interpreta la siguiente propiedad (*) y demuéstrala vía la semántica de Dijkstra:

$$\{P\}S\{Q\} \land [Q \equiv Falso] \Rightarrow [P \equiv Falso]$$
 (*)

2 Sea \mathcal{D} un conjunto con una relación de orden total <. Queremos probar que es posible calcular el segundo mayor (\mathcal{SM}) de 4 valores Q_1, Q_2, Q_3, Q_4 del conjunto \mathcal{D} realizando un máximo de 5 intercambios vía el programa:

$$\begin{array}{ll} q_1, q_2, q_3, q_4 := Q_1, Q_2, Q_3, Q_4; \\ * \llbracket & q_1 > q_3 \to q_1, q_3 := q_3, q_1 \\ \Box & q_2 > q_3 \to q_2, q_3 := q_3, q_2 \\ \Box & q_3 > q_4 \to q_3, q_4 := q_4, q_3 \, \rrbracket \, \{q_3 = \mathcal{SM} \} \end{array}$$

A Prueba en primer lugar que la función $t \doteq \delta_{1,3} + \delta_{2,3} + \delta_{1,4} + \delta_{2,4} + \delta_{3,4}$ es un contador entero, siendo $\delta_{i,j} = \begin{cases} 1, & \text{si } q_i > q_j \\ 0, & \text{si } q_i \leq q_j \end{cases}$

3 Interpreta la siguiente propiedad (*) y prueba que es cierta dentro de la lógica de Hoare estándar.

$$\{P\}S\{Q\} \wedge [Q \equiv Falso] \qquad \Rightarrow \qquad [P \equiv Falso] \tag{*}$$

 \overline{SOL} La interpretación es . . .

E.T.S.I. Informática. 9 de Febrero de 2007	APELLIDOS:	
E. I.S.I. Informatica. 9 de Febrero de 2007		
Lenguajes de Programación (tercer curso)	Nombre:	

 \fbox{SOL} Ahora probaremos (*) por inducción sobre . . .

 $\boxed{\mathbf{4}}$ Demuestra que la tupla $t \doteq (q_1, q_2, q_3, q_4)$ es un contador generalizado, y usa el Teorema de los Contadores Generalizados para probar que el bucle termina siempre.

[SOL] El Teorema de los Contadores Generalizados se enuncia en la forma siguiente:

5 Sea el procedimiento recursivo

$$m = \llbracket \quad i > 10 \rightarrow i := i - 1$$
$$i \le 10 \rightarrow i := i + 2; m \rrbracket$$

 $oxed{A}$ Traza una llamada al procedimiento m para los valores iniciales de $i=12,11,10,9,8,7,\ldots$; Qué puedes conjeturar sobre el comportamiento de m para estos valores?

f B Utilizando la semántica de los procedimientos vía puntos fijos, prueba, por inducción sobre k, que para todo predicado Z se satisface:

$$\forall k: k \leq 6: \qquad [i=2k \land m.Z \qquad \equiv \qquad i=2k \land i:=11.Z]$$

y concluye el triplete $\{i = -100\}m\{i = 11\}$

 \mathbb{C} Si cambiamos la sentencia i := i + 2 por la sentencia i := i + 5, ¿qué comportamiento se espera de m?

Completa el triplete $\{i = -97\}m\{i = \dots\}$