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Intent

• Usually, originates with requirements,
refined through design and implementation

• formalized by specifications
• Often expressed as formulas in mathematical logic

• different types of intent
• E.g.,performance, functional behavior
• each captured with different types of formalisms
• specification of behavior/functionality

• what functions does the software compute?
• Often expressed using predicate logic

Compare behavior to intent

• can be done informally- by human eye
• Cleanroom
• Inspections

• can be done selectively
• Checking assertions during execution

• can be done formally
• With theorem proving

• Usually with automated support
• Called Proof of Correctness or Formal Verification

•  Proof of “correctness” is dangerously misleading

• With static analysis for restricted classes of properties



Theorem Proving based Verification

• Behavior inferred from semantically rich
program model

• generally requires most of the semantics of the
programming language

• employs symbolic execution

• Intent captured by predicate calculus
specifications (or another mathematically
formal notation)

Theorem-Proving based Verification Strategy

Model of system 
behavior

intent

Theorem prover

System

results

inferred using
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execution

predicate logic assertions



Floyd Method of Inductive Assertions

• Show that given input assertions, after
executing the program, program satisfies
output assertions
• show that each program fragment behaves as
intended

• use induction to prove that all fragments,
including loops, behave as intended

• show that the program must terminate

Mathematical Induction

• goal: prove that a given property
holds for all elements of a set

•  approach:
• show property holds for "first" element
• show that if property holds for element i,
then it must also hold for element i + 1

• often used when direct analytic
techniques are too hard or complex



Example: How many edges in Cn

Theorem:
 let Cn = (Vn, En) be a complete, unordered
graph on n nodes,

then |En| = n * (n-1)/2

Example: How many edges in Cn

• to show that this property holds for
the entire set of complete graphs,
{Ci}, by induction:

1. show the property is true for C1

 2. show if the property is true for Cn ,
then the property is true for Cn+1



Example: How many edges in Cn

show the property is true for C1:
graph has one node, 0 edges

 |E1|   = n(n-1)/2 = 1(0)/2 = 0

Example: How many edges in Cn

assume true for Cn: |En| = n(n-1)/2
graph Cn+1 has one more node, but n more edges (one from

the new node to each of the n old nodes)
Thus, want to show |En+1| = |En|+n =(n+1)(n)/2

Proof: |En+1| = |En|+n =  n(n-1)/2 + n   by substitution
= n(n-1)/2 +2n/2 by rewriting
= (n(n-1)+2n)/2 by simplification
= (n(n-1+2))/2 by simplification
= n(n+1)/2 by simplification
= (n+1)(n)/2 by rewriting



Floyd’s Method of inductive verification
(informal description)
• Place assertions at the start, final, and
intermediate points in the code.

• Any path is composed of sequences of
program fragments that start with an
assertion, are followed by some assertion
free code, and end with an assertion

• As, C1, A2, C2, A3,…An-1, Cn-1, Af

• Show that for every executable path, if As
is assumed true and the code is executed,
then Af is true

Pictorially: A single path

STRAIGHT-LINE CODE

Ci

Ai Ai+1

intermediate assertions

initial assertion

final assertion



Must be sure:
assuming Ai,
then executing Code Ci,
necessarily  ⇒   Ai + 1

by forward substitution
           ⇒ symbolic execution

STRAIGHT-LINE CODE

Ci

Ai Ai+1

Why does this work?
suppose P is an arbitrary path through the program
can denote it by

P = A0 C1 A1 C2 A2...Cn An

where
A0 - Initial assertion
An - Final assertion
Ai   - Intermediate assertions
Ci - Loop free, uninterrupted,

     straight-line code

If it has been shown that
  ∀ i, 1 ≤ i < n: AiCi ⇒ Ai+1

Then, by transitivity
  A0......⇒An



Obvious problems

• How do we do this for a path?
• How do we do this for all paths?

• Infinite number of paths
• Must find a way to deal with loops

How to handle loops -- unroll them
          input asssertion
n do_while predicate1
n+1     if predicate2
n+2        then code ;
n+3        else code ;
n+4           end;
n+5  output assertion ;

n 
n+1 

n+2 n+3 

n+5 

n+4

input asssertion

output asssertion

n 
n+1 

n+2 n+3 

n+5 

n+4

output asssertion

n 
n+1 n+5 

output asssertion

loop invariant



Better -- find loop invariant (AI )

subpaths to consider:
C1: Initial assertion A0 to final assertion Af

C2: Initial assertion A0 to AI

C3: AI to AI

C4: AI to final assertion Af

A0

AI

Af

Similar to an inductive proof

Consider all paths through a loop

subpaths to consider:
C1: A0 to Af

C2: A0 to AI

C3: AI, false branch, AI

C4: AI, true branch, AI

C5: AI, false branch, Af

C6: AI, true branch, Af

A0

AI

Af



Assertions

• specification that is intended to be
true at a given site in the program

• Use three types of assertions:
• initial : sited before the initial statement
• final : sited after the final statement
• intermediate: sited at various internal program
locations subject to the rule:

• a "loop invariant” is true on every iteration
thru the loop

Floyd’s Inductive Verification Method
(more carefully stated)

• specify initial and final assertions to capture intent
• place intermediate assertions so as to "cut" every

program loop
• For each pair of assertions where there is at least one

executable (assertion-free) path from the first to the
second,

• assume that the first assertion is true
• show that for all (assertion-free, executable) paths from the

first assertion to the second, that the second assertion is true
• This establishes “partial correctness”

• Show that the program terminates
• This establishes “total correctness”



Example

• Assume we have a method, called FindValue, that takes as input
three parameters: a table that is an array of values where the index
starts at zero, n is the current number of values in table (with
entries from 0 to n-1), and a key that is also of type value.
FindValue returns the smallest index of the element in table that is
equal to the value of key. If no element of table is equal to key,
then a new last element with that value is added to the table and
that index is returned.

// postconditions
ensures (table[\result] == key)
ensures \forall(int i=0;i < \result; i++;)
         (table[i] != key)
ensures \result>=0 && \result<=n
ensures \result==n => table.size()>=n+1
ensures \result<n => table.size() >=n

// preconditions
requires n >= 0;
requires key != null;
requires table != null;
requires n<=table.size();

Example: FindValue version 1

Boolean FindValue (int table[ ], int n, int key) {
  boolean found;
  found=false;
  current = 0;
  while (not found && current <  n) {
     if (table[current] == key)

found = true;
     else

current = current + 1;
  }
  if (not found) {
     table[current] = key;
  }
  return (current);
}

// preconditions
requires n >= 0;
requires key != null;
requires table != null;
requires n<=table.size();

// postconditions
ensures (table[\result] == key)
ensures \forall(int i=0;i < \result; i++;)
         (table[i] != key)
ensures \result>=0 && \result<=n
ensures \result==n => table.size()>=n+1
ensures \result<n => table.size() >=n



Example: FindValue version 2

Boolean FindValue (int table[ ], int n, int key) {
current = 0;
while (table[current] != key && current< n) {
    current = current + 1;
}
if (current = n) {
   table[current] = key;
   }
return (current);
}

// preconditions
requires n >= 0;
requires key != null;
requires table != null;
requires n<=table.size();

// postconditions
ensures (table[\result] == key)
ensures \forall(int i=0;i < \result; i++;)
         (table[i] != key)
ensures \result>=0 && \result<=n
ensures \result==n => table.size()>=n+1
ensures \result<n => table.size() >=n

found=false;
current = 0;

not found && 
current < n

table[current]==key

found = true current = 
    current + 1;

not found table[current] = key

return(current)
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found=false;
current = 0;

not found && 
current < n

table[current]==key

found = true current = 
    current + 1;

not found table[current] = key

return(current)

T

T

T

F

F

F

// preconditions
requires n >= 0;
requires key != null;
requires table != null;
requires n<=table.size();

preconditions

postconditions

// postconditions
ensures (table[current] == key)
ensures \forall(int i=0;i < current; i++;)
         (table[i] != key)
ensures current>=0 && current<=n
ensures current==n => table.size()>=n+1
ensures current<n => table.size() >=n

found=false;
current = 0;

not found && 
current <  n

table[current]==key

found = true current = 
    current + 1;

not found table[current] = key

return(current)

T

T

T

F

F

F

// preconditions
requires n >= 0;
requires key != null;
requires table != null;
requires n<=table.size();

preconditions

postconditions

// postconditions
ensures (table[current] == key)
ensures \forall(int i=0;i < current; i++;)
         (table[i] != key)
ensures current>=0 && current<=n
ensures current==n => table.size()>=n+1
ensures current<n => table.size() >=n

Where should we put
intermediate assertions?

loop invariant

invariant



found=false;
current = 0;

not found && 
current <  n

table[current]==key

found = true current = 
    current + 1;

not found table[current] = key

return(current)

T

T

T

F

F

F

// preconditions
requires n >= 0;
requires key != null;
requires table != null;
requires n<=table.size();

preconditions

postconditions

// postconditions
ensures (table[current] == key)
ensures \forall(int i=0;i < current; i++;)
         (table[i] != key)
ensures current>=0 && current<=n
ensures current==n => table.size()>=n+1
ensures current<n => table.size() >=n

loop invariant

invariant

What do we need to prove?:
precondition {code1} invariant
precondition {code2} loop invariant
loop invariant {code3} loop invariant: 2 cases?
loop invariant {code4} invariant: 2 cases?
invariant {code 5} postconditions:2 cases

found=false;
current = 0;

not found && 
current <  n

table[current]==key

found = true current = 
    current + 1;

not found table[current] = key

return(current)

T

T

T

F

F

F

// preconditions
requires n >= 0;
requires key != null;
requires table != null;
requires n<=table.size();

preconditions

postconditions

loop invariant

invariant

What do we need to prove?:
precondition {code1} invariant
precondition {code2} loop invariant
loop invariant {code3} loop invariant
loop invariant {code4} invariant:
invariant {code 5} postconditions:2 cases

verification conditions



What needs to be done

• Must define all the intermediate assertions
• Must create all the verification conditions
• Must prove each verification condition
• Must prove termination

found=false;
current = 0;

not found && 
current <  n

table[current]==key

found = true current = 
    current + 1;

not found table[current] = key

return(current)

T

T

T

F

F

F

// preconditions
requires n >= 0;
requires key != null;
requires table != null;
requires n<=table.size()+1;

preconditions

postconditions

// postconditions
ensures (table[current] == key)
ensures \forall(int i=0;i < current; i++;)
         (table[i] != key)
ensures current>=0 && current<=n
ensures current==n => table.size()>=n+1
ensures current<n => table.size() >=n

loop invariant

invariant

What should the loop invariant be?
ensures (found ==false)
ensures current>=0 && current<n
ensures \forall(int i=0;i < current; i++;)
         (table[i] != key)



found=false;
current = 0;

not found && 
current <  n

table[current]==key

found = true current = 
    current + 1;

not found table[current] = key

return(current)

T

T

T

F

F

F

// preconditions
requires n >= 0;
requires key != null;
requires table != null;
requires n<=table.size();

preconditions

postconditions

loop invariant

invariant

What do we need to prove?:
precondition {code2} loop invariant

requires n >= 0;
requires key != null;
requires table != null;
requires n<=table.size();
{found= false
current =o
not found &&
Current <n}
ensures (found ==false)
ensures current>=0 && current<n
ensures \forall(int i=0;i < current; i++;) (table[i] != key)

Proving one verification condition
precondition {code2} loop invariant

requires n >= 0;
requires key != null;
requires table != null;
requires n<=table.size();
{found= false
current =o
not found &&
current < n;}
ensures (found ==false)
ensures current>=0 && current< n
ensures \forall(int i=0;i < current; i++;)

(table[i] != key)

Proof:precondition {code2} loop invariant

Executing

{found= false
current =o
not found &&
current < n}

a) By execution found ==false

b) By execution, current =0 and
    given n>=0 => n > current=0
    therefore

current>=0 && current< n

c) int i=0;i < 0 is empty, so stmt
(table[i] != key) is true



found=false;
current = 0;

not found && 
current < n

table[current]==key

found = true current = 
    current + 1;

not found table[current] = key

return(current)

T

T

T

F

F

F

// preconditions
requires n >= 0;
requires key != null;
requires table != null;
requires n<=table.size();

preconditions

postconditions

loop invariant

invariant

precondition {code1} invariant
precondition {code2} loop invariant
loop invariant {code3} loop invariant
loop invariant {code4} invariant
invariant {code 5} postconditions:2
cases

ensures (found ==false)
ensures current>=0 && current< n
ensures \forall(int i=0;i < current; i++;) (table[i] != key)
{not found &&
current < n
If table[current]==key then

found =true
else current =current +1
not found && current < n
}
loop invariant again

Need to
represent old
versus new
values

Proving another verification condition

ensures (found’ ==false)
ensures current’>=0 && current’< n
ensures \forall(int i=0;i < current’; i++;)

(table[i] != key)

{not found’ && current’ < n
If table[current’]  == key then

found =true
else current =current’ +1
not found && current < n
}
ensures (found ==false)
ensures current>=0 && current< n
ensures \forall(int i=0;i < current; i++;)

(table[i] != key)

loop invariant {code3} loop invariant Proof:loop invariant {code3} loop invariant

a) By execution, not found = true =>
found = false

b) By execution, (current < n) = true =>
  current <=n

     Given current’>= 0 and by execution that
current =current’ +1 => current>=0

     therefore current>=0 && current< n

c)  Given forall(int i=0;i < current’; i++;)
(table[i] != key)

     Given found = false by (a ) above then
       in execution

 table[current’]  != key
       and current =current’ +1
     => forall(int i=0;i < current’+1; i++;)

(table[i] != key)
     => forall(int i=0;i < current; i++;)

(table[i] != key)



What remains to be done?

• Must prove all the verification conditions
• precondition {code1} invariant
• precondition {code2} loop invariant
• loop invariant {code3} loop invariant
• loop invariant {code4} invariant
• invariant {code 5} postconditions:2 cases

• Must prove termination

found=false;
current = 0;

not found && 
current <  n

table[current]==key

found = true current = 
    current + 1;

not found table[current] = key

return(current)

T

T

T

F

F

F



Floyd-Hoare axiomatic proof method

assertions are preconditions and postconditions
on some statement or sequence of statements

                   P{S}Q
if  P is true before S is executed and S is
executed then Q is true

P is the precondition;
Q is the postcondition

Also written {P} S {Q}

Floyd-Hoare axiomatic proof method

• as in Floyd's inductive assertion method,
we construct a sequence of assertions, each
of which can be inferred from previously
proved assertions and the rules and axioms
about the statements and operations of the
program

• to prove P{S}Q, we need some axioms and
rules about the programming language



Hoare axioms and proof rules
take a simple programming language that deals
only with integers and has  the following types
of constructs:

• assignment statement
x:= f

• composition of a sequence of statements
       S1, S2

• conditional (alternative statements)
if B then S1 else S2

• iteration    
while B do S

Axioms and proof rules
• axiom of assignment

P {x:=f} Q,
where Q is obtained from P by substituting f for all occurrences

of x in P (symbolic execution)

• rule of composition
P {S1, S2 } Q => ∃ P1 , P{S1}P1 Λ  P1{S2}Q
Using Hoare's notation, this is written as

P{S1}P1, P1{S2}Q
  P {S1,S2} Q



Proof Rules (continued)

• rule for the alternative statement
P{if B then S1 else S2 }Q ⇒ 

P{B ∧ S1}Q ∧ P{~B ∧ S2}Q

• Hoare's notation

 P{B ∧ S1}Q, P{¬B ∧ S2}Q
P{if B then S1 else S2 }Q

B?

S1

P

Q

S2

Proof Rules  (continued)

rule of iteration
P {while B do S }Q ⇒   

P{¬B}Q ∧ ∃ I ∍ P {B ∧ S} I 
 ∧ I{B ∧ S } I ∧ I{¬B }Q

P{¬B}Q ,P {B∧S} I , I{B ∧ S } I, I{¬B }Q
                      P {while B do S }Q

B?

S

P Q

   I



weakest precondition
• in Hoare technique P{S}Q

suppose P = {x≥0}
         Q = {z = x+y}

• then we can prove P{S1}Q and P{S2}Q, but we can
also prove true{S2}Q

• S2 is provable for any x, y, but S1 is provable only
for x≥0

S1:
read x,y;
z:= y
while x >0 do 
    z:= z+1; 
    x:= x-1;
endwhile;

S2:
read x,y;
z:= x+y;

Dijkstra’s Axiomatic Semantics

• In general, there are many correct pre-
and post-conditions for a given program

• Seek the strongest post condition and the
weakest precondition
• A ⇒ B; A is stronger than B and B is
weaker than A P

Q



Rules of consequence

• If P ⇒P’ and Q’⇒Q and P’{S}Q’ then P{S}Q

P{S}Q’, Q’⇒Q
P{S}Q

P⇒P’, P’{S}Q
P{S}Q

P⇒P’, P’{S}Q’, Q’⇒Q
P{S}Q

Formal Verification Process

• determine input, output and loop invariant
assertions

• identify all paths between two assertions
(with no intervening assertions) and form the
corresponding verification condition or lemma

• prove each verification condition (partial
correctness)

• prove that the program terminates


