E.T.S.I. Informática. Segundo Parcial, 2 de Diciembre de 2010 Lenguajes de Programación (tercer curso)

Apellidos:		
Nombre:		

1	2	3	4	5	6	Total
1.5	1.5	1.5	1.5	2.0	2.0	10.0

Días de asistencia a clase durante este parcial: ___ de 14

 $\boxed{\mathbf{1}}$ Sea el bucle $\mathcal{R} \doteq *[x > 0 \to x := x - 2 \square x > 0 \to x := x - 1]$, donde \mathcal{S} es el cuerpo del bucle. Pretendemos demostrar de dos formas distintas que $[\mathcal{R}.(x=0) \equiv (x=0)]$.

1 En primer lugar, demuestra que [S.(x=0) = Falso].

2 Interpreta y demuestra $[\mathcal{R}.(x=0) \equiv (x=0)]$ utilizando la <u>semántica inductiva</u> de los bucles.

3 Demuestra $[\mathcal{R}.(x=0) \equiv (x=0)]$ utilizando la semántica de los bucles en términos de puntos fijos.

4 Enuncia el Teorema de los Contadores Generalizados.

_					
5	Demuestra	la	corrección	del	programa

$$x,y:=1003,12;*\llbracket\,x>0\to x:=x-1;y:=y^x\;\square\;y>0\to y:=y-1\,\rrbracket\,\{x=0\,\wedge\,y=0\}$$

aplicando el teorema de los contadores generalizados, probando que $I \doteq x, y \geq 0$ es un invariante y $t \doteq (x, y)$ es un contador.

 $[\]boxed{\mathbf{6}}$ ¿Qué hay que añadir a la demostración anterior si cambiamos la sentencia $y := y^x$ por la sentencia $Azar_y$ que incrementa la variable y es un número natural con indeterminismo no acotado?