Using RM-ODP to bridge communication gaps between stakeholders

Haim Kilov
Independent Consultant, and Stevens Institute of Technology
haimk@acm.org

Abstract

The proverbial communication gap between business and
IT experts has led to substantial problems in interoperability
between different stakeholders of different (business and
IT) systems, leading, in turn, to significant monetary
losses together with loss of customers’ trust and patience.
The paper demonstrates not only the problems but also
the solution — a clear separation between the business
and IT domains based on an explicit usage of a system of
concepts common to all domains and understood by all
stakeholders. These elegant concepts come from exact phi-
losophy, mathematics, programming and systems thinking
and have been described in an international standard, the
Reference Model of Open Distributed Processing The paper
shows how a system of exactified concepts and approaches

has been used to understand and specify the semantics of

non-trivial industrial business and IT systems, thus estab-
lishing a basis for successful communication between busi-
ness and IT experts, that is, for semantic (and sometimes
syntactic) interoperability.

1. Introduction

In thinking about and discussing interoperability, we
observe that the systems that have to interoperate need not
be computer-based. Specifically, we may — and probably
ought to — look at business-based and IT-based stakeholders
as components of several systems that often have serious
difficulties in communicating.

The proverbial communication gap between business
and IT experts has led to substantial problems in interoper-
ability (both syntactic and semantic) between different stake-
holders of different (business and IT) systems, leading, in
turn, to significant monetary losses together with loss of
customers’ trust and patience. The paper demonstrates not
only the problems but also the solution — a clear separation
between the business and IT domains based on an explicit
usage of a system of concepts common to all domains and
understood by all stakeholders. These elegant concepts
come from exact philosophy', mathematics, programming

'0ur interest in and usage of exact philosophy may be explained, for
example, by Bunge’s observation that concepts and hypotheses are philo-

and systems thinking. They have been successfully used
not only in theory but also in industrial practice, in inter-
national standards such as the Reference Model of Open
Distributed Processing — RM-ODP, and in teaching of
business and IT modeling. The paper shows how a system
of exactified concepts and approaches, especially such con-
cepts as system, type, relationship, composition, pattern,
name in context, etc., has been used to understand and
specify the semantics of non-trivial industrial business and
IT systems, thus establishing a basis for successful com-
munication between business and IT experts, that is, for
semantic (and sometimes syntactic) interoperability.

2. Conceptual requirements for interopera-
bility

Let us start with a description of two familiar kinds of
interoperability. “Syntactic interoperability is all about pars-
ing data correctly. Semantic interoperability requires map-
ping between terms, which in turn requires content analysis.
This requires formal and explicit specifications of domain
models, which define the terms used and their relationships.
Such formal domain models are sometimes called ontol-
ogies.” [32] This description may be used not only for
dealing with computer-based information systems but also
— and perhaps more importantly — for dealing with
human stakeholders communicating with other humans or
with computer-based systems.

This reference to domain models and relationships is
not new. Walter Bagehot, one of the founders of modern
money markets, suggested in 1873 the same approach in
order to understand and communicate about the objects in
the money world: “[t]he objects which you see in Lombard
Street, and in that money world which is grouped about
it, are the Bank of England, the Private Banks, the Joint
Stock Banks, and the bill brokers. But before describing
each of these separately we must look at what all have in
common, and at the relation of each to the others.” [2].

Recognition of importance of domain models has not
been always forthcoming in the context of computer-based

sophical because they occur in a large number of fields of inquiry [4].
This was recognized in the curricula of (at least) the early universities.
Business analysts as generalists who work on analyzing any systems,
and (information) system designers belong to the esteemed class of
people who use and sometimes develop such concepts and hypotheses.



information systems. However, in any engineering disci-
pline, domain understanding and specification is essential
before system requirements can be understood and formu-
lated, and of course, a system can be developed only on
the basis of well-understood requirements. This was em-
phasized, for example, by Dines Bjerner: “domain, require-
ments and software design are three main phases of software
development”. As we all know, sometimes IT system
requirements exist only “in the collective heads” of the
developers, leading to more or less serious failures described,
for example, in Peter G. Neumann’s “Risks to the Public”
column in Sofiware Engineering Notes. Therefore interop-
erability between stakeholders during domain modeling,
as well as during requirements understanding and spec-
ification, is essential for success in development of any
systems, including software systems.

The communication gap between business and IT experts
can be exactified as the absence of interoperability. Firstly,
often there is no syntactic interoperability because business
stakeholders are often unable to parse data used by IT
stakeholders. Of course, business experts cannot (and should
not!) read code, but they also often cannot read specifications
written by IT experts using notations’ (or terminology)
which are overly complicated or alien to business. Here is
an example from the OOPSLA’99 keynote (on e-business)
by Stu Feldman: “We need to understand the domain
before addressing software. ... Business models are the
basis of an organization’s entire activity. They are to be
understood by CEO and CFO, not just by CIO; and
therefore explained without ‘method calls will have an
XML representation’.”

Secondly, often there is no semantic interoperability
between business and IT experts and also between different
business experts, as well as between different IT experts.
This happens because the same data (such as “meaningful
names”) may be and often are interpreted differently by
different stakeholders, and in the absence of an explicit
domain model these differences may not be discovered
until it is too late. Grace Hopper observed in 1957 that
“[w]hile the computation of the square root of a floating
decimal number remained the same in Pittsburgh, Los
Angeles, and New York, the computation of gross-to-net
pay obviously did not remain the same even in two instal-
lations in the same city” [9]. The same kind of problems
still exists today, and we still often encounter statements
like “everyone knows what a ‘patient’ is”, or “everyone
knows what a ‘trade confirmation’ is”. Many tool vendors
avoid these issues, and for a good reason: understanding
and solving semantic interoperability problems requires

’Business experts have no time or desire to study — for 5 days, 8
hours a day — the many facilities of a notation using toy examples, as
often happens when popular “powerful” notations are taught.

human intervention that cannot be replaced with any tools.
3. Obstacles for interoperability

Interoperability problems are not specific to software
systems and have been acknowledged by many business
and IT experts. Solution attempts have existed for quite a
while, but often they resulted in not much more than
warm and fuzzy feelings during meetings. Many if not
most failed attempts were based on various more or less
fashionable information technology tools and methodol-
ogies instead of clear and explicit domain ontologies. On
the one hand, most specifications have relied on (a lot of)
tacit assumptions which are clearly different for different
specification readers. On the other hand, even explicit
fragments of specifications presented using box-and-line
diagrams (as all too often various architectures and even
business plans have been shown), or in natural language,
lead to serious problems because different people will
interpret the specification differently. Indeed, in order to
transmit a message from one person to another without
loss of meaning, the author and recipient(s) of the message
have to use the same ontology and the same notation.
Using the same natural (colloquial) language as a notation
is not sufficient since in order to preserve meaning we
need also the same context, the same language experience,
language norms, cultural tradition, and so on [21], and
these properties of different people are often implicit and
(very) different. At the same time, a restrictive artificial
language with precisely defined semantics that does not
have contexts, cultural traditions, and so on, can guarantee
an adequate transmission of a message’s semantics, provid-
ed, of course, that it can be adequately represented in that
language. As a somewhat crude approximation of such a
restrictive language, we may consider “legalese” in which,
for example, laws (providing “the same context) and con-
tracts are written.

More recently, the recognition of importance of ontol-
ogies (see, for example, an overview in [37]) could have
become a much-needed (social) innovation — not even a
radical one — used to solve the interoperability problems.

However, ontology development today is in a poor
state. Often, it has been replaced with an emphasis on (a
large number of) logic and ontology languages, in the
same manner as programming has been replaced with an
emphasis on various “baroque programming languages”
blurring our vision “by the wealth of their mutually con-
flicting ‘powerful features’ ” (Dijkstra), or in the same
manner as analysis has been replaced with an emphasis on
“Undefined modeling languages” (Parnas). As a (or the)
result, the complexity of the domain and problems has
been replaced with the complexity of the language (as



Dijkstra observed, such languages were used to express in
a funny way the usually given algorithms). Furthermore,
in the context of modeling and ontology languages, meth-
odologies are being created for the sake of understanding
how to use the usually complex tools. Because of the lack
of any generally accepted processes and methodologies,
the tools exist independently and have little support for or
concern with interoperability (Ken Baclawski). Also, most
conceptual modeling activities have proceeded without the
benefit of theory [37]. These often buzzword-compliant
approaches are tinkering (Bunge) rather than engineering
ones.

The primary goal of a programming language is accurate
communication among humans. Clearly, the same is true
about a modeling (or ontology) language. With many
currently popular languages, this goal has not been reached.

As a result, even in cases when a specification exists
and has been agreed upon by the relevant stakeholders, it
may not guarantee interoperability of compliant systems,
computer-based or otherwise. For example, if one vendor
of a supposedly compliant product interprets the spec-
ification one way and another vendor interprets it another
way, then both will claim compliance yet the products
won’t interoperate, and nobody can say for certain which
interpretation is “the right one”. For another example,
different business experts may agree on the apparent validity
of the business specification, but may interpret tacit under-
lying assumptions in different ways, and therefore their
understandings of the specification — composed of the
explicit parts and the tacit assumptions — will differ
leading to serious (IT and) business problems. As an
illustration, we may recall the “dot-com” epoch when people
“suddenly realized that they had invested a fortune based
on a few beautiful graphics that were laughably called a
business plan” [22].

4. A system of common concepts:
The way to address obstacles to interopera-
bility

4.1. The need for effective patterns of reason-
ing

Information management systems are becoming more
complex and non-trivial since they have to serve the needs
of complex, non-trivial and rapidly changing businesses.
In order to succeed in understanding, specifying, designing
and developing information systems we should do better
than use rigid methodologies combined with step-by-step
approaches, or, alternatively, specification-free approaches’.

3Here is a fragment of the description of the event “Using formal

This appears to be difficult (but is not) and perhaps
unusual. As E.W.Dijkstra observed a while ago, “many
students don’t want to be shown effective patterns of
reasoning, they want to be told what to do. ... They
expect a so-called ‘complete methodology’... and complain
when they don’t get what only the quack can provide. (We
just addressed a bunch of industrial computing scientists,
and the above phenomenon was alarmingly pronounced.)”
[5]. Instead of using “junk food” — the metaphor for
simplistic methodologies we owe to Paul Clermont — we
should better use effective patterns of reasoning that help
at all stages of information management, as well as in
business management, independently of any possible
computer-based realization of its fragments.

4.2. Where do we get these patterns of reason-
ing?

We certainly do not want to invent them for each and
every project or stage of a project. Fortunately, we do not
need to do that either: an excellent and well-structured
system of common concepts on which patterns of reasoning
may be based, already exists. It was defined in an abstract,
precise and concise — elegant! — manner as an international
standard: the Reference Model of Open Distributed Pro-
cessing (RM-ODP) standardized by the International Stan-
dards Organization (ISO) in 1995 [25, 26].

4.3. Semantics

RM-ODP specifies semantics in a manner that is syntax-,
methodology-, and tool-neutral. It provides precision with-
out programming’. The Foundations of RM-ODP are very
short — only 18 pages. Every concept there is precisely
defined in clearly structured English within the context of
other precisely defined concepts. In other words, the reader

methods to understand requirements better” at the Imperial College
London (November 6, 2002) [27]: “Anthony Hall: [...] by being precise,
early, you could discover problems and reduce trouble during develop-
ment.[...] Precise requirements could be defined in Z, a logic notation.
[...] Z found as many errors as unit testing, but was five times cheaper.
It found errors early too: many of the errors introduced by specification
were removed during architecture or detailed design, and in a recent
project only one specification error survived through to operations. Mod-
estly but with some pride he quoted an authentic customer statement:
“The system behaves impeccably as expected.” Axel van Lamsweerde
said that he agreed 1000%, but what of people who advocated agile
methods? Anthony Hall replied by quoting John Barnes: “Ada is not
meant to make programming quick. It’s meant to make programming
slow. Slow is good”. There was laughter.”

*This expression was used by Anthony Hall. Some IT experts claim
that “business people cannot understand precision” and that therefore
business experts should be provided only with various narratives and
pictures instead of precise specifications. These condescending claims
are obviously wrong since business experts have understood precision
and made precise decisions for millennia.



does not have to figure out what a particular term means,
and neither does the reader have to rely on tacit assumptions
left undefined since “everyone knows what this means”
(but do they know and mean the same things?).

RM-ODP eliminates much of the work that would
otherwise be required by each organization to develop its
own similar but proprietary guidelines — patterns of rea-
soning used to understand and to specify businesses as
well as to specify, design and develop information systems
for these businesses. RM-ODP (hopefully) will also provide
the incentive to many business and IT organizations to
follow similar approaches in developing specifications,
leading to industry standards. RM-ODP has already been
substantially used in creating other important standards,
such as ISO standards — General Relationship Model and
Trader, and OMG standards — UML Profile for Enterprise
Distributed Object Computing, Model-Driven Architecture,
and others, as well as industry-specific (vertical) business-
specification standards.

4.4. Is this a radical novelty?

There is nothing radically new here. The need to elucidate
the definitions of things, actions, and especially the structure
(relationships) of a system for understanding of that system
has been noted by many authors, both in modern-day
information management and systems thinking, and much
earlier (recall the quote from Bagehot, for example). More-
over, the concepts essential to understand and specify the
semantics of system components and structure have been
formulated and discussed in IT, mathematics, philosophy,
and system analysis for a while. RM-ODP and the interna-
tional standard used to describe relationships in more detail
— the General Relationship Model (GRM) [8] — define a
system of these concepts and are based on these ideas. This
system includes such concepts as system, abstraction, view-
point, level, object, action, state, behavior, type, subtype,
template, composition, refinement, contract, name, context,
invariant, pre- and post-condition, failure, error, and con-
formance. These semantics concepts are not associated with
a particular technology approach (such as object orientation)
and are neutral with respect to representational or tool-related
issues.

Many of these concepts are quite familiar to good
programmers and analysts. In particular, most have been
around in programming since the mid-1960s. Many have
also been successfully used in various modeling approaches
within the framework of the three-schema database architec-
ture. Some of them have been used in engineering and
other areas of human endeavor (such as business and law)
for centuries. The RM-ODP definitions are theoretically
sound (based on mathematics, as demonstrated, for example,
in the Architectural Semantics part of the standard) and

have been successfully used in practice. In the same manner
as businesses in the US rely on the standard Uniform
Commercial Code, system specifiers ought to rely on the
standard RM-ODP.

4.5. Is RM-ODP really useful?

Here is an assessment of using RM-ODP to specify
systems (from the European Air Traffic Management System
Architecture Workshop, held at EUROCONTROL head-
quarters in Brussels on June 11-13, 1996): “The application
of RM-ODP provided insight into a number of interopera-
bility issues... The RM-ODP... quickly showed the impor-
tance of correct focusing, scope, interpretation and represen-
tation within the descriptions. The RM-ODP approach
impels the analyst to state clearly the focus and scope at
the beginning of the process... The model provides a
common, consistent and incremental approach for describing
the goals, objectives and behaviour of systems in detail.
Hence, it offers support for life-cycle management and for
strategy studies. In a similar way, it also offers support for
COTS procurement — both for the procurement specification
and for the suppliers’ system specification and design
specification.”

Look at this evidence. Not only was RM-ODP useful
at the specification stages; it was valuable at all stages of
information management including procurement and eval-
uation of suppliers’ systems. This is especially important
in environments where “virtually all users are configuring
systems, not developing them from scratch” [28].

There exists a lot more evidence of this kind, not only
in air traffic control but also in less exotic areas of telecom-
munications, finance, insurance, document management,
medical, pharmaceutical and other industries, as well as in
management and strategic consulting. For example, RM-
ODP (together with GRM) was used:

* to elucidate and describe various architectures in a
large international financial institution,

* to provide a successful communication mechanism
for stakeholders in business process reengineering projects
(and to describe these projects from specification to
realization),

* to specify COTS software components in a simple
and understandable manner so that the semantics of
these components became clear to their users,

* to create and use simple and elegant (and complete)
business specifications of various financial domains (such
as accounting, trading, exotic options, etc.) used by
large financial firms in their work, both for information
system creation and for business process change,

* to specify products by healthcare software vendors



transforming creation of these specifications “from craft
to a formal science”,

* to develop a complete human resources model for
DoD,

* to formulate a clear model of document manage-
ment separating the concerns of content, logical design,
and physical presentation,

e to provide a foundation for business decisions
related to mergers and acquisitions,

* to elucidate and formulate fragments of the UML
metamodel,

* to describe business strategies,

* to describe various business patterns,

* to develop ontologies of various business domains,

e to build the industry library in the pharmaceutical
industry,

and so on. Some of these applications were described by
satisfied clients in literature [16 (several papers), 6, 18,
13, 10, 15, 7, 31, 23, 34, 24].

4.6. Separation of concerns based on a common
foundation

RM-ODP makes it possible (although not trivial!) to
formulate understandable specifications in a disciplined
manner. Specifications will be read by people who are
non-experts in specifications. This especially applies to
business specifications [11, 12, 14] all too often reduced
to the elusive “business rules” (which are “in the code”).

Discipline means precision and abstraction. Precision
means (among other things) that a developer will not have
to invent business rules that have not been described at all
or have been described in an ambiguous or incomplete
manner. Abstraction means (among other things) that a
subject matter expert will not waste time and effort trying
to understand business rules in terms of a particular comput-
er-based implementation. Business rules (and a business
enterprise in general) should be specified using abstract
and precise concepts understandable to any good subject
matter expert, analyst, developer, or (even) a non-IT manager.
(Recall the quote from Stu Feldman, above.) A system of
these concepts is the same for all kinds of specifications
— thus providing an excellent foundation for interopera-
bility — and has been formulated and described in RM-ODP
and standards based on it, such as GRM.

The basic concepts defined in RM-ODP and GRM can
be — and have been — used not only to describe any
kinds of traditional businesses, but also to describe the
essentials of any existing or to-be-created information sys-
tems (computer-based or not). In this manner, the business
and IT stakeholders are able to use a common system of

concepts and therefore to communicate in a meaningful
manner. Of course, the syntactic representations used by
different stakeholders to represent the same semantics may
and often does differ, and also of course, different stake-
holders may be interested in different levels and viewpoints
when describing the same system, but the underlying se-
mantic framework still remains the same.

While using the same system of concepts for all kinds
of specifications, we should explicitly separate business
from IT system specifications because traditional business
and IT ontologies are different. (As a well-known example,
a patient is not the same as one of patient’s records.)
Within each specification we should separate concerns as
soon as we see that the specification (including a program
— a specification for a computer system) becomes too
complex for human understanding and is in danger of
having “too much stuff”. (“Precise” is not the same as
“detailed”, and therefore being abstract does not mean
being imprecise. Good specifiers, in the same manner as
good engineers, postpone decisions and do not get drowned
in details. The higher the level of abstraction the more
important it is to be precise!)

5. Well-structured specifications
5.1. Relationship semantics

A specification should be well-structured since only in
this manner it can be carefully considered, read and under-
stood. The structure of a system is “the collection of
relations among its components or among these and items
in its environments” [4]. Therefore precisely defined rela-
tionship semantics is essential for reading, understanding,
and creating any specification. The semantics of a relation-
ship is defined by means of its invariant referring to
(collective) properties of relationship participants. Fortu-
nately, it has been possible to specify the structure of a
large number of diverse business and IT systems — such
as financial derivatives, insurance underwriting, telecom-
munications systems, document management, UML meta-
models, messaging, and IT system architectures — using
only three kinds of generic relationships: composition,
subtyping and reference. Semantic definitions of these
relationships have been around for some time (see, for
example, the exactifications in RM-ODP and GRM, as
well as the modeling texts [19, 11, 14]), and it is important
and instructive to observe that these definitions are based
on property determination. In particular, the existence of
emergent properties of a composite is the defining charac-
teristic of the composition relationship’ (see [11, 14, 4]

A composition is a relationship between a “whole” (composite) and
its “parts” (components). The type of the whole corresponds to the



for many examples). Thus, it also becomes blindingly
obvious why an often encountered statement “this [named]
line between these two boxes formally represents the rela-
tionship between these two things” does not convey anything
at all about the relationship semantics, and therefore why
box-and-line diagrams are inadequate for understanding
and decision making.

5.2. Abstraction levels and viewpoints

Precision (exactification) is not sufficient for human
understanding. Indeed, hundreds or thousands of pages of
precise material are (almost) useless if the material is not
well-structured. In other words, understanding requires ab-
straction — “suppression of irrelevant detail” [25], so that
essential (for a specific level or for a specific viewpoint)
aspects of a specification are clearly separated from accidental
ones. Clearly, this is not a new approach, but it has not
been stressed in most syntax- , methodology- or tool-oriented
texts. And it is instructive that the concepts of abstraction,
levels and viewpoints are among the first ones to be
described in RM-ODP.

RM-ODP uses abstraction within the context of levels.
In particular, it notes that “fixing a given level of abstraction
may involve identifying which elements are atomic”. For
a more specific example, the concept of composition is
defined using abstraction levels: “[a] combination of two
or more [items] yielding a new [item], at a different level
of abstraction. The characteristics of the new [item] are
determined by the [items] being combined and by the way
they are combined.”

RM-ODP also uses abstraction within the context of
viewpoints — “form[s] of abstraction achieved using a
selected set of architectural concepts and structuring rules,
in order to focus on particular concerns within a system”.
All viewpoints are based on the same system of basic
concepts. RM-ODP specifies five basic viewpoints — en-
terprise, information, computational, engineering, and tech-
nology. It is possible to define correspondences between
viewpoints (RM-ODP shows how to do that and provides
some examples), but often, one viewpoint cannot be defined
in terms of another. Of course, the five basic viewpoints
are not the only ones that may be used to describe a
system. In accordance with the definition of a viewpoint,

types of the parts, and an instance of the whole corresponds to zero or
more instances of each type of the part. There are two kinds of the
properties of the whole those that are determined by the properties of
the parts and the way these parts are combined; and those that are
independent of the properties of any parts. A composition also satisfies
the general relationship invariant that implies, in particular, that an instance
of the whole cannot have itself as a part. This definition is based on the
definition of composition in RM-ODP, GRM, on the definition of compo-
sition used in systems thinking (e.g., by F.A.Hayek) and in exact philosophy
e.g., by Mario Bunge), and on usage of composition by such classics as
Adam Smith in his Wealth of Nations (see [14]).

any reasonable set of architectural concepts and structuring
rules may be chosen to focus our attention on particular
concerns within a system; and therefore we often use a
business viewpoint and an information system viewpoint’.
In this manner, for example, we can exactify the slogan
“no requirements in terms of solutions” since requirements
and solutions belong to different viewpoints.

6. Business patterns and modeling

6.1. Only primitives?

RM-ODP provides a small but powerful system of
interrelated definitional primitives that you can use to
build your own specification. These primitives drastically
reduce the number of base things and relationships and,
hence, the complexity and size of a specification. More
importantly, they reduce the number of concepts that the
readers of a specification have to master in order to understand
it.

The primitives need to be expanded in actual spec-
ifications. RM-ODP helps here in the form of “structuring
rules” specifically designed to allow RM-ODP primitives
to be used to develop more complex and/or specific def-
initions of various business patterns. These specialized
definitions can be successfully mixed with the original
primitives to create increasingly rich systems of definitions.
This is similar to the way in which mathematicians create
arbitrarily rich theorems from other theorems and well-
understood basic axioms, or similar to how engineers
create arbitrarily large and complex structures from common
subassemblies.

The business patterns, of course, have to be discovered
and explicitly formulated — and this is what business
domain modeling is for. It discovers and specifies deep
analogies between seemingly different things, relationships,
and processes. In this manner, organizations can understand
and deal with “always-changing” requirements as variations
of a small number of conceptually simple patterns, leading
to substantial savings in intellectual effort, time, and money.
Among other things, it becomes possible to be demonstrably
proactive rather than reactive in solving business problems
because a clear and crisp business model may by itself
provide a substantial competitive advantage for the modeled
enterprise. To quote a satisfied client from a large financial
firm, “[i]t has changed the way the client views software
development and this single effort will serve as the founda-
tion for other planned software development initiatives.

SThis distinction between business and system viewpoints was made
explicit, among others, in the distinction between computation-
independent and the other two (platform-independent and platform-
specific) viewpoints of the OMG’s Model-Driven Architecture.



This business specification, written for software develop-
ment, has potential application in other areas. Portions of
the specification can be incorporated in corporate policy
manuals; regulatory compliance documents, and serves as
a basis for business process review.” [7] In other words,
various business and IT decisions could be based on a
solid and explicit foundation rather than on handwaving,
eloquence of gurus, or lemming-like considerations.

6.2. Patterns published

The reference list includes books and papers with frag-
ments of business and IT system specifications based on
RM-ODP and GRM. None of these are toy examples.
Some of them are illustrative and fun but not trivial —
like those modeling fragments of domains described by
Lewis Carroll — while others are fragments from the
generic parts of industrial specifications created for (and
with active participation of) business and IT customers.
These generic business and IT specifications may be, and
have been, reused as business patterns in various customer
engagements: after all, pattern matching in context is an
essential part of successful analysis (and design). Since
generic business patterns — such as, at different levels of
genericity, invariant, composition, or contract— can be
used in any application area, a good analyst can become a
contributor in an entirely new area (and successfully inter-
operate with its stakeholders) within a very short timeframe.
The conceptual foundation together with the generic business
patterns let the good analyst to ask proper questions and
“begin speaking the language [of the entirely new area]
competently within a week or so” [35]. Thus, we may
contrast Bunge’s use of Claparede’s criterion of intelligence
as the ability to solve new problems [4] with an unfortunately
typical help wanted advertisement for a business analyst
stating that “knowledge of XXX is a must”

Business-specific business patterns can be discovered
and formulated by reusing and exactifying their existing
definitions, especially since some of them have been around
for centuries, see, for example, Adam Smith’s Wealth of
Nations, rather than by rewriting and redefining them as
“requirements” for each project. In other words, ontology
reuse — and concept reuse in general — is much more
valuable than code reuse.

Let us recall that Peter Naur proposed in 1968 [29] to
use the work of Christopher Alexander long before it
became fashionable to refer to it as a source of ideas about
attacking the software design problem. Naur justified his
choice by the fact that Alexander was concerned with the
design of large heterogeneous constructions. Indeed, Alex-
ander emphasized in The Timeless Way of Building that
“...a pattern defines an invariant field which captures all

the possible solutions to the problem given, in the stated
range of contexts... the task of finding, or discovering,
such an invariant field is immensely hard... anyone who
takes the trouble to consider it carefully can understand
it... these statements can be challenged because they are
precise” [1].

Creating and elucidating a domain model cannot be
automated. There is no algorithm (or tool) to do that.
Such models are created and elucidated by teams consisting
of domain SMEs (subject matter experts) and analysts.
Even when the SMEs are experienced in formulating ontol-
ogies of their domain in an abstract (that is, understandable)
and precise manner, analysts are still essential to discover,
elucidate and exactify tacit assumptions common to all, or
some, SMEs. Ignorance — real or perceived — of the
subject matter is needed to make the tacit assumptions
explicit. As early as 1969, P. Burkinshaw urged: “Get
some intelligent ignoramus to read through your doc-
umentation; [...] he will find many ‘holes’ where essential
information has been omitted. Unfortunately intelligent
people don’t stay ignorant too long, so ignorance becomes
a rather precious resource.” [30].

It is not sufficient to discover, formulate and use (fun-
damental, basic, and more specific) concepts and structures
essential for a good model. We ought to communicate
these discoveries, both for understanding of that model
and for their usage in other, often apparently very different,
models. In the modeling context, a concise and elegant
system of basic concepts described in RM-ODP provides a
foundation for such a language. Sometimes the specifics
of this language or, more often, its fragments ought to be
created (collectively, by the modelers together with the
subject matter experts) for successful communication of a
model’s semantics. Models formulated in such a manner
(of course, based on concepts and structures common to
most systems) establish a common background used by
all stakeholders of an organization and its relevant environ-
ments (e.g., clients and subcontractors) in understanding
and business decision making.

7. Ontologies and invariants

7.1. Domain semantics

When we want to use an existing system (component)
or plan to use a new one, we need to specify (for existing
IT systems it often means “reverse engineer”’) the semantics
of its interfaces, since only precise and explicit semantics
make interoperability possible. This applies to any kind of
system, independently of whether it is (or will be) computer-
based. Clearly, in order to understand and define (the
requirements for) interface semantics, we need to be explicit



and precise about the business domain in which the system
works or will work. This is true for all kinds of businesses
— be they traditional ones such as trading, or the business
of creating an information management system, or of creating
and using a relational database, or of asynchronous messag-
ing, or of a particular general ledger legacy program. In
other words, understanding and documenting of “what is
there in the business domain” (also known as ontology)
comes first. Within this explicitly specified framework,
we can discuss the systems (and their interfaces) that work
or are planned to work in this domain (after all, the
descriptions of these systems refer to the things, relationships
and actions of the domain!). And a data dictionary is not
such a framework: as noted by many and as we know from
practice, the same name may mean substantially or somewhat
different things in different contexts, and the structure of
these contexts — expressed in the relationships — is
essential for understanding of the things we deal with.

Although ontologies have become fashionable rather
recently, the underlying concepts for ontology understand-
ing, development and use in business and IT system analysis
are not new. They have been known from exact philosophy
(notably, Bunge’s work [3, 4]), database, object and infor-
mation modeling work (for example, [37, 19]), systems
thinking (F.A.Hayek’, von Mises and others), and, of
course, such international standards as RM-ODP and GRM.
In addition to various kinds of subtyping, the concept of
composition is among the most important in domain mod-
eling, and its definition — based on levels of abstraction
and on emergent property determination — is essentially
the same in RM-ODP, GRM, and in Bunge’s work.

7.2. The importance of elegance

With the introduction of standards like RM-ODP and
GRM, today the analysis situation resembles the one that
existed in programming in the second half of the 1970s.
At that time, in E.W. Dijkstra’s words, programming was
in the process of moving from a craft to a scientific
discipline. Most observations made by Dijkstra then for
programming are reinvented now for analysis. We also see
that in analysis, as in programming (an observation made
by Dijkstra as early as 1962), elegance is of utmost impor-
tance; elegant specifications are liked by all and, thus,
successfully used and reused. As Dijkstra said, “in the
design of sophisticated digital systems, elegance is not a
dispensable luxury but a matter of life and death, being a
major factor that decides between success and failure”, and

"For example, in accordance with Hayek’s observations, prices consti-
tute an essential emergent property that makes possible the functioning
of a market economy and that embodies more information than each
participant of a market economy directly has.

a good specification ought to be convincing in the same
manner as a good program is. For a specification to be of
use (and to be produced in a reasonable manner, as any
artefact produced by professional engineers), it needs to
emphasize semantics rather than syntax, and to do that in
an abstract and precise manner. This is precisely what
RM-ODP and GRM have been designed to do.

7.3. “Learn to abstract: try not to think like a
programmer” (J.Wing)

Both in programming and in analysis, the fashionable
approaches have often encouraged practitioners to start their
work in the middle using an operational approach. Jeannette
Wing provided an excellent example of an approach to be
avoided: ““If you do this and then that and then this and
then that, you end up in a good state...” This [...] process
quickly gets out of control. The problem is related to
understanding invariants.” [36]. Invariants are essential for
defining the ontology of the domain of interest, be it a
business or an information system one. In particular, they
define the types of things, actions and relationships. They
also determine what actions (and under what circumstances)
can and cannot be executed in the context of the domain
ontology. To quote a recent eloquent paper by Turski, one
of the founders of computing science, a fundamental break-
through in programming happened when “[i]nstead of pre-
occupation with a dynamic process (‘what happens next’),
we concentrated on a piece of text (‘what does it say’)”
[33]. Indeed, the same kind of difference exists between
various buzzword-compliant operational approaches to anal-
ysis that quickly get out of control, and elegant approaches
that lead to understanding of businesses and information
systems.

These elegant approaches start with and are based on
ontologies. We do not want to start in the middle (that is,
with a possible solution, as it too often happens) or even
with a specific problem (that is, with requirements). Rather,
we start with the stable (that is, invariant) basics and
proceed from there. (The Information viewpoint of RM-ODP
explicitly states that static and dynamic schemata are “subject
to the constraints of any invariant schemata” [26].) Clearly,
a problem and its solution cannot be understood and specified
without the basics because the interrelated concepts used
in describing the problem and the solution are defined by
(and in) the basics.

7.4. Discover different ontologies

Substantial and especially somewhat different ontologies
of different stakeholders (especially tacit ontologies) may
make semantic interoperability difficult to achieve. In order
to solve this problem, the existence of different ontologies



has to be made explicit. Ontologies — business domain
models — are the framework for interrelating the existing
vocabularies of different stakeholder communities instead
of throwing these vocabularies away, thus providing in-
teroperability solutions that really work, because they in-
volve business meanings, while purely technical (or syntac-
tical) solutions fail. Explicit ontologies make it possible
to discover and specify mappings between concepts and
relationships used in different ontologies (and often to
enrich some of them). As a result, different stakeholders
can communicate and interoperate: it will become clear
which different context-specific terms have the same meaning
and which identical context-specific terms have different
meanings.

7.5. “Requirements always change”?

In this context, it is instructive to elucidate the (all too
familiar) statement “requirements always change, and there-
fore it is useless to formulate them”. Indeed, business
processes often change. Such changes may lead to a com-
petitive advantage for a business or they may even be
perceived as necessary for the business to survive. Similarly,
decisions about using IT systems to automate certain busi-
ness processes may also change (for example, due to per-
ceived opportunities). At the same time, the basics of a
business — its ontology — have usually remained the
same for centuries, if not for millennia: for example, banking
and financial texts published in the early 20th century (or
earlier, such as fragments from Adam Smith’s Wealth of
Nations) have been successfully used to understand and
specify the corresponding business domains. The changes
due to modernity are minimal and are mostly additions to
or refinements of the existing classical models.

These considerations apply to any kind of business
modeling as well as to requirements discovery and spec-
ification, independently of whether a computer-based IT
system will be created or bought to automate some business
processes or steps. As noted earlier, a crisp business model
is used to make demonstrably effective business decisions
only some of which are IT-related. And the concepts,
constructs and standards used in creating such models are
based on mathematics, “the art and science of effective
reasoning” (Dijkstra).

8. Notations

Both in traditional programming and in modeling, we
know from the works of Dijkstra and other founders — as
well as from the experience of the best practitioners —
that the inherent complexities of the problems and their
solutions should not be exaggerated by imposing on the

readers of programs or specifications a complex notation
“with a plethora of ad hoc facilities of dubious value and
unquestionable ugliness” [33]. In traditional programming,
program readers and writers are usually humans with roughly
the same background in the notation used. Contrariwise,
in modeling (and specifications — the result of modeling),
readers and writers often have drastically different back-
grounds in the notations used. Therefore in order for business
experts to use a precise notation to communicate about
business models, it is absolutely essential to explain the
basics of the notation on the ‘back of an envelope’. This is
important to get and retain the attention of the business
people. Imposing a complex notation will move the reader’s
(and modeler’s) attention from the complexity of the prob-
lems to the complexity of their representation. In other
words, the attention will be moved from the essential
semantics to the accidental syntax. As a result of such
semiotic pollution, communication about problems suffers.
This explains why many business system specifications
are write-only, at least from the viewpoint of their main
customers — the business decision makers.

Business (and any system) modeling notations should
not be restricted by the artefacts existing or easily im-
plementable in currently used IT systems. Thus, a modeling
notation ought to be able to express multiple and dynamic
subtyping, multiple decompositions of the same individual
(thing or action), non-binary relationships with well-defined
semantics, and other concepts defined in RM-ODP and
GRM. For example, it should be possible to specify that a
banking industry is a composite in a composition of banks,
a federal regulator, customers, and a lot of something else
(like clearing houses), and to say that in this composition
both the composite and its components ought to exist
together.

Turski stresses the need to limit ourselves in the process
of understandable program construction to the systematic
use — known as “structured programming” (invented by
Dijkstra) — of a small collection of programming language
instructions having “a clean and well-defined meaning”.
Further, he emphasizes that a high quality specification
has to have a model not only in the programming language
domain, but also in the language “used for the description
of (a part) of the reality of interest”, that is, understandable
to the business subject matter experts. Following the ideas
of structured programming, we may want to limit ourselves
in the process of understandable specification construction
to the systematic use of a small collection of modeling
constructs having a well-defined meaning. And this collec-
tion, in fact, this system, already exists and was described
in RM-ODP.

When we have to choose or use a specific notation or
tool in our programming or modeling activities, we should,
first and foremost, look at whether and how the semantics



of concepts we use in programming or modeling is supported
by the tool. If the notation or tool is overwhelming then
everything need not be lost: it may be possible to choose
a (very) small subset of that notation in order to represent
concept semantics. This approach is not new at all: it is
well-known, for example, that various small subsets of
PL/I have been created and used exactly for this purpose.
Similarly, a very small subset of UML for business modeling
[14] has been created and used in various engagements
such as those described in [7, 12] and in several papers in
[16], as well as for specifying relationships in [6]. This
subset has been represented on one page.

At the same time, an important caveat is in order.
When a subset of a notation is being chosen to represent
concept semantics, it is essential for the semantics to have
an exact representation in the notation. Since many important
aspects of UML semantics have not been well-defined, it
became necessary to provide for precise definitions of UML
constructs used to represent the semantics of such concepts
as composition, subtyping and reference relationships. This
approach was accepted by OMG in the UML profile for
EDOC [6].

9. Conclusions

It is now well understood that attempts to comply with
a specification of any system having incomplete or unclear
semantics will not guarantee interoperability because im-
portant information will be lost. The system of concepts
defined in RM-ODP makes it possible to completely and
precisely define the essential aspects of the universe of
discourse, be it to describe a business or an information
management system. These specifications are based on the
semantics of the appropriate domain rather than on existing
products or solutions. Since the system of concepts and
constructs used for these specifications has been itself
defined in a clear and crisp manner, the specifications can
be read, understood, and thus agreed or disagreed upon by
all stakeholders. Moreover, specifications of existing prod-
ucts or systems, including legacy systems, can and should
be based on the same approach thus leading to demonstrably
justified user decisions about acquiring such systems.

An RM-ODP-based specification provides a top-level
precise (not semi-precise!) road-map of the appropriate frag-
ment of a business or IT system, or of a product, and with
its refinements down to the level(s) we are interested in.
These specifications define what should always be true
about the things and relationships of the business or IT
domain as well as what should be true about each process
(step, operation). All defaults are made explicit: in particular,
the business expertise does not disappear when the business
expert leaves the meeting room, and everything the devel-

opers need to know about the business domain and “were
afraid to ask” is in the specification. Such specifications
may be, and have been, used for making demonstrably
justified strategic, tactical, and operational decisions in all
kinds of business and IT system environments.

10. Acknowledgments

Many thanks go to the colleagues and customers the
interactions with whom helped to distill the concepts and
approaches described here. Some of their names are in the
reference list below, and many names are in books and
papers from this list. Also, specific thanks go to anonymous
reviewers for very useful comments and to Rashid Bashshur
for useful discussions about the structure of the paper. A
draft of this paper was presented at the Telemedicine sym-
posium in Ann Arbor, Michigan, in May 2004.

11. References

[1] Christopher Alexander. The Timeless Way of Building. Ox-
ford University Press, 1979.

[2] W. Bagehot. Lombard Street: A Description of the Money
Market. Scribner, Armstrong & Co., New York, 1873.

[3] Mario Bunge. Philosophical dictionary. Prometheus
Books, 2003.

[4] Mario Bunge. Emergence and convergence. Toronto Uni-
versity Press, 2004.

[5] E.W. Dijkstra. Management and Mathematics. EWD966,
The University of Texas at Austin, 14 June 1986.

[6] A UML Profile for Enterprise Distributed Object Computing
Joint Final Submission Part I. 18 June 2001. OMG Doc-
ument Number: ad/2001-06-09. 3.6. The Relationship Pro-
file.

[7] James S. Garrison. Business specifications: Using UML to
specify the trading of foreign exchange options. Proceed-
ings of the 10th OOPSLA workshop on behavioral seman-
tics (Back to Basics) (Eds. K. Baclawski and H. Kilov).
Northeastern University, Boston, 2001, pp. 79-84.

[8] GRM. ISO/IEC JTC1/SC21, Information Technology. Open
Systems Interconnection - Management Information Ser-
vices - Structure of Management Information - Part 7:
General Relationship Model, 1995. ISO/IEC 10165- 7.2.

[9] Grace Hopper. Automatic Programming for Business Ap-
plications. In Proceedings of the 4th annual computer
applications symposium, October 24-25, 1957, Armour
Research Foundation, Chicago.

[10] J.Hassall, J.Eaton. Applying ISO RM-ODP in the spec-
ification of CORBA interfaces and semantics to general
ledger systems. Behavioral specifications of businesses
and systems (Ed. by H.Kilov, B.Rumpe, [.Simmonds), Klu-
wer Academic Publishers, 1999, pp. 91-104.



[11] H. Kilov. Business Specifications. Prentice-Hall, 1999.

[12] H.Kilov. Anticipating the market: The value of business
models. Distributed Enterprise Architecture Advisory Ser-
vice Executive Report. Cutter Consortium, 2001.

[13] Thomas Kudrass. Coping with semantics in XML document
management. In Proceedings of the 10th OOPSLA work-
shop on Behavioral Semantics — Back to basics. (Tampa,
Florida, 15 October 2001), pp. 150-161.

[14] H.Kilov. Business models. Prentice-Hall, 2002.

[15] H.Kilov, A.Ash. How to ask questions: Handling com-
plexity in a business specification. Proceedings of the
OOPSLA’97 Workshop on object-oriented behavioral se-
mantics (Atlanta, October 6th, 1997), ed. by H.Kilov,
B.Rumpe, [.Simmonds, Munich University of Technology,
TUM-19737, pp. 99-114.

[16] H.Kilov and K.Baclawski (Eds.) Practical foundations of
business system specifications. Kluwer Academic Publish-
ers, 2003.

[17] H.Kilov, M.Guttman. ISO Reference Model for Open Dis-
tributed Processing: an informal introduction. Cutter
Consortium (Distributed Computing Architecture Advi-
sory Service) Executive Report, Vol. 2, No. 4 (April 1999).
ISSN 1523-5912.

[18] H.Kilov, H. Mogill, I. Simmonds. Invariants in the Trench-
es. Object-Oriented Behavioral Specifications (Ed. by H.
Kilov and W. Harvey). Kluwer Academic Publishers, 1996,
pp. 77-100.

[19] H.Kilov, J.Ross. Information modeling. Prentice-Hall,
1994.

[20] H.Kilov, K.P.Tyson. Semantics Working Group Green Pa-
per One. OMG Semantics Working Group. OMG Document
Number ormsc/97-06-10r.

[21] Yuri M. Lotman. Universe of the mind: a semiotic theory
of culture. Translated by Ann Shukman. Introduction by
Umberto Eco. London and New York: I.B.Tauris & Co.
1990.

[22] Herbert W. Lovelace. The medium is more than the message.
Information Week, July 15, 2001.

[23] http://informatics.mayo.edu/index.php?page=11

[24] K.Riemer. An analysis of RM-ODP viewpoints and system
life cycles. In: Proceedings of the 8th OOPSLA workshop
on behavioral semantics (Ed. by K.Baclawski, H.Kilov,
A.Thalassinidis, K.Tyson). Northeastern University, 1999.

[25] RM-ODP-2. ISO/IEC JTC1/SC21. Open Distributed Pro-
cessing - Reference Model: Part 2: Foundations (ITU-T
Recommendation X.902 | ISO/IEC 10746-2).

[26] RM-ODP 3. ISO/IEC JTC1/SC21. Open Distributed Pro-
cessing - Reference Model: Part 3: Architecture (ITU-T
Recommendation X.903 | ISO/IEC 10746-3).

[27] Requirenautics Quarterly (The Newsletter of the Require-
ments Engineering Specialist Group of the British Com-
puter Society), Issue 28 (February 2003). .Ian F.Alexander.
Using formal methods to understand requirements better.,

4-6.

[28] Ian Sommervile. MDA revisited (Letter to the Editor).
IEEE Software, July/August 2004, pp. 9-10.

[29] Software Engineering. Report on a Conference sponsored
by the NATO Science Committee, Garmisch, Germany, 7th
to 11th October 1968. (Chairman: Professor Dr. F.L. Bauer,
Co-chairmen: Professor L. Bolliet, Dr. H.J. Helms; Editors:
Peter Naur and Brian Randell). January 1969.

[30] Software Engineering Techniques. Report on a Conference
sponsored by the NATO Science Committee, Rome, Italy,
27th to 31st October 1969. (Chairman: Professor P. Ercoli,
Co-Chairman: Professor Dr. F.L. Bauer, Editors: J.N. Bux-
ton and B. Randell) April 1970.

[31] Lawrence E. Sweeney, Enrique V. Kortright and Robert J.
Buckley. Developing an RM-ODP-based architecture for
the Defense Integrated Military Human Resource System.
Proceedings of the WOODPECKER-2001 (Open Distribut-
ed Processing: Enterprise, Computation, Knowledge, En-
gineering and Realisation) in conjunction with
ICEIS’ 2001, Setubal, Portugal, July 2001, pp. 110-123.

[32] [Semantic web] Hewlett-Packard. Introduction to Semantic
Web technologies. http://www.hpl.hp.com/semweb/sw-
technology.htm

[33] W.Turski. It was fun. /nformation Processing Letters,
88(2003), 7-12.

[34] A.Thalassinidis and I.Sack. Building the Industry Library
— Pharmaceutical. In: Second ECOOP Workshop on Pre-
cise Behavioral Semantics (with an Emphasis on OO Busi-
ness Specifications). (Eds. H. Kilov and B. Rumpe), Tech-
nische Universitdt Miinchen, TUM-119813, June 1998, pp.
245-253.

[35] Gerald Weinberg. Rethinking systems analysis and design.
Little, Brown, and Company, 1982.

[36] Jeannette M. Wing. Hints to specifiers. In: Teaching and
learning formal methods. (Eds. C. Neville Dean and Micha-
el G. Hinchey). Academic Press, 1996, pp.57-77.

[37] Yair Wand, Ron Weber. Reflection: Ontology in informa-
tion systems. Journal of Database Management, 15, 2
(April-June 2004), iii-vi.



