

What Is Architecture? An Explanation for IT Professionals

Wm. Andrew Wynn. Associate Director, Strategy, Architecture, and Standards
Global Data Warehousing, Bristol-Myers Squibb, Member of the IEEE and ACM

e-mail: andrew.wynn@bms.com

Abstract

This paper addresses the observation that in IT, the

term “Architecture” is used widely yet it's meaning is
most often vauge and inconsistent. The paper begins
with a literature survey of many sources that use the term
Architecture. The sources represents the various uses of
the term “Architecture”. It begins by reviewing
Organizational Archtecture and sequentially progress
through Enterprise Architecture Planning, Information
Systems Architecture and Software Architecture. The
second section presents a more specific definition of
Systems Architecture then is represented in prior literature
survery and highlights how the work Kilov and the RM-
ODP complement and extend the methods presented in
the more common Architecture definitions.

1. Introduction

The following is a quote from Peter Drucker, which

he published in 1945. It is about the value of and
necessity of specification and design as part of the system
development process. "Automation is a concept of the
organization of work…. Automation is not "technical" in
character. Like every technology it is primarily a system
of concepts, and its technical aspects are results rather
than causes. The first concept is a metaphysical one: that
there is a basic pattern of stability and predictability
behind the seeming flux of phenomena…. Only after
these concepts have been thought through can machines
and gadgets be fruitfully applied [8].”

2. Literature Survey

2.1 Macro-Level Architecture: Organizational

Architecture

In the text Organizational Architecture: Designs for
Changing Organizations [22], David Nadler and his
associates describe an approach to designing High-

Performance Work Systems. The approach is based on
the Systems Theory of Organizational Behavior.
Thereby, it views any purposeful organization of human
beings as a system. In doing so, Organizational
Architecture seeks to achieve good “fit” (or congruance),
between the various dimensions of an organization. The
theory draws on the socio-technical model of work design.

In the text, the authors trace the basis for their approach

back to the research done in the United Kingdom in the
late 1940’s. “Researchers from the Tavistock Institute,
studying the introduction of new technology in British
coal mines (and later in the weaving industry in India),
discovered that technological innovations alone could not
explain the differences in performance. In fact, the certain
technological changes that were intended to increase
performance resulted, instead, in performance declines.
Research revealed that high performance resulted when
the design of the technical system and the design of the
social system of work were congruent. Building on group
dynamics and general systems theory, the Tavistock
researchers demonstrated that high performance required
that the needs of the organization’s social system and the
needs of the technical system be considered equally and
simultaneously in the design process [22]."

The quality of this research and the credibility of David

Nadler as a first class academic and management
consultant [14] lend signficant weight to the contributions
of Kilov [15] and Morabito, Sack and Bhate [20] in their
efforts to define an approach to “system” modeling that is
coniziant of more than only what is required to move and
structure data (which of course is about where most
Information Systems Architecture definition efforts stop).
For example, consider that IT organizations sometimes
fail when attempting process improvement initiatives,
such as the SEI/CMM [26, 31, 32]. As Michael West
emphasizes, if more consideration were given to the
organization as a socio-technical system, before and
during such efforts, perhaps they would not fail quite as
often [31, 32].

2.2 Mid-Level Architecture: Information
Systems Architecture

The Zachman Framework is the most widely known

method of defining Information Systems Architecture
[33]. Its simplicity makes it a useful communication tool
and affords it a good deal of popular appeal. A succinct
summation of its strengths and weaknesses is provided by
Richard Balicki:

“The framework’s strengths include (1) a simple
method for classifying design roles and product
abstractions; (2) a neutrality with respect to
methodologies, tools, and techniques; and (3) a facility for
varying levels of abstraction (design roles or “rows”)
while limiting scope (product abstractions or “columns”).”

The framework’s weaknesses include (1) its
“descriptive” oriented - it serves “to document, rather than
enable precise and explicit specifications of, information
systems constructs.” (2) “the framework does not integrate
a product abstraction’s design roles. Another way to look
at this is the lack of linkage between rows within a
column…. (and) there’s a lack of linkage between
columns within a design role”…. (3) the framework’s
representations are implementation oriented even at the
higher level design roles – it represents “business aspects
with implementation oriented constructs (e.g., E-R
diagrams, hierarchical diagrams, data-flow diagrams,
organizational charts, etc.)" [1].

Enterprise Architecture Planning (EAP), as defined by
Steven Spewak [28], is an approach to IT application
portfolio planning that is purposefully based on the
Zachman Framework for Information Systems
Architecture. The approach is a synthesis of the
Information Strategy Planning (ISP) stage of the
Information Engineering (IE) methodology as defined by
James Martin [17] and the Zachman Framework.
Spewak’s synthesis makes the Zachman Framework
useful in way it would not otherwise be. For example,
the IE-ISP and EAP methods relate the “What”
(Information Needs) with the “How” (Business
Functions) from the Zachman Framework as part of
defining the “Application Architecture” (in EAP
terminology).

Additionally, EAP and IE-ISP both do a great deal to
clarify how to organize Zachman’s concepts into valuable
projects and IT management and administrative
procedures.

One publically available set of Enterprise Architecture
Planning work products was developed by the United
States Department of Defense and is viewable at the
C4ISR Architecture Working Group website.

(http://www.defenselink.mil/nii/org/cio/i3/AWG_Digital_
Library/index.htm).

The Architecture Framework report available at this
site is includes a list of deliverables that provide
immediate insight into the nature of the approach [5]. A
facsimile is provide below:

C4ISR Essential Deliverables by View
All Views
1. Overview and Summary Information: Scope, purpose,

intended users, environment depicted
2. Integrated Dictionary: Definitions of all terms used in

all products
Operational View
1. High-Level Operational Concept Graphic
2. Operational Node Connectivity Description
3. Operational Information Exchange Matrix
4. Activity Model(s) (supporting deliverable)
5. Logical Data Model (supporting deliverable)
System View
1. System Interface Description
2. Technical View
3. Technical Architecture Profile

Another interesting source of insight about how to

gainfully employ the Zachman Framework and EAP is
represented in the article "Architecture for a Large
Healthcare Information System" [21]. This article
describes how the C4ISR Architecture Framework to was
used to create an organized operational architecture for the
60+ information subsystems that support the US Military
Health System.

2.3 Micro-Level Architecture: Software

Architecture

According to Steve McConnell, author of The

Software Project Survival Guide [18] and former Editor of
the IEEE, Software Journal, a good Software Architecture
document describes the following:
1. Overall program organization
2. Ways in which the architecture supports likely

changes
3. Components that can be reused from other systems or

purchased commercially
4. Design approaches to standard functional areas
5. How the architecture addresses each system

requirement
He also provides a Software Architecture Checklist

(which is included as an addendum to this paper).
McConnell’s concerns are very similar in focus to those
expressed in the Software Engineering Institute’s
“Architecture” related publications that I have reviewed

[6, 25, 27]. The concerns are clearly not about
Organizational Architecture nor are they about
Information Systems Architecture for application portfolio
planning purposes as in EAP. Rather, I refer to
architecture from this perspective as Micro-Level because
it is clearly concerned with “IT System Specification” and
“IT System Implementation” (to use Kilov’s terms). The
term “Micro-Level” is not meant to demean this
perspective but rather to simply distinguish it from the
other, more abstract viewpoints. Also, I refer to this level
as Software Architecture but it is also concerned with
System Architecture (or more commonly System
Engineering) in that the efficacy of hardware and network
components of a computer system application are also
considered.

Effective execution of Micro-Level Architecture is
critical to the success of higher-level architecture
definition efforts. To aid this type of follow-through,
McConnell asserts that Architecture is a separable stage
of the System Development Life Cycle and it should
begin when Requirements are approximately 80%
complete. I can certainly see the value of this
recommendation, because as an Architect on a large team
(of very productive programmers) which does not use
such an SDLC, I am too often surprised that development
efforts have already committed serious architectural
“short-cuts” that can not be corrected without missing
deadlines. It would be nice to consistently have the
opportunity to provide input before its too late.

Lastly, a few of the guiding principles offered by
McConnell and others concerned with Software
Architecture are priceless. I have included some of the
more practical suggestions here (and other more
entertaining observations as an addendum).

1. Architectures should be built with a purpose in mind
(This is not as self-evident as it sounds. A lot of
people seem to be of the impression that Architecture
efforts are not real projects and do not need
objectives and a scope. The RM-ODP Enterprise
Viewpoint goes a long way toward establishing a
structured framework for assuring that objectives,
constraints and policies will be explicitly considered.)

2. Implementation of any architecture vision must be
staged (This should be self-evident, but it never
ceases to amaze me, how many of my managers and
collueges seem to think that an “Architecture” is
something that we can define once for everything –
like a type of magic that will simply make everything
better.)

3. “The Best” is the enemy of “The Good” (I just like
this expression. It is best to plan on making
compromises rather than being disappointed that you

could not reach nirvana via the perfection of your
architecture.)

4. Don’t “throw in the kitchen sink” - (The best
architectures are simple and do not look as nasty as
the problems they were designed to solve.)

5. A good architecture limits the number ways in which
software components may interface with each other
because software components alone, do not prevent
their own inappropriate use !

Finally, a few misconceptions that McConnell’s

definition of Architecture clearly debunks include: (1) the
idea that Architecture is just about data modeling, (2) the
idea that Data and Application Architecture can be
separated effectively (more about this later). See the first
addendum for a more comprehensive list of software
architecture concerns.

3. Toward a More Specific Definition of

Architecture

According to Haim Kilov, the definition of system
architecture is significantly different from the definition of
archicture in general. In an Information Systems context,
“we deal with systems that more often than not already
exist.” Whereas “with the definition from the Oxford
English Dictionary (OED), the term “architecture” applies
only to something created rather than to something that
already exists” [15]. I think this very aptly clarifies one
of the most often confused aspects of the role of
Information Systems Architecture. It is not simply about
development of new systems. It is also about interfacing
properly with existing systems and about enhancing and
evolving existing systems in an orderly fashion.

According to the International Standards Organization
(ISO) Reference Model for Open Distributed Processing
(RM-ODP), a system architecture is “a set of rules to
define the structure of a system and the interrelationships
between its parts [12].” The RM-ODP definition is
corroborated by Mario Bunge: "Every system can be
analyzed into its composition (or set of parts),
environment (or set of objects other than the components
and related to these), structure (or set of relations, in
particular connections and actions, among the components
and these and environmental items) and mechanism (or
set of processes peculiar to it, or that make it tick.)" [4].

One the most challenging aspects of Information
System Architecture and in fact of Information
Management in general, is that things change meaning
depending on their context. The challenge is concisely
illustrated by Kilov: “The characterization of a particular
component as “business,” “system,” or “technological” is

context-dependent, so that, for example, a component
considered “technological” in a business context may be
considered “business” in a technological context.” This
basically says that without careful attention to Viewpoints
or Contexts, and definition of synonyms and homonyms,
what would be an elegant Information Systems
Architecture can readily degenerate in to a “House of
Mirrors”.

The RM-ODP Defines Five View Points:

1. Enterprise
2. Information
3. Computational
4. Engineering
5. Technology

The RM-ODP Viewpoints provide a thorough array of

perspectives for facilitating abstraction and conceptual
layering.

This “House of Mirrors” effect combined with the fact
that system architecture is not simply about new systems
are the two issues that get right to the heart of what is most
commonly misunderstood (and consequently mis-
managed) about Information Systems Architecture.

To further illustrate the challenge of architecting
systems that are equally useful in multiple contexts
consider the following two comments: (1) "The real
challenge is to design an architecture for a family of
(software) products, covering not one but a range of
markets, with not just one product in each market but a
series of complementary, supplementary, enhanced and
eventually replacement products, stretching into the
foreseeable future [11].” (2) "…There is no such thing as
information in itself: every information flow rides on
some concrete (physical, chemical, biological or social)
process. Consequently, the definition of the concept of an
information system presupposes, at the very least, the
concepts of system and process [3]."

Bunge’s comment explains what make’s Hoare’s
challenge so challenging. In a word, information is
context dependent and therein lies the challenge [2, 13, 15,
30]. Just as Database Management Technology was
created to battle the flood of Program Described Files that
plauged the infancy of the information age, so too a
business domain must be defined precisely to genuinely
support the creation of information systems which enable
business process integration.

While the logic of this argument is sound, practical
challenges face those who attempt it. Consider the
following story:

“In 1984, (Ed Yourdon) consulted, during a two and
one-half year period, on the practical application of Real-
Time Structured Analysis at a major aerospace company.

His observations were interesting and yet disturbing. One
team of analysts he studied (the “DFD Team”) started
their projects using data flow diagrams to develop an
overall functional decomposition as a framework for
further specification. Meanwhile, a second team of
analysts (the “Data Base Team”) started by focusing on
the information the system needed to do its job and then
building an information model (also known as an Entity-
Relationship Diagram or a Semantic Data Model). Over
time, the DFD Team continued to struggle with the basic
problem of space understanding (e.g., the details of what
happens when one controller hands off responsibility for
an aircraft to another controller). In contrast, the Data
Base Team gained a strong, in-depth understanding of the
air traffic control. Yet the results did not mesh together;
worse, they contradicted each other. In principle, these
two models should somehow come together. Yet under
the pressure of schedule and budget, both products moved
unresolved into preliminary design, with the hope of
resolving the discrepancies at that time. Sadly, the Data
Base Team was perceived as irksome, even somewhat as
troublemakers; people (and their careers) paid the price for
this major rift and its untidy resolution.

In 1987 and 1988, (Ed Yourdon) saw this same pattern
develop on projects at a federal government agency and a
state government agency. The DFD Team marched on
ahead in time and political power. The Data Base Team
gained tremendous insight, vital to analysis but all too-
often ignored. And again, the Data Base Teams and their
leaders were perceived as troublemakers. Repeatedly, in
practice, separate notations and strategies for different
process and data models have kept the two forever apart.”
[7].

In my own, professional experience I have seen this
nightmare played out again and again. Coad and
Yourdon felt the answer was an Object-Oriented Analysis
methodology that integrated process and data model
notations. Kilov has defined a modeling and notation
methodology that achieves a greater degree of notation
uniformity (and conceptual integrity) than anything else I
have studied [15]. If the problem Coad and Yourdon so
clearly illustrated can be solved with a notation method,
than our profession is certainly on the verge of resolving
this issue. However, by my estimate, I do not believe our
profession will heal the schism between the “DFD” crowd
and the “Data Base” crowd until we collectively learn to
vastly improve our management practices and our
collective level of professional knowledge. I can not help
but think that best practices frameworks such as the
SEI/CMMI and Luftman’s Strategic Alignment Model
(SAM) [16] must be an integral part of the solution.

Another part of the solution must improved and more
thorough undergraduate education for Information

Systems Professionals. I think a 5 year program as is par
for the course in Engineering and Architectural studies is
long overdue. I also think a 3 year professional degree in
Information System similar to a Law degree or an MBA is
warranted. Furthermore, I am very much in favor of
informational systems professional licensure rather than
volutary certification. If this sounds harsh consider that
the Standish Group statistics also sound harsh. Maybe not
quite as harsh as they did twenty years ago, but does
anyone think higher professional standards would worsen
those statistics?

Also, I cannot help but think that simply measuring our
own productivity and quality should come before, during
and after attempting to effectively change anything
significant about our culture and work processes [10, 23].

All of the architecture methods referenced in section
one of this paper have relatively loose definitions of their
components and component relationships. Kilov’s
semantic modeling techniques have great potential for
specifying and implementing the concepts of every type
of architecture presented in this paper. Kilov’s
philosophy is strong in exactly those places where other
approaches to architecture tend to be weak. The following
diagram is from the “Traceability” section of Kilov’s
Business Models text [15].

Kilov's Information Management Project Structure

Figure 1: IM Project Structure

Richard Balicki aptly likens Kilov’s Information

System Components (or “areas of concern”) to
Zachman’s Design Roles.

Kilov’s Four Areas of Concern

1. Business Specification
2. Business Design
3. IT System Specification
4. IT System Implementation
5.

Zachman’s Design Roles
1. Planner and Owner

2. Designer
3. Builder
4. Sub-Contractor

As such, these areas of concern are somewhat

analigous to view points as defined in the RM-ODP.
They are also somewhat analigous to the system
development life-cycle stages and the workflow streams
of the Rational Unified Process.

As the reader will recall the Zachman Framework is
particularly weak with respect to the relationships between
view points (rows) and domains (columns). In his
discussion of Traceablity Kilov addresses this problem
with the following specification of the <<realization>>
relationships between each of his view points in the
diagram above.

Kilov's "Realization" Relationship Specification

Figure 2: <<realization>> specification

I will resist the temptation to insert a full quotation of

Kilov’s explanation of the above two diagrams (and
encourage the reader to read the book instead). Rather I
will simply point out what I find most significant about
these diagrams in light of the focus of this paper.
1. According to Kilov’s analysis of the structure of an

Information Systems Project, the activities that are
often vaugely referred to "architecture" of on kind or
another, Kilov more precisely refers to as Business
and System Specification and Design activities. This
directly addresses my primary concerns of (1) the
need to be clear about what we mean when we use
the term architecture and (2) the need to be clear

about deliverables of architecture activities. In
Kilov's analysis, the deliverables are I think very
appropriately described as specifications and designs.

2. According to Kilov’s analysis, the structure of the
Realization relationship is that in each instance it is
composed of a strategy, constraints and opportunities
and some appropriate combination of business,
technological and / or IT System components. The
significanct aspect of this from the perspective of our
current Architecture discussion is that Kilov’s
definition is thorough and flexible enough to specify
the work-products and the relationships between the
work-products of architecture at any level of
abstraction. Kilov's Realization relationship is
exactly what is missing from the Zachman
Framework and is therefore an invaluable
complement to it.

3. Kilov includes feedback and refinement in his
Realization specification because information system
architecture and specification is not strictly a “top-
down” affair. Which speaks directly to one of the
important and unique characteristics of system
architecture we discussed earlier – it is not only

concerned with creating new systems but is almost
always also concerned with integration with existing
systems [15].

One final thought about something interesting I recently

came across in my reading. In a real project organization
documented in the Project Management Journal [19],
there are many teams that are “architecture” teams,
including the Data Architecture Team, the System
Architectre Team and the Software Architecture Team -
all on one project team. This is reflective of a thought I
have often had about what is required to consistently
attain high standards in all aspects of software
development – good architecture is everyone’s job !

References

1. Balicki, R., ”Synergizing Zachman’s Architecture Framework with Kilov’s Information Modeling”, Proceeding from the Ninth OOPSLA
Workshop on Behavioral Semantics, OPSLA 2000, Northeastern University, College of Computer Science, (October 15, 2000).

2. Berners-Lee, T., Hendler, J., and Lassila, O., “The Semantic Web”, Scientific American Special Online Issue, Scientific American, (April,
2002).

3. Bunge, M., (Reply to Mattessich on the Foundations of the Management and Information Sciences. In: Studies on Mario Bunge's Treatise.
(Ed. by Paul Wiengartner and Georg J. W. Dorn). Amsterdam-Atlanta, 1990, pp. 641-642.)

4. Bunge, M., Philosophy in Crisis, Prometheus Books, (January 2001).

5. C4ISR, Architectures Working Group, C4ISR Architecture Framework, Version 2.0, United States of America, Department of Defense,
(December 18, 1997).

6. Clements, P. and Northrop, L., “Software Architecture: An Executive Overview”, Technical Report, CMU/SEI-96-TR-003, ESC-TR-96-
003, SEI Website, (February, 1996).

7. Coad, P. and Yourdon, E., Object-Oriented Analysis, Yourdon Press Computing Series, Prentice-Hall, (1990).

8. Drucker, P., The Practice of Management, Chapter 3: The Challenge to Management, Section: What is Automation?, Harper & Row,
(1954).

9. GAO, United States General Accounting Office, “Information Technology Enterprise Architecture Use across the Federal Government Can
Be Improved”, A Report to Congressional Committes, US GAO, (February, 2002).

10. Goldenson, D., et. al., “Measurement and Analysis in Software Process Improvement”, Chapter 37 in IT Measurement, International
Function Point Users Group, Addison-Wesley, (2003).

11. Hoare, C. A. R., "Software: Barrier or Frontier", Oxford University Computing Laboratory (November 23, 1999).

12. International Standards Organization (ISO), Reference Model – Open Distributed Processing 2, Architecture, (1998).

13. Kent, W., Data and Reality, Elsevier Science Ltd; 5th repr. 1990 edition (January 1, 1984).

14. Kerns, D. and Nadler, D., Prophets in the Dark: How Xerox Reinvented Itself and Beat Back the Japanese, Harper Collins, (1992).

15. Kilov, H., Business Models: A Guide for Business and IT, Prentice-Hall, (2002).

16. Luftman, J., Managing the Information Technology Resource: Leadership in the Information Age, Prentice Hall; 1st edition (April 28,
2003).

17. Martin, J., Information Engineering, Book II, Planning and Analysis, Prentice-Hall, (1990).

18. McConnell, S., The Software Project Survival Guide, Microsoft Press, (1998).

19. Metzger, J., “JWARS: A Case Study”, The Project Management Journal, Project Management Institute, Volume 34, Number 4, (December
2003).

20. Morabito, J., Sack, I., and Bhate, A., Organizational Modeling: Innovative Architectures for the 21st Century, Prentice-Hall, (1999).

21. Mukherji, R., et. al., “Architecture for a Large Healthcare Information System”, IT Pro, IEEE Publications, November | December, (2002).

22. Nadler, D., et al, Organizational Architecture: Designs for Changing Organizations, Jossey Bass, (1992).

23. Putnam, L. and Myers, W., Five Core Metrics: The Intelligence Behind Successful Software Management, Dorset House, 2003.

24. Rood, M., “Enterprise Architecture: Definition, Content and Utlity”, document 0-8186-5705-7/94, IEEE (1994).

25. Shaw, M., and Clements, P., “A Field Guide to Boxology: Preliminary Classification of Architectural Styles for Software Systems”,
Software Engineering Institute, (April, 1996).

26. Software Engineering Institute (SEI), Process Maturity Profile, SW-CMM, (September, 2003).

27. Software Engineering Institute (SEI), ”Essays on Software Architecture”, SEI Website (www.sei.cmu.edu/architecture/essays.html), (2004).

28. Spewak, S., Enterprise Architecture Planning: Developing a Blueprint for Data, Applications and Technology, John Wiley & Sons,
(September 1993).

29. Sprung, C., “Lesson Learned About Architecture: Unstructured and Eclectic”, retieved from the SEI website,
(www.sei.cmu.edu/architecture/essays.html), (2004).

30. Strong, D., Lee, Y., and Wang, R., “Data Quality in Context”, Communications of the ACM, vol. 40, no. 5, Association of Computing
Machinery, (May, 1997).

31. West, M., “Applying Systems Thinking to Process Improvement”, CrossTalk: Journal of Defense Software Engineering, United States of
America, Department of Defense, March, 2004.

32. West, M., Real Process Improvement Using the CMMI, Auerbach Publishing, 2004.

33. Zachman, J., “A Framework for Information System Architecture”, IBM Systems Journal, vol. 26, no. 3, (1987). IBM Publication G321-
5298.

