
Action Templates and Causalities in the ODP Computational Viewpoint

Raúl Romero and Antonio Vallecillo
Dpto. de Lenguajes y Ciencias de la Computación

University of Málaga, Spain
{jrromero,av}@lcc.uma.es

Abstract

The RM-ODP is a reference model that provides a
coordinating framework for Open Distributed Processing
standards, and offers a well-defined and comprehensive
set of concepts and functions for the specification of ODP
systems. Some years after its release as International
Standard, an ISO Study Group will evaluate the need for
a revision of RM-ODP, a customary process for ISO
standards. The goal is to make use of the experiences
gained from the use of the RM-ODP framework during
that period, in order to propose improvements or changes
if required. In order to serve as an input to that Group,
this paper raises two small issues that we have discovered
when trying to formalize the ODP Computational
Viewpoint: the need of an independent term for referring
to the signature of an Action Template, and the way in
which Causalities are currently defined and handled. A
proposal for addressing these issues is presented for
discussion.

1. Introduction

The ISO and the ITU-T jointly developed a Reference
Model for Open Distributed Processing (RM-ODP) [8,
11-14], which provides the coordination framework for
ODP standards, and creates an infrastructure within which
support of distribution, interworking and portability can
be integrated. The goal of this joint standardization effort
is to define a reference model to integrate a wide range of
future ODP standards for distributed systems and maintain
consistency among them.

RM-ODP provides five generic and complementary
viewpoints of the system and its environment: enterprise,
information, computational, engineering and technology.
Each of them has its own specific viewpoint language,
defining concepts and rules for specifying ODP systems
from the corresponding viewpoint.

The enterprise viewpoint focuses on the purpose, scope
and policies of an ODP system. The information
viewpoint describes the semantics of information and of
information processing. The ODP computational

viewpoint describes the functionality of a system and its
environment, in terms of a configuration of objects that
interact at interfaces. The engineering viewpoint focuses
on the mechanisms and functions required to support
distributed interactions between objects in the system.
Finally, the technology viewpoint focuses on the choice of
technology for that ODP system.

After formalizing the enterprise and the information
viewpoints concepts [3, 4] using the Maude language and
system [5, 6, 7], we recently started working on the
formalization of the computational viewpoint
specifications [2], for which other formalization efforts
also exist [1, 9, 10, 15]. Our work has allowed us to
explore the basic concepts defined in ODP, in addition to
those specific to the computational viewpoint.
Furthermore, some case studies have been developed, and
a metamodel for the Computational Viewpoint has been
proposed in [2]. The metamodel describes the concepts
used in a computational viewpoint specification and the
relationships between them.

In general, we find that Parts 2 [12] and Part 3 [13] of
the ODP Reference Model are two excellent standards,
fully consistent, and solidly conceived and architected.
However, the inherent complexity of some of the concepts
and functions defined in these two standards, their
(sometimes) cryptic definition, and the lack of examples
and real applications for most of the concepts, may hinder
their understandability for readers which are not familiar
with such terms. Having said that, we also discovered that,
once understood, the concepts provided by RM-ODP are
really valuable for the specification of open and
distributed systems, and that everything fits in the
conceptual framework with a clock-maker precision.

However, we also discovered that the use of these
standards might help uncovering some small details that
cannot be easily detected otherwise. Thus, based on our
experiences with the case studies and the definition of the
metamodel, we observed two issues in the ODP
computational viewpoint. First, the term Action Template
seems to cover both the syntactic (i.e., signature) and
semantic (i.e., behavioral) aspects of an action template.
The problem is that there is no specific concept for

referring just to the signature of an action template, which
may seem to be required in some situations, as we shall
later see. To solve this issue we propose, roughly, to
include the concept Interaction Signature, which will
specify just the syntactic part of an Action Template.

The second issue has to do with the way in which the
concept of Causality is used. The Standard allows
specifying causalities at different granularity levels
(object, interface signature, and action template), but in an
asymmetric manner. We propose a homogeneous
treatment of causalities for both interface signatures and
action templates.

In this paper we will discuss these two issues in more
detail, together with the corresponding proposals for
addressing them. Our proposals try to serve as an input for
the current ODP revision work, and for discussion
purposes.

The structure of this document is as follows. First,
Section 2 describes inconsistencies found when dealing
with the concept of Action Template. Section 3 deals with
the distinction between causalities contained at the object,
interface, and action template levels. Finally, Section 5
draws some conclusions.

2. Action Templates

The problem we found with action templates is about
the way in which this concept is used for defining
operation, signal, and stream signatures. In particular, the
problem appeared in the metamodel when trying to model
the existing relation between interface signatures,
interaction signatures, and action templates.

First, according to Part 2 [12–9.11], a Template is “the
specification of the common features of a collection of
<X>s in sufficient detail that an <X> can be instantiated
using it”. From this definition, we directly obtain that an
Action Template can be defined as “the specification of
the common features of a collection of actions in
sufficient detail that an action can be instantiated using
it.”

Then, we looked at how Action Templates are used in
Part 3 in the Computational Viewpoint, in which they play
a very relevant role.

First, we see that Part 3 indicates [13 – 7.1.12] that “an
announcement signature is an action template” (the
underlined text is ours). Another reference appears when
referring to interrogation signatures. Although we
expected a similar definition, what we find in Part 3 is that
“an interrogation signature comprises an action
template” [13 – 7.1.12].

The concept action template appears again when
defining stream interface signatures, which comprise a
finite set of action templates.

So the first issue is whether signatures “are” action
templates, or “comprise” action templates.

Furthermore, there is the issue of the way in which
action templates are used in Part 3 for defining signatures.
Commonly, signatures (of both interactions and
interfaces) are considered to remain at the syntactic level,
i.e., they are supposed to describe just the names and
types of the actions and their parameters. Semantic
information (e.g., behavior) is not usually covered by
signatures. However, this does not seem to be consistent
with the use of action templates for defining signatures,
since action templates might also include behavioral
specifications (cf. Part 2).

Certainly, this is also corroborated by Part 4 [14 –
4.4.2.12], which states that: “It should be noted that the
text in ITU-T Rec. X.902 | ISO/IEC 10746-2 treats an
interface signature as a set of action templates associated
with the interactions of an interface. Given that an action
template is likely to include semantic information as well
as syntactic. Common interpretations of interface
signature deal primarily at the syntactic level, however.
[…]”.

We propose to solve these two issues by introducing a
term that refers to the syntactic information specified by
an action template, and that we have called Interaction
Signature. This term can be used to define the signatures
of announcements, interrogations, terminations, signals
and flows (see ������� �	, that now are Interaction
Signatures. This does not contradict the current standard
text and, in fact, allows the separation of the syntactic and
the semantic information specified by an action template.

Moreover, interface signatures (an abstract class that
simply generalizes operation, signal and stream interface
signatures) now comprise sets of interaction signatures,
which seems to be more in line with the intent of the RM-
ODP standard.

Finally, and as shown in the figure, the parameters of
the action template are now associated to the syntactic
part of such action template, that is, to its Interaction
Signature, which also seems to be more natural than
attaching them directly to the Action Template.

3. Causalities

Clause 13.3 of Part 2 states that “the identification of
causality allows the categorization of roles of interacting
objects”. Furthermore, that clause provides “a basic set of
roles” and specifies that a “causality implies a constraint
on each behaviour of the participating objects while they
are interacting”.

Meanwhile, Clause 7.1 of Part 3 defines where the
indication of the causality must be defined in each case,
and for each element. For signal interfaces, their interface
signatures “comprise a set of finite action templates, one

��������	�
����
����������
����������������������
�����������
��������������������
����

for each type of signal in the interface. Each action
template comprises the name of that signal, the number,
name and types of its parameters and an indication of
causality with respect to the object which instantiates the
template”. Same for stream interfaces. However, for
operation interfaces we noticed that causalities are not
treated in the same way. In that case, the operation
interface signature comprises, apart from a set of
announcement and interrogation signatures, as
appropriate, the indication of causality for the interface as
a whole with respect to the object that instantiates the
template.

Clause 7.2.2 of Part 3 (Interaction Rules) clearly refers
to the causality “in the interface’s signature”, that seems
to support the specification of causalities at the interface
signature level. More precisely, sub-clauses 7.2.2.1 and
7.2.2.2 are clear and explicit when referring to this issue.

According to signal interaction rules [13 – 7.2.2.1], “a
computational object offering a signal interface of a given
signal interface type

• initiates signals that have initiating causality in
the interface’s signature;

• responds to signal that have responding causality
in the interface’s signature.”

Similarly, according to stream interaction rules [13 –
7.2.2.2], “a computational object offering a stream
interface

• generates flows that have producer causality in
the interface’s signature;

• receives flows that have consumer causality in the
interface’s signature.”

Thus, we find that, whereas the indication of causality
for signal and stream interfaces is defined at the action
template level, for operations it is defined at the object’s
interface signature level.

One of the reasons behind these decisions seems to be
the fact that, for operations, the causality indication
provided by the interface signature determines the
causality for each action template in the interface,
depending on what we are really using: invocations or
terminations. However, when dealing with signal or
stream interface signatures, which comprise signals or
flows that may go in different directions (i.e., incoming
and outgoing actions), there is no clear relationship
between the causality of the interface signature, and the
causalities of the individual interactions that comprise the
interface signature. Thus, causalities should be defined

both for the interface with respect to the object that
interacts and for each individual action template.

For example, let us consider a simple stream. Its
signature could have both incoming and outgoing action
templates defined for it. However, as mentioned in the
interaction rules, we need to consider an indication of
causality with respect to the role that the computational
object plays in the communication process. This requires
indicating that causality in the interface signature, which
would indicate the object that produces the flow and the
object that consumes it.

To address this issue, we propose to include causality
definitions at both levels. However, calling it “causality”
at both levels might be confusing too. Actually, the
definition of causality in Part 2 refers to objects only, i.e.,
the granularity of causality is defined at the object level –
more precisely at the object’s interface signature level.
But in Part 3, causality indications seem to be used at two
different levels: object interface signature and action
template. There is a clear need to align the granularities
for these different definitions.

Thus, we propose defining causalities in every level at
which this term is involved. This means incorporating
causalities in individual action templates and in interface
signatures. In operations, in which the causality defined at
the interface signature level determines the causality of the
individual interactions, a constraint should enforce such a
relationship.

Figure 2 shows our proposal, where the indication of
causality appears not only at the interface signature
level—to specify the roles played by computational
objects in the communication process as a whole—but
also at the interaction signature level.

��������	�
����
���������
��
�����
�������������

4. Conclusions

RM-ODP was created at the beginning of last decade,
but it is becoming now probably the best framework for
specifying and developing large open and distributed
applications. In the first place, the complexity of the
applications is reaching the level where many traditional
software engineering methods do not seem to be able to
cope with. However, RM-ODP was specifically conceived
to specify those large and complex open systems, and
therefore is perfectly fit to address their specification and
design. Furthermore, the level of maturity reached by the
RM-ODP seems to be the adequate to fulfill the
requirements of current businesses and organizations.

Some years after its release as International Standard,
an ISO Study Group will evaluate the need for a revision
of RM-ODP, a customary process for ISO standards. The
goal is to make use of the experiences gained from the use
of the RM-ODP during that period, in order to “tune” it
according to the findings, and to propose improvements or
changes if required.

In order to serve as an input to that Group, this paper
has raised two issues that we discovered when trying to
formalize the ODP Computational Viewpoint: the need of
an independent term for referring to the signature of an
Action Template (without taking into consideration the
semantic information that an action template also
contains), and the way in which Causalities are currently
defined and handled. Proposals for addressing these issues
have been presented. First, the term Interaction Signature
has been proposed for capturing the syntactic aspects of
an action template. This allows a consistent definition of
all interaction signatures (announcements, interrogations,
terminations, signals and flows), as shown in Figure 1.
Second, we propose the definition of causalities at two
levels: interface signature and interaction signature. This
seems to resolve the apparent mismatch in Part 3 of the
RM-ODP standard.

Finally, just to mention the need for more examples,
case studies and documents describing experiences in the
use of RM-ODP, in order to help software engineers fully
understand the concepts in the Reference Model, whose
complexity (and sometimes cryptic definitions) make
them difficult to learn, understand, and properly use to
specify and design large open distributed applications.

Acknowledgements The authors would like to

acknowledge the work of many ODP experts who have
been involved in investigating and addressing the
problems of the computational specification of ODP
systems. Although the views in this paper are the authors’
solely responsibility, they could not have been formulated
without the detailed discussions with ISO experts on
ODP, in particular with Akira Tanaka and Dave Akehurst.

This work has been partially supported by Spanish
Project TIC2002-04309-C02-02.

5. References

[1] D. H. Akehurst, J. Derrick and A.G. Waters. “Addressing
Computational Viewpoint Design.” In Proceedings of the
7th IEEE International Enterprise Distributed Object
Computing Conference (EDOC 2003), pages 147-159,
Brisbane, Australia, Sept. 2003. IEEE CS Press.

[2] R. Romero and A. Vallecillo. “Formalizing ODP
Computational Specifications in Maude”. In Proceedings
of the 8th IEEE International Enterprise Distributed
Object Computing Conference (EDOC 2004), Monterey,
California, September 2004. Copyright IEEE CS Press.

[3] F. Durán and A. Vallecillo. Specifying the ODP
information viewpoint using Maude. In H. Kilov and K.
Baclawski, editors, Proceedings of Tenth OOPSLA
Workshop on Behavioural Semantics, pages 44-57,
Florida, Oct. 2001. Northeastern University.

[4] F. Durán and A. Vallecillo. Formalizing ODP Enterprise
specifications in Maude. Computer Standards &
Interfaces, 25(2):83-102, June 2003.

[5] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet,
J. Meseger and J. Quesada. Maude: specification and
programming in rewriting logic. Theoretical Computer
Science, 285:187-243. Aug. 2002.

[6] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet,
J. Meseguer and C. Talcott, Maude 2.0 manual. Available
in
���
�������������������, June 2003.

[7] S. Eker, J. Meseguer and A.Sridharanarayanan. The
Maude LTL model checker. In F. Gaducci and U.
Montanari, editors, Proc. Of the 4th International
Workshop on Rewriting Logic and its Applications
(WRLA 2002), volume 71 of Electronic Notes in
Theoretical Computer Science, pages 115-142, Pisa,
Italy, Sept. 2002. Elsevier.

[8] P. Linington. RM-ODP: The architecture. In K.
Milosevic and L. Armstrong, editors, Open Distributed
Processing II, pages 15-33. Chapman & Hall, Feb. 1995.

[9] E. Najm and J.B. Stefani. A formal operational semantics
for the ODP computational model. Computer Networks
and ISDN System, 27:1305-1329, 1995.

[10] E. Najm and J.B.Stefani. Computational models for open
distributed systems. In H. Bowman and J. Derrick,
editors, Proceedings of FMOODS’97, pages 157-176,
Canterbury, 1997, Chapman & Hall.

[11] ITU-T Recommendation X.901 | ISO/IEC 10746-1: ODP
Reference Model Part 1. Overview. Geneva, Switzerland,
1998.

[12] ITU-T Recommendation X.902 | ISO/IEC 10746-2: ODP
Reference Model Part 2. Foundations. Geneva,
Switzerland, 1996.

[13] ITU-T Recommendation X.903 | ISO/IEC 10746-3: ODP
Reference Model Part 3. Architecture. Geneva,
Switzerland, 1996.

[14] ITU-T Recommendation X.904 | ISO/IEC 10746-4: ODP
Reference Model Part 4. Architectural semantics.
Geneva, Switzerland, 1998.

[15] R. Sinnot and K.J. Turner. Specifying ODP

computational objects in Z. In E. Najm and J.B. Stefani,
editors, Proceedings of FMOODS’96, pages 375-390,
Canterbury, 1997. Chapman & Hall.

